Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (1) : 45-52    https://doi.org/10.1007/s12200-011-0208-z
REVIEW AIRTICLE
Electrolyte-dependent photovoltaic responses in dye-sensitized solar cells
Hong LIN(), Feng HAO, Jianbao LI
State Key Laboratory of New Ceramics & Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(351 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Promoted by the growing concerns about the worldwide energy demand and global warming, dye-sensitized solar cells (DSSCs) are currently attracting worldwide scientific and technological interest because of their high energy conversion efficiency and simple fabrication process. Considering long-terms stability and practice applications, growing attentions have been paid to non-volatile, 3-methoxyproprionitrile (MPN)-based electrolyte, ionic liquids (ILs) electrolyte, as well as quasi-solid state electrolyte. In this present review, recent progress in electrolyte for DSSCs made by our group are summarized, including component-optimization of the non-volatile electrolyte, the fluidity-dependent charge transport mechanism in the binary IL electrolytes as well as the structure dominance of the employed ILs. Furthermore, progress on the quasi-solid state electrolyte based on inorganic nanomaterials as gelators in our group has also been outlined.

Keywords electrolyte      non-volatile      ionic liquid (IL)      quasi-solid state      dye-sensitized solar cell (DSSC)     
Corresponding Author(s): LIN Hong,Email:Hong-lin@tsinghua.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Hong LIN,Feng HAO,Jianbao LI. Electrolyte-dependent photovoltaic responses in dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 45-52.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0208-z
https://academic.hep.com.cn/foe/EN/Y2011/V4/I1/45
Fig.1  Dependency of (a), (b), (c), and (d) on concentration of iodine in non-volatile electrolyte
Fig.1  Dependency of (a), (b), (c), and (d) on concentration of iodine in non-volatile electrolyte
Fig.2  Characteristic parameters of impedance spectra of DSSCs with various iodine concentrations in dark at applied forward bias of - 0.75 V. (a) shows , , and ; (b) depicts and
Fig.2  Characteristic parameters of impedance spectra of DSSCs with various iodine concentrations in dark at applied forward bias of - 0.75 V. (a) shows , , and ; (b) depicts and
Fig.3  Dependence of limiting current density and apparent diffusion coefficient on EMIDCA volume fraction in binary IL electrolyte
Fig.3  Dependence of limiting current density and apparent diffusion coefficient on EMIDCA volume fraction in binary IL electrolyte
Fig.4  - characteristics of devices A-E with various EMIDCA/PMII binary IL electrolytes measured under AM 1.5 illumination (100mW·cm)
Fig.4  - characteristics of devices A-E with various EMIDCA/PMII binary IL electrolytes measured under AM 1.5 illumination (100mW·cm)
Fig.5  Structure, viscosity and ionic conductivity (measured at 298 K) of various RTILs employed
Fig.5  Structure, viscosity and ionic conductivity (measured at 298 K) of various RTILs employed
Fig.6  Nyquist plots of devices with various RTIL electrlytes measured in dark at applied forward bias of - 0.65 V
Fig.6  Nyquist plots of devices with various RTIL electrlytes measured in dark at applied forward bias of - 0.65 V
Fig.7  (a) Molecular structure of MPIDP; (b) molecular structure of layered α-ZrP; (c) intercalation schematic of TBP into layered α-ZrP
Fig.7  (a) Molecular structure of MPIDP; (b) molecular structure of layered α-ZrP; (c) intercalation schematic of TBP into layered α-ZrP
Fig.8  FESEM images of as-obtained NiO nanosheets
Fig.8  FESEM images of as-obtained NiO nanosheets
1 O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737–740
doi: 10.1038/353737a0
2 Gr?tzel M. Photoelectrochemical cells. Nature , 2001, 414(6861): 338–344
doi: 10.1038/35104607 pmid:11713540
3 Gr?tzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A , 2004, 164(1-3): 3–14
doi: 10.1016/j.jphotochem.2004.02.023
4 Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L Y. Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics Part 2 , 2006, 45: L638–L640
5 Kroon J M, Bakker N J, Smit H J P, Liska P, Thampi K R, Wang P, Zakeeruddin S M, Gr?tzel M, Hinsch A, Hore S, Wurfel U, Sastrawan R, Durrant J R, Palomares E, Pettersson H, Gruszecki T, Walter J, Skupien K, Tulloch G E. Nanocrystalline dye-sensitized solar cells having maximum performance. Progress in Photovoltaics , 2007, 15(1): 1–18
doi: 10.1002/pip.707
6 Nazeeruddin M K, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Gr?tzel M. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society , 2005, 127(48): 16835–16847
doi: 10.1021/ja052467l pmid:16316230
7 Gr?tzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry , 2005, 44(20): 6841–6851
doi: 10.1021/ic0508371 pmid:16180840
8 Chiba Y, Islam A, Komiya R, Koide N, Han L Y. 10.8% conversion efficiency of dye-sensitized solar cells using modified TiO2 substrates. Applied Physics Letters , 2006, 88(22): 223505
doi: 10.1063/1.2208920
9 Wang P, Zakeeruddin S M, Moser J E, Nazeeruddin M K, Sekiguchi T, Gr?tzel M. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials , 2003, 2(6): 402–407
doi: 10.1038/nmat904 pmid:12754500
10 Wang P, Zakeeruddin S M, Humphry-Baker R, Moser J E, Gr?tzel M. Molecular-scale interface engineering of TiO2 nanocrystals: improve the efficiency and stability of dye-sensitized solar cells. Advanced Materials (Deerfield Beach, Fla.) , 2003, 15(24): 2101–2104
doi: 10.1002/adma.200306084
11 Wang P, Klein C, Humphry-Baker R, Zakeeruddin S M, Gr?tzel M. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells. Journal of the American Chemical Society , 2005, 127(3): 808–809
doi: 10.1021/ja0436190 pmid:15656598
12 Wang P, Klein C, Humphry-Baker R, Zakeeruddin S M, Gr?tzel M. Stable ≥ 8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility. Applied Physics Letters , 2005, 86(12): 123508
doi: 10.1063/1.1887825
13 Kuang D B, Klein C, Snaith H J, Moser J E, Humphry-Baker R, Comte P, Zakeeruddin S M, Gr?tzel M. Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: influence of lithium ions on the photovoltaic performance of liquid and solid-state cells. Nano Letters , 2006, 6(4): 769–773
doi: 10.1021/nl060075m pmid:16608281
14 Kawano R, Watanabe M. Anomaly of charge transport of an iodide/tri-iodide redox couple in an ionic liquid and its importance in dye-sensitized solar cells. Chemical Communications , 2005, 16(16): 2107–2109
doi: 10.1039/b418031c pmid:15846415
15 Kubo W, Kambe S, Nakade S, Kitamura T, Hanabusa K, Wada Y, Yanagida S. Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. Journal of Physical Chemistry B , 2003, 107(18): 4374–4381
doi: 10.1021/jp034248x
16 Wang P, Zakeeruddin S M, Comte P, Exnar I, Gr?tzel M. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. Journal of the American Chemical Society , 2003, 125(5): 1166–1167
doi: 10.1021/ja029294+ pmid:12553808
17 Kuang D B, Wang P, Ito S, Zakeeruddin S M, Gr?tzel M. Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte. Journal of the American Chemical Society , 2006, 128(24): 7732–7733
doi: 10.1021/ja061714y pmid:16771475
18 Gorlov M, Pettersson H, Hagfeldt A, Kloo L. Electrolytes for dye-sensitized solar cells based on interhalogen ionic salts and liquids. Inorganic Chemistry , 2007, 46(9): 3566–3575
doi: 10.1021/ic062244b pmid:17417833
19 Noda A, Hayamizu K, Watanabe M. Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. Journal of Physical Chemistry B , 2001, 105(20): 4603–4610
doi: 10.1021/jp004132q
20 Suarez P A Z, Einloft S, Dullius J E L, de Souza R F, Dupont J J. Synthesis and physical-chemical properties of ionic liquids based on 1- n-butyl-3-methylimidazolium cation. Journal of Chemical Physics , 1998, 95(7): 1626–1639
21 Wang P, Zakeeruddin S M, Moser J E, Gr?tzel M. A new ionic liquid electrolyte enhances the conversion efficient of dye-sensitized solar cells. Journal of Physical Chemistry B , 2003, 107(48): 13280–13285
doi: 10.1021/jp0355399
22 Wang P, Zakeeruddin S M, Humphry-Baker R, Gr?tzel M. A binary ionic liquid electrolyte to achieve ≥ 7% power conversion efficiencies in dye-sensitized solar cells. Chemistry of Materials , 2004, 16(14): 2694–2696
doi: 10.1021/cm049916l
23 Wang P, Zakeeruddin S M, Moser J E, Humphry-Baker R, Gr?tzel M. A solvent-free, SeCN-/(SeCN)3- based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. Journal of the American Chemical Society , 2004, 126(23): 7164–7165
doi: 10.1021/ja048472r pmid:15186139
24 Wang P, Wenger B, Humphry-Baker R, Moser J E, Teuscher J, Kantlehner W, Mezger J, Stoyanov E V, Zakeeruddin S M, Gr?tzel M. Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. Journal of the American Chemical Society , 2005, 127(18): 6850–6856
doi: 10.1021/ja042232u pmid:15869308
25 Kawano R, Matsui H, Matsuyama C, Sato A, Susan M A B H, Tanabe N, Watanabe M. High performance dye-sensitized solar cells using ionic liquids as their electrolytes. Journal of Photochemistry and Photobiology A Chemistry , 2004, 164(1-3): 87–92
doi: 10.1016/j.jphotochem.2003.12.019
26 Zhao Y, Zhai J, Tan S, Wang L, Jiang L, Zhu D. TiO2 micro/nano-composite structured electrodes for quasi-solid-state dye-sensitized solar cells. Nanotechnology , 2006, 17(9): 2090–2097
doi: 10.1088/0957-4484/17/9/003
27 Wang P, Zakeeruddin S M, Gr?tzel M. Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells. Journal of Fluorine Chemistry , 2004, 125(8): 1241–1245
doi: 10.1016/j.jfluchem.2004.05.010
28 Kim J H, Kang M S, Kim Y J, Won J, Park N G, Kang Y S. Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles. Chemical Communications , 2004, (14): 1662–1663
doi: 10.1039/b405215c pmid:15263968
29 Kato T, Kado T, Tanaka S, Okazaki A, Hayase S. Quasi-solid dye-sensitized solar cells containing nanoparticles modified with ionic liquid-type molecules. Journal of the Electrochemical Society , 2006, 153(3): A626–A630
doi: 10.1149/1.2161578
30 Usui H, Matsui H, Tanabe N, Yanagida S. Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes. Journal of Photochemistry and Photobiology A Chemistry , 2004, 164(1-3): 97–101
doi: 10.1016/j.jphotochem.2003.12.020
31 Tu C W, Liu K Y, Chien A T, Yen M H, Weng T H, Ho K C, Lin K F. Enhancement of photocurrent of polymer-gelled dye-sensitized solar cell by incorporation of exfoliated montmorillonite nanoplatelets. Journal of Polymer Science. Part A, Polymer Chemistry , 2008, 46(1): 47–53
doi: 10.1002/pola.22356
32 Park J H, Kim B W, Moon J H. Dual functions of clay nanoparticles with high aspect ratio indye-sensitized solar cells. Electrochemical and Solid-State Letters , 2008, 11(10): B171–B173
doi: 10.1149/1.2957601
33 Yang S C, Yoon H G, Lee S S, Lee H. Roles of layered titanates in ionic liquid electrolytes for quasi-solid state dye-sensitized solar cells. Materials Letters , 2009, 63(17): 1465–1467
doi: 10.1016/j.matlet.2009.03.042
34 Wang N, Lin H, Li J B, Li X. Improved quasi-solid dye-sensitized solar cells by composite ionic liquid electrolyte including layered α-zirconium phosphate. Applied Physics Letters , 2006, 89(19): 194104
doi: 10.1063/1.2387967
35 Zhang Z P, Ito S, Moser J E, Zakeeruddin S M, Gr?tzel M. Influence of iodide concentration on the efficiency and stability of dye-sensitized solar cell containing non-volatile electrolyte. ChemPhysChem , 2009, 10(11): 1834–1838
doi: 10.1002/cphc.200900199 pmid:19472254
36 Hao F, Lin H, Zhang J, Zhuang D T, Liu Y Z, Li J B. Influence of iodine concentration on the photoelectrochemical performance of dye-sensitized solar cells containing non-volatile electrolyte. Electrochimica Acta , 2010, 55(24): 7225–7229
doi: 10.1016/j.electacta.2010.06.079
37 Bearcroft D J, Nachtrieb N H. Electrical conductance of salts in liquid iodine. II. Iodide acceptor solutes. Journal of Physical Chemistry , 1967, 71(13): 4400–4404
doi: 10.1021/j100872a036
38 Bargeman D, Kommandeur J. Ionic conductivity in single crystals of iodine: ions in iodine. Journal of Chemical Physics , 1968, 49(9): 4069
doi: 10.1063/1.1670719
39 Stegemann H, Rohde A, Reiche A, Schnittke A, Füllbier H. Room temperature molten polyiodides. Electrochimica Acta , 1992, 37(3): 379–383
doi: 10.1016/0013-4686(92)87025-U
40 Dahms H. Electronic conduction in aqueous solution. Journal of Physical Chemistry , 1968, 72(1): 362–364
doi: 10.1021/j100847a073
41 Ruff I, Friedrich V J. Transfer diffusion. I. Theoretical. Journal of Physical Chemistry , 1971, 75(21): 3297–3302
doi: 10.1021/j100690a016
42 Leone A M, Weatherly S C, Williams M E, Thorp H H, Murray R W. An ionic liquid form of DNA: redox-active molten salts of nucleic acids. Journal of the American Chemical Society , 2001, 123(2): 218–222
doi: 10.1021/ja003332c pmid:11456507
43 Hao F, Lin H, Zhang J, Li J B. Balance between the physical diffusion and the exchange reaction on binary ionic liquid electrolyte for dye-sensitized solar cells. Journal of Power Sources , 2011, 196: 1645
44 Huddleston J D, Visser A E, Reichert W M, Willauer H D, Broker G A, Rogers R D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry , 2001, 3(4): 156–164
doi: 10.1039/b103275p
46 Hao F, Lin H, Liu Y Z, Li J B. Anionic structure-dependent photoelectrochemical responses of dyesensitized solar cells based on a binary ionic liquid electrolyte. Physical Chemistry Chemical Physics , 2011,
doi: 10.1039/c0cp02704a
47 Hao F, Lin H, Li X, Zhang J, Liu Y Z, Li J B. Enhancement of photocurrent of dye-sensitized solar cell by composite liquid electrolyte including NiO nanosheets. Journal of Nanoscience and Nanotechnology , 2010, 10(11): 7390–7393
doi: 10.1166/jnn.2010.2794 pmid:21137942
48 Shi D, Pootrakulchote N, Li R, Guo J, Wang Y, Zakeeruddin S M, Gr?tzel M, Wang P. New efficiency records for stable dye-sensitized solar cells with low-volatility and ionic liquid electrolytes. Journal of Physical Chemistry C , 2008, 112(44): 17046–17050
doi: 10.1021/jp808018h
[1] Xiaoyan HU, Heng WANG. ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells[J]. Front. Optoelectron., 2018, 11(3): 285-290.
[2] Cunxi CHENG, Jihuai WU, Yaoming XIAO, Yuan CHEN, Haijun YU, Ziying TANG, Jianming LIN, Miaoliang HUANG. Preparation of titanium dioxide-double-walled carbon nanotubes and its application in flexible dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(2): 224-230.
[3] Gentian YUE, Jihuai WU, Jianming LIN, Miaoliang HUANG, Ying YAO, Leqing FAN, Yaoming XIAO. Application of Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate counter electrode in polymer heterojunction dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(4): 369-377.
[4] Wei CHEN, Shihe YANG. Dye-sensitized solar cells based on ZnO nanotetrapods[J]. Front Optoelec Chin, 2011, 4(1): 24-44.
[5] Quanyou FENG, Hong WANG, Gang ZHOU, Zhong-Sheng WANG. Effect of deoxycholic acid on performance of dye-sensitized solar cell based on black dye[J]. Front Optoelec Chin, 2011, 4(1): 80-86.
[6] Shuangying XU, Linhua HU, Jiang SHENG, Dongxing KOU, Huajun TIAN, Songyuan DAI. Electron transportation and optical properties of micro-structure TiO2 films: applied in dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 72-79.
[7] Minghui DENG, Shuqing HUANG, Zhexun YU, Dongmei LI, Yanhong LUO, Yubai BAI, Qingbo MENG. Enhanced electron injection/transportation by surface states increment in mesoporous TiO2 dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 65-71.
[8] Chang-Ryul LEE, Hui-Seon KIM, Nam-Gyu PARK. Dependence of porosity, charge recombination kinetics and photovoltaic performance on annealing condition of TiO2 films[J]. Front Optoelec Chin, 2011, 4(1): 59-64.
[9] Qingqing MIAO, Mingxing WU, Wei GUO, Tingli MA. Studies of high-efficient and low-cost dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 103-107.
[10] Wei CAO, Haixing DONG, Fei HUANG, Huilin SHEN, Yong CAO. Synthesis, optical and electroluminescent properties of novel polyfluorene/carbazole-based conjugated polyelectrolytes and their precursors[J]. Front Optoelec Chin, 2008, 1(3-4): 299-304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed