Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec    2014, Vol. 7 Issue (1) : 64-68    https://doi.org/10.1007/s12200-013-0369-z
RESEARCH ARTICLE
Boltzmann constant determined by fluorescent spectroscopy for verifying thermometers
Weiwei ZHANG(), Yiqing GAO, Xingdao HE
Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China
 Download: PDF(113 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As is always accompanying temperature in physics fundamental principles, Boltzmann constant kB can be used to verify the accuracy of a thermometer. This paper presents a photoluminescent method to measure kB via temperature dependent fluorescence of phosphors. Diagram of a phosphor’s energy levels was simplified to illustrate the principle of measurement. The relationship between kB and h*c (Planck constant h multiplying light speed in vacuum c) was experimentally derived. Finally, the determined kB was 1.38065 × 10-23 J/K. The determination could give a value of (1.38±0.1) × 10-23 J/K even when the in-use spectrometer was with a poor resolution as about 2 nm. At the end, optimization of measuring conditions for the determination process was suggested.

Keywords temperature      Boltzmann constant (kB)      Planck constant (h)     
Corresponding Author(s): ZHANG Weiwei,Email:zdw@ustc.edu   
Issue Date: 05 March 2014
 Cite this article:   
Weiwei ZHANG,Yiqing GAO,Xingdao HE. Boltzmann constant determined by fluorescent spectroscopy for verifying thermometers[J]. Front Optoelec, 2014, 7(1): 64-68.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-013-0369-z
https://academic.hep.com.cn/foe/EN/Y2014/V7/I1/64
Fig.1  Selected energy levels of Er for the determination of Boltzmann constant
Fig.2  emission of YO:Er,Yb at various temperature, pumped at 980 nm. Inset: YO:Er,Yb emission in visible range at room temperature
Fig.3  Dependence of YO:Er,Yb fluorescent intensity ratio (I/I) on temperature, where intensities I and I are respectively heights of peaks 2 and 1 in Fig. 2
Ref.technologyenergy gap E21/cm-1fitting slope s/KkB/(10-23 J?K-1)
[3]Doppler broadening1.38065(26)
[8]Raman spectrumPhonon energy /kB
[9]FIR technology70010151.3700
[10]FIR technology71910351.3800
[11]FIR technology872.31255.141.3805
[11]FIR technology953.11371.511.3804
[12]FIR technology80011521.3795
[13]FIR technology3905591.3859
[14]FIR technology6819811.3790
[15]FIR technology8961289.091.3807
Average of the FIR determination= 1.3795±0.0044
Tab.1  Boltzmann constant determined by optical spectroscopies
1 Bordé C J, Himbert M E. Foreword: progress in the experimental determination of Boltzmann’s constant. Comptes Rendus Physique , 2009, 10(9): 813–814
doi: 10.1016/j.crhy.2009.11.005
2 Daussy C, Guinet M, Amy-Klein A, Djerroud K, Hermier Y, Briaudeau S, Bordé C J, Chardonnet C. Direct determination of the Boltzmann constant by an optical method. Physical Review Letters , 2007, 98(25): 250801-1–250801-4
doi: 10.1103/PhysRevLett.98.250801
3 Djerroud K, Lemarchand C, Gauguet A, Daussy C, Briaudeau S, Darquié B, Lopez O, Amy-Klein A, Chardonnet C, Bordé C J. Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8 × 10-5 accuracy level. Comptes Rendus Physique , 2009, 10(9): 883–893
doi: 10.1016/j.crhy.2009.10.020
4 Mohr P J, Taylor B N, Newell D B. CODATA recommended values of the fundamental physical constants: 2010. Reviews of Modern Physics , 2012, 84(4): 1527–1605
doi: 10.1103/RevModPhys.84.1527
5 Zhang W W, Zhang W P, Xie P B, Yin M, Chen H T, Jing L, Zhang Y S, Lou L R, Xia S D. Optical properties of nanocrystalline Y2O3:Eu depending on its odd structure. Journal of Colloid and Interface Science , 2003, 262(2): 588–593
doi: 10.1016/S0021-9797(03)00169-3
6 Wade S A, Collins S F, Baxter G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing. Journal of Applied Physics , 2003, 94(8): 4743–4756
doi: 10.1063/1.1606526
7 Danenhower P. Is there a connection between Planck’s constant, Boltzmann’s constant and the speed of light. Master’s thesis, Simon Fraser University , 1987
8 Watanabe J, Yoshida R, Iwane S, Kinoshita S. Stokes to anti-Stokes intensity ratio in Raman spectra of the soft mode in KH2PO4 near the phase transition temperature. Journal of Non-Crystalline Solids , 2008, 354(2–9): 112–116
doi: 10.1016/j.jnoncrysol.2007.08.078
9 Singh S K, Kumar K, Rai S B. Diode laser pumped Gd2O3:Er3+/Yb3+ phosphor as optical nano-heater. Applied Physics. B, Lasers and Optics , 2010, 100(3): 443–446
doi: 10.1007/s00340-010-4169-5
10 Feng L, Lai B Y, Wang J, Du G Q, Su Q. Spectroscopic properties of Er3+ in a oxyfluoride glass and upconversion and temperature sensor behaviour of Er3+/Yb3+-codoped oxyfluoride glass. Journal of Luminescence , 2010, 130(12): 2418–2423
doi: 10.1016/j.jlumin.2010.08.005
11 Haro-González P, Martín I R, Martín L L, León-Luis S F, Pérez-Rodríguez C, Lavín V. Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors. Optical Materials , 2011, 33(5): 742–745
doi: 10.1016/j.optmat.2010.11.026
12 Cai Z P, Chardon A, Xu H Y, Féron P, Stéphan G M. Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser. Optics Communications , 2002, 203(3–6): 301–313
doi: 10.1016/S0030-4018(02)01114-8
13 Lai B Y, Feng L, Wang J, Su Q. Optical transition and upconversion luminescence in Er3+ doped and Er3+–Yb3+ co-doped fluorophosphate glasses. Optical Materials , 2010, 32(9): 1154–1160
doi: 10.1016/j.optmat.2010.03.023
14 Cai Z P, Xu H Y. Point temperature sensor based on green upconversion emission in an Er:ZBLALiP microsphere. Sensors and Actuators. A, Physical , 2003, 108(1–3): 187–192
doi: 10.1016/j.sna.2003.07.008
15 Zhou S Q, Li C R, Liu Z F, Li S F, Song C L. Thermal effect on up-conversion in Er3+/Yb3+ co-doped silicate glass. Optical Materials , 2007, 30(4): 513–516
doi: 10.1016/j.optmat.2007.01.005
[1] Yanli ZHAO, Junjie TU, Jingjing XIANG, Ke WEN, Jing XU, Yang TIAN, Qiang LI, Yuchong TIAN, Runqi WANG, Wenyang LI, Mingwei GUO, Zhifeng LIU, Qi TANG. Temperature dependence simulation and characterization for InP/InGaAs avalanche photodiodes[J]. Front. Optoelectron., 2018, 11(4): 400-406.
[2] Ran YAO,Dawei ZHANG,Bing ZOU,Jian XU. Junction temperature measurement of alternating current light-emitting-diode by threshold voltage method[J]. Front. Optoelectron., 2016, 9(4): 555-559.
[3] Yajuan ZHENG, Xiangbin ZENG, Xiaohu SUN, Diqiu HUANG. Influence of substrate temperature on in situ-textured ZnO thin films grown by MOCVD[J]. Front Optoelec, 2013, 6(3): 270-274.
[4] Diqiu HUANG, Xiangbin ZENG, Yajuan ZHENG, Xiaojin WANG, Yanyan YANG. Influence of process parameters on band gap of Al-doped ZnO film[J]. Front Optoelec, 2013, 6(1): 114-121.
[5] Youbao NI, Haixin WU, Mingsheng MAO, Chen LIN, Ganchao CHENG, Zhenyou WANG. Synthesis and growth of nonlinear infrared crystal material CdSe via seeded oriented temperature gradient solution zoning method[J]. Front Optoelec Chin, 2011, 4(2): 141-145.
[6] Jian LIU, Hao ZHANG, Bo LIU. Temperature measurement based on photonic crystal modal interferometer[J]. Front Optoelec Chin, 2010, 3(4): 418-422.
[7] Shaomin LI, Xiaoying LIU, Chong LIU. FBG sensing temperature characteristic and application in oil/gas down-hole measurement[J]. Front Optoelec Chin, 2009, 2(2): 233-238.
[8] Ziheng XU, Deming LIU, Hairong LIU, Qizhen SUN, Zhifeng SUN, Xu ZHANG, Wengang WANG. Design of distributed Raman temperature sensing system based on single-mode optical fiber[J]. Front Optoelec Chin, 2009, 2(2): 215-218.
[9] Deming LIU, Shuang LIU, Hairong LIU. Temperature performance of Raman scattering in data fiber and its application in distributed temperature fiber-optic sensor[J]. Front Optoelec Chin, 2009, 2(2): 159-162.
[10] Guoli CAI, Wei JIAN. Temperature sensing capacity of fiber Bragg grating at liquid nitrogen temperature[J]. Front Optoelec Chin, 2008, 1(3-4): 223-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed