Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2012, Vol. 5 Issue (4) : 403-413    https://doi.org/10.1007/s12200-012-0281-y
RESEARCH ARTICLE
Simple solutions for photonic power-efficient ultra-wideband system assisted by electrical bandpass filter
Jianji DONG(), Yuan YU, Bowen LUO, Dexiu HUANG, Xinliang ZHANG
Wuhan National Laboratory for Optoelectronics (WNLO), College of Optoelectronic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(1071 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose and experimentally demonstrate two simple solutions for power-efficient ultra-wideband (UWB) radio frequency (RF) system assisted by an electrical bandpass filter (EBPF). In the first solution, any optical Gaussian pulse with enough bandwidth is transmitted over optical fiber link, and then converted to a power-efficient UWB pulse by an EBPF with a passband of 3.1–10.6 GHz. The transmission and modulation of UWB signal is processed in optical domain, whereas the generation of UWB is processed in electrical domain. Both UWB modulations of on-off keying (OOK) and binary phase shift keying (BPSK) are experimentally demonstrated. In the second solution, the EBPF is used to convert any electrical waveform to a power-efficient UWB pulse. Then the electrical UWB pulse is converted to an optical UWB pulse with a Mach-Zehnder modulator (MZM), and then distributed over long haul fiber link. These two solutions embody the advantages of both low-loss long-haul transmission of optical fiber and mature electrical circuits. And the millimeter-wave UWB signal is also demonstrated.

Keywords ultra-wideband (UWB)      microwave photonics      pulse shaping     
Corresponding Author(s): DONG Jianji,Email:jjdong@mail.hust.edu.cn   
Issue Date: 05 December 2012
 Cite this article:   
Jianji DONG,Yuan YU,Bowen LUO, et al. Simple solutions for photonic power-efficient ultra-wideband system assisted by electrical bandpass filter[J]. Front Optoelec, 2012, 5(4): 403-413.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-012-0281-y
https://academic.hep.com.cn/foe/EN/Y2012/V5/I4/403
Fig.1  First solution of power-efficient UWB configuration based on hybrid of optical fiber and electrical circuit
Fig.2  Experimental setup of power-efficient UWB generator based on hybrid of optical fiber and RF circuit
Fig.3  (a)-(c) are input RZ pulse, EBPF output waveform, and EBPF output spectrum, respectively when the pulsewidth of Gaussian pulse is 5 ps; (d)-(f) are input Gaussian pulse, EBPF output waveform, and EBPF output spectrum, respectively when the pulsewidth of Gaussian pulse is 50 ps
Fig.4  Power efficiency of generated UWB waveform as function of pulsewidth of input Gaussian pulse
Fig.5  Duration of UWB signal as function of EBPF bandwidth
Fig.6  Frequency response of two EBPF samples
Fig.7  (a) and (b) are measured UWB waveform and electrical spectrum with 25 ps RZ pulse injection; (c) and (d) are measured UWB waveform and electrical spectrum with 50 ps RZ pulse injection
Fig.8  (a) and (b) are measured PAM of UWB signals and its electrical spectrum with 50 ps RZ pulse injection
Fig.9  (a) and (b) are measured UWB waveform and electrical spectrum with 25 ps RZ pulse injection; (c) and (d) are measured UWB waveform and electrical spectrum with 50 ps RZ pulse injection. An EBPF of 8-10 GHz is used
Fig.10  Experimental setup for BPSK modulation of UWB signals
Fig.11  (a)–(d) are generated temporal waveforms of 4-bit Walsh-Hadamard codes; (e)–(h) are electrical spectra, respectively
Fig.12  Second solution of power-efficient UWB generation and transmission
Fig.13  (a)-(b) are pair of measured bi-polar UWB waveforms with 50 ps Gaussian pulse injection; (c)-(d) are pair of measured bi-polar UWB waveforms with 25 ps Gaussian pulse injection; (e)-(h) are corresponding electrical spectra, respectively
Fig.14  (a) and (b) are pair of polarity-reversed UWB waveforms after transmission by 10 km SMF; (c) and (d) are corresponding electrical spectra
Fig.15  Frequency responses of UWB antenna pair in their peak radiation direction in azimuth plane with distance of 1, 5, 10, and 20 cm, respectively
Fig.16  Measured waveform (a) and RF spectrum (b) after antenna transmission
Fig.17  (a) and (c) are pair of polarity-reversed millimeter wave UWB signals; (b) and (d) are correspondingly measured RF spectra
1 Porcino D, Hirt W. Ultra-wideband radio technology: potential and challenges ahead. IEEE Communications Magazine , 2003, 41(7): 66–74
doi: 10.1109/MCOM.2003.1215641
2 Yao J. Photonics for ultrawideband communications. IEEE Microwave Magazine , 2009, 10(4): 82–95
doi: 10.1109/MMM.2009.932287
3 Ran M, Lembrikov B I, Ben Ezra Y. Ultra-wideband radio-over-optical fiber concepts, technologies and applications. IEEE Photonics Journal , 2010, 2(1): 36–48
doi: 10.1109/JPHOT.2010.2041055
4 Kim H, Park D, Joo Y. All-digital low-power CMOS pulse generator for UWB system. Electronics Letters , 2004, 40(24): 1534–1535
doi: 10.1049/el:20046923
5 Bachelet Y, Bourdel S, Gaubert J, Bas G, Chalopin H. Fully integrated CMOS UWB pulse generator. Electronics Letters , 2006, 42(22): 1277–1278
doi: 10.1049/el:20062816
6 Zheng J Y, Zhang M J, Wang A B, Wang Y C. Photonic generation of ultrawideband pulse using semiconductor laser with optical feedback. Optics Letters , 2010, 35(11): 1734–1736
doi: 10.1364/OL.35.001734 pmid:20517398
7 Pan S, Yao J. UWB-over-fiber communications: modulation and transmission. Journal of Lightwave Technology , 2010, 28(16): 2445–2455
doi: 10.1109/JLT.2010.2043713
8 Yu X, Gibbon T B, Monroy I T. Experimental demonstration of all-optical 781.25-Mb/s binary phase-coded UWB signal generation and transmission. IEEE Photonics Technology Letters , 2009, 21(17): 1235–1237
doi: 10.1109/LPT.2009.2024770
9 Yu X, Braidwood Gibbon T, Pawlik M, Blaaberg S, Tafur Monroy I. A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser. Optics Express , 2009, 17(12): 9680–9687
doi: 10.1364/OE.17.009680 pmid:19506617
10 Wang F, Dong J, Xu E, Zhang X. All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination. Optics Express , 2010, 18(24): 24588–24594
doi: 10.1364/OE.18.024588 pmid:21164805
11 Dong J, Zhang X, Xu J, Huang D, Fu S, Shum P. Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier. Optics Letters , 2007, 32(10): 1223–1225
doi: 10.1364/OL.32.001223 pmid:17440541
12 Wang S, Chen H, Xin M, Chen M, Xie S. Optical ultra-wide-band pulse bipolar and shape modulation based on a symmetric PM-IM conversion architecture. Optics Letters , 2009, 34(20): 3092–3094
doi: 10.1364/OL.34.003092 pmid:19838236
13 Wang Q, Yao J. Approach to all-optical bipolar direct-sequence ultrawideband coding. Optics Letters , 2008, 33(9): 1017–1019
doi: 10.1364/OL.33.001017 pmid:18451972
14 Dai Y, Yao J. High-chip-count UWB bi-phase coding for multi-user UWB-over-fiber system. Journal of Lightwave Technology , 2009, 27(11): 1448–1453
doi: 10.1109/JLT.2008.2011923
15 Yu Y, Dong J, Li X, Zhang X. UWB monocycle generation and bi-phase modulation based on mach-zehnder modulator and semiconductor optical amplifier. Photonics Journal , 2012, 4(2): 327–339
doi: 10.1109/JPHOT.2011.2180014
16 Abraha S T, Okonkwo C M, Tangdiongga E, Koonen A M J. Power-efficient impulse radio ultrawideband pulse generator based on the linear sum of modified doublet pulses. Optics Letters , 2011, 36(12): 2363–2365
doi: 10.1364/OL.36.002363 pmid:21686021
17 Dong J, Luo B W, Huang D, Zhang X.Photonic generation of power-efficient FCC-compliant ultra-wideband waveforms using (SOA): theoretical analysis and experiment verifications. Chinese Physics B , 2012, 21(4): 043201
18 Xu X, Zhou E B, Liang Y, Yuk T I, Lui K S, Wong K K Y. Power-efficient photonic BPSK coded ultrawideband signal generation. In: Proceedings of OFC/NFOEC , 2011, OTuF5
19 Zhou E B, Xu X, Liu K S, Wong K K Y. A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions. IEEE photonics Technology Letters , 2010, 22(14): 1063–1065
doi: 10.1109/LPT.2010.2050469
20 Li P, Chen H, Chen M, Xie S. A power-efficient photonic OOK and BPSK modulated Gigabit/s IR-UWB over fiber system. In: Asia-Pacific, MWP/APMP Singapore , 2011, 254–257
21 Abtahi M, Dastmalchi M, LaRochelle S, Rusch L A. Generation of arbitrary UWB waveforms by spectral pulse shaping and thermally-controlled apodized FBGs. Journal of Lightwave Technology , 2009, 27(23): 5276–5283
22 Abtahi M, Mirshafiei M, LaRochelle S, Rusch L A. All-optical 500-Mb/s UWB transceiver: an experimental demonstration. Journal of Lightwave Technology , 2008, 26(15): 2795–2802
doi: 10.1109/JLT.2008.925621
23 Abtahi M, Magné J, Mirshafiei M, Rusch L A, LaRochelle S. Generation of power-efficient FCC-compliant UWB waveforms using FBGs: analysis and experiment. Journal of Lightwave Technology , 2008, 26(5): 628–635
doi: 10.1109/JLT.2007.916586
[1] Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Front. Optoelectron., 2019, 12(2): 148-156.
[2] Saket KAUSHAL, Rui Cheng, Minglei Ma, Ajay Mistry, Maurizio Burla, Lukas Chrostowski, José Azaña. Optical signal processing based on silicon photonics waveguide Bragg gratings: review[J]. Front. Optoelectron., 2018, 11(2): 163-188.
[3] Zhefeng HU, Jianhui XU, Min HOU. Theoretical demonstration of all-optical switchable and tunable UWB doublet pulse train generator utilizing SOA wavelength conversion and tunable time delay[J]. Front. Optoelectron., 2017, 10(2): 180-188.
[4] Yu XIANG,Shilong PAN. GaAs-based polarization modulators for microwave photonic applications[J]. Front. Optoelectron., 2016, 9(3): 497-507.
[5] Rui YANG,Linjie ZHOU,Minjuan WANG,Haike ZHU,Jianping CHEN. Application of SOI microring coupling modulation in microwave photonic phase shifters[J]. Front. Optoelectron., 2016, 9(3): 483-488.
[6] Xiaoxiao XUE,Andrew M. WEINER. Microwave photonics connected with microresonator frequency combs[J]. Front. Optoelectron., 2016, 9(2): 238-248.
[7] Ming LI,Ninghua ZHU. Recent advances in microwave photonics[J]. Front. Optoelectron., 2016, 9(2): 160-185.
[8] Ming LI,José AZA?A,Ninghua ZHU,Jianping YAO. Recent progresses on optical arbitrary waveform generation[J]. Front. Optoelectron., 2014, 7(3): 359-375.
[9] Xiang ZHOU. Enabling technologies and challenges for transmission of 400 Gb/s signals in 50 GHz channel grid[J]. Front Optoelec, 2013, 6(1): 30-45.
[10] Liang ZHAO, Junqiang SUN. 6-channel photonic generation of ultra-wideband signals using multiple nonlinear characteristics in a parallel FOPA structure[J]. Front Optoelec Chin, 2011, 4(4): 448-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed