|
|
Enhanced electron injection/transportation by surface states increment in mesoporous TiO2 dye-sensitized solar cells |
Minghui DENG1, Shuqing HUANG1, Zhexun YU1, Dongmei LI1, Yanhong LUO1, Yubai BAI2, Qingbo MENG1( ) |
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. College of Chemistry, Jilin University, Changchun 130023, China |
|
|
Abstract A strategy of surface modification to the mesoporous TiO2 photoanode with hydrochloric acid treatment was used in this study, and it was found that short circuit current and photovoltaic efficiency of dye-sensitized solar cells (DSSCs) were increased by 5.5% and 8.9% respectively. The improvement was attributed to the reduced impedances in the TiO2 film and at the TiO2/dye/electrolyte interface. It was showed that the increased surface electronic states could remarkably prolong electron lifetime, which was responsible for the reduction of impedances. Under these quasi-continuous states in mesoporous structure, the electron injection/transportation can be notably facilitated, which will be beneficial for the DSSC performance.
|
Keywords
dye-sensitized solar cell (DSSC)
surface states
surface modification
electron transportation
|
Corresponding Author(s):
MENG Qingbo,Email:qbmeng@aphy.iphy.ac.cn
|
Issue Date: 05 March 2011
|
|
1 |
O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737–740 doi: 10.1038/353737a0
|
2 |
K?nenkamp R, Henninger R, Hoyer P. Photocarrier transport in colloidal TiO2 films. Journal of Physical Chemistry , 1993, 97(28): 7328–7330 doi: 10.1021/j100130a034
|
3 |
Schlichth?rl G, Huang S Y, Sprague J, Frank A J. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy. Journal of Physical Chemistry B , 1997, 101(41): 8141–8155 doi: 10.1021/jp9714126
|
4 |
Tennakone K, Kumara G R R A, Kottegoda I R M, Perera V P S. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chemical Communications , 1999, (1): 15–16 doi: 10.1039/a806801a
|
5 |
Kambili A, Walker A B, Qiu F L, Fisher A C, Savin A D, Peter L M. Electron transport in the dye sensitized nanocrystalline cell. Physics E, Low-Dimensional Systems and Nanostructures, 2002, 14(1-2): 203–209 doi: 10.1016/S1386-9477(02)00384-3
|
6 |
Meng Q B, Takahashi K, Zhang X T, Sutanto I, Rao T N, Sato O, Fujishima A, Watanabe H, Nakamori T, Uragami M. Fabrication of an efficient solid-state dye-sensitized solar cell. Langmuir , 2003, 19(9): 3572–3574 doi: 10.1021/la026832n
|
7 |
Shen Q, Toyoda T. Studies of optical absorption and electron transport in nanocrystalline TiO2 electrodes. Thin Solid Films , 2003, 438-439: 167–170 doi: 10.1016/S0040-6090(03)00728-4
|
8 |
Bisquert J, Vikhrenko V S. Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. Journal of Physical Chemistry B , 2004, 108(7): 2313–2322 doi: 10.1021/jp035395y
|
9 |
Boschloo G, Hagfeldt A. Activation energy of electron transport in dye-sensitized TiO2 solar cells. Journal of Physical Chemistry B , 2005, 109(24): 12093–12098 doi: 10.1021/jp0513770 pmid:16852492
|
10 |
Rühle S, Dittrich T. Investigation of the electric field in TiO2/FTO junctions used in dye-sensitized solar cells by photocurrent transients. Journal of Physical Chemistry B , 2005, 109(19): 9522–9526 doi: 10.1021/jp046211y pmid:16852145
|
11 |
Siegers C, Olàh B, Würfel U, Hohl-Ebinger J, Hinsch A, Haag R. Donor-acceptor-functionalized polymers for efficient light harvesting in the dye solar cell. Solar Energy Materials and Solar Cells , 2009, 93(5): 552–563 doi: 10.1016/j.solmat.2008.11.038
|
12 |
Ferrere S, Gregg B A. Large increases in photocurrents and solar conversion efficiencies by UV illumination of dye sensitized solar cells. Journal of Physical Chemistry B , 2001, 105(32): 7602–7605 doi: 10.1021/jp011612o
|
13 |
Gregg B A, Chen S G, Ferrere S. Enhanced dye-sensitized photoconversion efficiency via reversible production of UV-induced surface states in mesoporous TiO2. Journal of Physical Chemistry B , 2003, 107(13): 3019–3029 doi: 10.1021/jp022000m
|
14 |
Wang Q, Zhang Z, Zakeeruddin S M, Gr?tzel M. Enhancement of the performance of dye-sensitized solar cell by formation of shallow transport levels under visible light illumination. Journal of Physical Chemistry C , 2008, 112(17): 7084–7092 doi: 10.1021/jp800426y
|
15 |
Wang Z S, Li F Y, Huang C H. Photocurrent enhancement of hemicyanine dyes containing RSO3- group through treating TiO2 films with hydrochloric acid. Journal of Physical Chemistry B , 2001, 105(38): 9210–9217 doi: 10.1021/jp010667n
|
16 |
Wang Z S, Yamaguchi T, Sugihara H, Arakawa H. Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films. Langmuir , 2005, 21(10): 4272–4276 doi: 10.1021/la050134w pmid:16032834
|
17 |
Park D W, Park K H, Lee J W, Hwang K J, Choi Y K. Hydrochloric acid treatment of TiO2 electrode for quasi-solid-state dye-sensitized solar cells. Journal of Nanoscience and Nanotechnology , 2007, 7(11): 3722–3726 doi: 10.1166/jnn.2007.005 pmid:18047045
|
18 |
Jung H S, Lee J K, Lee S, Hong K S, Shin H. Acid adsorption on TiO2 nanoparticles - An electrochemical properties study. Journal of Physical Chemistry C , 2008, 112(22): 8476–8480 doi: 10.1021/jp711689u
|
19 |
Kay A, Gr?tzel M. Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chemistry of Materials , 2002, 14(7): 2930–2935 doi: 10.1021/cm0115968
|
20 |
Palomares E, Clifford J N, Haque S A, Lutz T, Durrant J R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. Journal of the American Chemical Society , 2003, 125(2): 475–482 doi: 10.1021/ja027945w pmid:12517161
|
21 |
Liu X Z, Huang Z, Li K X, Li H, Li D M, Chen L Q, Meng Q B. Recombination reduction in dye-sensitized solar cells by screen-printed TiO2 underlayers. Chinese Physics Letters , 2006, 23(9): 2606–2608 (in Chinese) doi: 10.1088/0256-307X/23/9/071
|
22 |
Lee S, Kim J Y, Youn S H, Park M, Hong K S, Jung H S, Lee J K, Shin H. Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell. Langmuir , 2007, 23(23): 11907–11910 doi: 10.1021/la701826v pmid:17927224
|
23 |
Zaban A, Aruna S T, Tirosh S, Gregg B A, Mastai Y. The effect of the preparation condition of TiO2 colloids on their surface structures. Journal of Physical Chemistry B , 2000, 104(17): 4130–4133 doi: 10.1021/jp993198m
|
24 |
Zhang D, Downing J A, Knorr F J, McHale J L. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion. Journal of Physical Chemistry B , 2006, 110(43): 21890–21898 doi: 10.1021/jp0640880 pmid:17064155
|
25 |
Longo C, Nogueira A F, De Paoli M A, Cachet H. Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy. Journal of Physical Chemistry B , 2002, 106(23): 5925–5930 doi: 10.1021/jp014456u
|
26 |
Han L, Koide N, Chiba Y, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters , 2004, 84(13): 2433–2435 doi: 10.1063/1.1690495
|
27 |
Wang Q, Ito S, Gr?tzel M, Santiago F F, Seró I M, Bisquert J, Bessho T. Imai Hachiro. Characteristics of high efficiency dye-sensitized solar cells. Journal of Physical Chemistry B , 2006, 110(50): 25210–25221 doi: 10.1021/jp064256o
|
28 |
Nelson J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Physical Review B: Condensed Matter and Materials Physics , 1999, 59(23): 15374–15380 doi: 10.1103/PhysRevB.59.15374
|
29 |
Bisquert J, Cahen D, Hodes G, Rühle S, Zaban A. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. Journal of Physical Chemistry B , 2004, 108(24): 8106–8118 doi: 10.1021/jp0359283
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|