Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2011, Vol. 4 Issue (1) : 65-71    https://doi.org/10.1007/s12200-011-0204-3
RESEARCH ARTICLE
Enhanced electron injection/transportation by surface states increment in mesoporous TiO2 dye-sensitized solar cells
Minghui DENG1, Shuqing HUANG1, Zhexun YU1, Dongmei LI1, Yanhong LUO1, Yubai BAI2, Qingbo MENG1()
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. College of Chemistry, Jilin University, Changchun 130023, China
 Download: PDF(278 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A strategy of surface modification to the mesoporous TiO2 photoanode with hydrochloric acid treatment was used in this study, and it was found that short circuit current and photovoltaic efficiency of dye-sensitized solar cells (DSSCs) were increased by 5.5% and 8.9% respectively. The improvement was attributed to the reduced impedances in the TiO2 film and at the TiO2/dye/electrolyte interface. It was showed that the increased surface electronic states could remarkably prolong electron lifetime, which was responsible for the reduction of impedances. Under these quasi-continuous states in mesoporous structure, the electron injection/transportation can be notably facilitated, which will be beneficial for the DSSC performance.

Keywords dye-sensitized solar cell (DSSC)      surface states      surface modification      electron transportation     
Corresponding Author(s): MENG Qingbo,Email:qbmeng@aphy.iphy.ac.cn   
Issue Date: 05 March 2011
 Cite this article:   
Minghui DENG,Shuqing HUANG,Zhexun YU, et al. Enhanced electron injection/transportation by surface states increment in mesoporous TiO2 dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 65-71.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-011-0204-3
https://academic.hep.com.cn/foe/EN/Y2011/V4/I1/65
Fig.1  Cell performance for normal (dash line) and modified (solid line) DSSCs under various illumination intensities
Fig.1  Cell performance for normal (dash line) and modified (solid line) DSSCs under various illumination intensities
Fig.2  Absorption spectra of desorbed sensitizer solution of normal (dash line) and surface modified (solid line) TiO photoanodes
Fig.2  Absorption spectra of desorbed sensitizer solution of normal (dash line) and surface modified (solid line) TiO photoanodes
Fig.3  Normalized O (1 s) XPS spectra of freshly made normal (dash line) and modified (solid line) TiO photoanodes
Fig.3  Normalized O (1 s) XPS spectra of freshly made normal (dash line) and modified (solid line) TiO photoanodes
Fig.4  (a) Nyquist diagram of experiment (scatter) and the fitting curve (line) of impedance spectra obtained for normal (hollow) and acid pretreated (solid) DSSCs under different light intensities (?: 100%; ?: 75%; ○: 50%; ?: 25%); (b) equivalent circuit for EIS spectra simulation
Fig.4  (a) Nyquist diagram of experiment (scatter) and the fitting curve (line) of impedance spectra obtained for normal (hollow) and acid pretreated (solid) DSSCs under different light intensities (?: 100%; ?: 75%; ○: 50%; ?: 25%); (b) equivalent circuit for EIS spectra simulation
samples under different light intensitiesR1Z1/(mΩ·s-1)C1/mFCPE2R2Rs
C2/ μFn
normal-25%54.05350.71.03116.370.6348177.813.69
normal-50%36.2916.381.11331.970.500235.3213.96
normal-75%28.332.2921.08244.350.490313.1412.27
normal-100%20.011.2611.17957.320.47857.95714.86
HCl-25%91.966.4460.831123.680.56383.1410.05
HCl-50%41.731.0970.971943.460.489618.5310.11
HCl-75%25.710.8931.11957.880.4779.49910.15
HCl-100%18.220.87931.25975.640.48827.05910.21
Tab.1  Fitting values of measured electrochemical impedance spectra with equivalent circuit in Fig. 4(b).
Fig.5  TiO/dye/electrolyte interface property dependence on with logarithm coordinates in vertical. (a) Resistance; (b) capacitance
Fig.5  TiO/dye/electrolyte interface property dependence on with logarithm coordinates in vertical. (a) Resistance; (b) capacitance
Fig.6  Dark current with applied potential for normal (solid line) and HCl treated (dash line) DSSCs with different HCl concentrations
Fig.6  Dark current with applied potential for normal (solid line) and HCl treated (dash line) DSSCs with different HCl concentrations
1 O’Regan B, Gr?tzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737–740
doi: 10.1038/353737a0
2 K?nenkamp R, Henninger R, Hoyer P. Photocarrier transport in colloidal TiO2 films. Journal of Physical Chemistry , 1993, 97(28): 7328–7330
doi: 10.1021/j100130a034
3 Schlichth?rl G, Huang S Y, Sprague J, Frank A J. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy. Journal of Physical Chemistry B , 1997, 101(41): 8141–8155
doi: 10.1021/jp9714126
4 Tennakone K, Kumara G R R A, Kottegoda I R M, Perera V P S. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chemical Communications , 1999, (1): 15–16
doi: 10.1039/a806801a
5 Kambili A, Walker A B, Qiu F L, Fisher A C, Savin A D, Peter L M. Electron transport in the dye sensitized nanocrystalline cell. Physics E, Low-Dimensional Systems and Nanostructures, 2002, 14(1-2): 203–209
doi: 10.1016/S1386-9477(02)00384-3
6 Meng Q B, Takahashi K, Zhang X T, Sutanto I, Rao T N, Sato O, Fujishima A, Watanabe H, Nakamori T, Uragami M. Fabrication of an efficient solid-state dye-sensitized solar cell. Langmuir , 2003, 19(9): 3572–3574
doi: 10.1021/la026832n
7 Shen Q, Toyoda T. Studies of optical absorption and electron transport in nanocrystalline TiO2 electrodes. Thin Solid Films , 2003, 438-439: 167–170
doi: 10.1016/S0040-6090(03)00728-4
8 Bisquert J, Vikhrenko V S. Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. Journal of Physical Chemistry B , 2004, 108(7): 2313–2322
doi: 10.1021/jp035395y
9 Boschloo G, Hagfeldt A. Activation energy of electron transport in dye-sensitized TiO2 solar cells. Journal of Physical Chemistry B , 2005, 109(24): 12093–12098
doi: 10.1021/jp0513770 pmid:16852492
10 Rühle S, Dittrich T. Investigation of the electric field in TiO2/FTO junctions used in dye-sensitized solar cells by photocurrent transients. Journal of Physical Chemistry B , 2005, 109(19): 9522–9526
doi: 10.1021/jp046211y pmid:16852145
11 Siegers C, Olàh B, Würfel U, Hohl-Ebinger J, Hinsch A, Haag R. Donor-acceptor-functionalized polymers for efficient light harvesting in the dye solar cell. Solar Energy Materials and Solar Cells , 2009, 93(5): 552–563
doi: 10.1016/j.solmat.2008.11.038
12 Ferrere S, Gregg B A. Large increases in photocurrents and solar conversion efficiencies by UV illumination of dye sensitized solar cells. Journal of Physical Chemistry B , 2001, 105(32): 7602–7605
doi: 10.1021/jp011612o
13 Gregg B A, Chen S G, Ferrere S. Enhanced dye-sensitized photoconversion efficiency via reversible production of UV-induced surface states in mesoporous TiO2. Journal of Physical Chemistry B , 2003, 107(13): 3019–3029
doi: 10.1021/jp022000m
14 Wang Q, Zhang Z, Zakeeruddin S M, Gr?tzel M. Enhancement of the performance of dye-sensitized solar cell by formation of shallow transport levels under visible light illumination. Journal of Physical Chemistry C , 2008, 112(17): 7084–7092
doi: 10.1021/jp800426y
15 Wang Z S, Li F Y, Huang C H. Photocurrent enhancement of hemicyanine dyes containing RSO3- group through treating TiO2 films with hydrochloric acid. Journal of Physical Chemistry B , 2001, 105(38): 9210–9217
doi: 10.1021/jp010667n
16 Wang Z S, Yamaguchi T, Sugihara H, Arakawa H. Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films. Langmuir , 2005, 21(10): 4272–4276
doi: 10.1021/la050134w pmid:16032834
17 Park D W, Park K H, Lee J W, Hwang K J, Choi Y K. Hydrochloric acid treatment of TiO2 electrode for quasi-solid-state dye-sensitized solar cells. Journal of Nanoscience and Nanotechnology , 2007, 7(11): 3722–3726
doi: 10.1166/jnn.2007.005 pmid:18047045
18 Jung H S, Lee J K, Lee S, Hong K S, Shin H. Acid adsorption on TiO2 nanoparticles - An electrochemical properties study. Journal of Physical Chemistry C , 2008, 112(22): 8476–8480
doi: 10.1021/jp711689u
19 Kay A, Gr?tzel M. Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chemistry of Materials , 2002, 14(7): 2930–2935
doi: 10.1021/cm0115968
20 Palomares E, Clifford J N, Haque S A, Lutz T, Durrant J R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. Journal of the American Chemical Society , 2003, 125(2): 475–482
doi: 10.1021/ja027945w pmid:12517161
21 Liu X Z, Huang Z, Li K X, Li H, Li D M, Chen L Q, Meng Q B. Recombination reduction in dye-sensitized solar cells by screen-printed TiO2 underlayers. Chinese Physics Letters , 2006, 23(9): 2606–2608 (in Chinese)
doi: 10.1088/0256-307X/23/9/071
22 Lee S, Kim J Y, Youn S H, Park M, Hong K S, Jung H S, Lee J K, Shin H. Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell. Langmuir , 2007, 23(23): 11907–11910
doi: 10.1021/la701826v pmid:17927224
23 Zaban A, Aruna S T, Tirosh S, Gregg B A, Mastai Y. The effect of the preparation condition of TiO2 colloids on their surface structures. Journal of Physical Chemistry B , 2000, 104(17): 4130–4133
doi: 10.1021/jp993198m
24 Zhang D, Downing J A, Knorr F J, McHale J L. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion. Journal of Physical Chemistry B , 2006, 110(43): 21890–21898
doi: 10.1021/jp0640880 pmid:17064155
25 Longo C, Nogueira A F, De Paoli M A, Cachet H. Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy. Journal of Physical Chemistry B , 2002, 106(23): 5925–5930
doi: 10.1021/jp014456u
26 Han L, Koide N, Chiba Y, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters , 2004, 84(13): 2433–2435
doi: 10.1063/1.1690495
27 Wang Q, Ito S, Gr?tzel M, Santiago F F, Seró I M, Bisquert J, Bessho T. Imai Hachiro. Characteristics of high efficiency dye-sensitized solar cells. Journal of Physical Chemistry B , 2006, 110(50): 25210–25221
doi: 10.1021/jp064256o
28 Nelson J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Physical Review B: Condensed Matter and Materials Physics , 1999, 59(23): 15374–15380
doi: 10.1103/PhysRevB.59.15374
29 Bisquert J, Cahen D, Hodes G, Rühle S, Zaban A. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. Journal of Physical Chemistry B , 2004, 108(24): 8106–8118
doi: 10.1021/jp0359283
[1] Xiaoyan HU, Heng WANG. ZnO/Nb2O5 core/shell nanorod array photoanode for dye-sensitized solar cells[J]. Front. Optoelectron., 2018, 11(3): 285-290.
[2] Mingzhang DENG,Weina SHI,Chen ZHAO,Bingbing CHEN,Yan SHEN. ITO surface modification for inverted organic photovoltaics[J]. Front. Optoelectron., 2015, 8(3): 269-273.
[3] D. MUTHARASU, S. SHANMUGAN. Thermal resistance of high power LED on surface modified heat sink[J]. Front Optoelec, 2013, 6(2): 160-166.
[4] Cunxi CHENG, Jihuai WU, Yaoming XIAO, Yuan CHEN, Haijun YU, Ziying TANG, Jianming LIN, Miaoliang HUANG. Preparation of titanium dioxide-double-walled carbon nanotubes and its application in flexible dye-sensitized solar cells[J]. Front Optoelec, 2012, 5(2): 224-230.
[5] Gentian YUE, Jihuai WU, Jianming LIN, Miaoliang HUANG, Ying YAO, Leqing FAN, Yaoming XIAO. Application of Poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate counter electrode in polymer heterojunction dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(4): 369-377.
[6] Wei CHEN, Shihe YANG. Dye-sensitized solar cells based on ZnO nanotetrapods[J]. Front Optoelec Chin, 2011, 4(1): 24-44.
[7] Quanyou FENG, Hong WANG, Gang ZHOU, Zhong-Sheng WANG. Effect of deoxycholic acid on performance of dye-sensitized solar cell based on black dye[J]. Front Optoelec Chin, 2011, 4(1): 80-86.
[8] Shuangying XU, Linhua HU, Jiang SHENG, Dongxing KOU, Huajun TIAN, Songyuan DAI. Electron transportation and optical properties of micro-structure TiO2 films: applied in dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 72-79.
[9] Chang-Ryul LEE, Hui-Seon KIM, Nam-Gyu PARK. Dependence of porosity, charge recombination kinetics and photovoltaic performance on annealing condition of TiO2 films[J]. Front Optoelec Chin, 2011, 4(1): 59-64.
[10] Hong LIN, Feng HAO, Jianbao LI. Electrolyte-dependent photovoltaic responses in dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 45-52.
[11] Qingqing MIAO, Mingxing WU, Wei GUO, Tingli MA. Studies of high-efficient and low-cost dye-sensitized solar cells[J]. Front Optoelec Chin, 2011, 4(1): 103-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed