Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (2) : 318-322    https://doi.org/10.1007/s12200-016-0613-4
RESEARCH ARTICLE
Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE
Yanxiong E,Zhibiao HAO(),Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO
Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(780 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Quantum dots in nanowires (DINWs) are considered as important building blocks for novel nanoscale semiconductor optoelectronic devices. In this paper, pure axial heterojunction InGaN/GaN DINWs are grown by using plasma-assisted molecular beam epitaxy (PA-MBE) system. The InGaN quantum dots (QDs) are disk-like observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The diameter of QDs can be controlled by the growth conditions of nanowires (NWs), while the thickness of QDs can be controlled by the growth time of InGaN. Temperature-dependent photoluminescence (TDPL) measurements demonstrate that the PL peak of DINWs with small and uniform sizes shows a general red shift with increasing temperature. However, the PL peak of DINWs with non-uniform sizes shows an abnormal blue shift with increasing temperature, which is due to different internal quantum efficiencies of the DINWs with different sizes.

Keywords InGaN quantum dots (QDs)      nanowires (NWs)      photoluminescence (PL)      molecular beam epitaxy (MBE)     
Corresponding Author(s): Zhibiao HAO   
Just Accepted Date: 22 February 2016   Online First Date: 29 March 2016    Issue Date: 05 April 2016
 Cite this article:   
Yanxiong E,Zhibiao HAO,Jiadong YU, et al. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-016-0613-4
https://academic.hep.com.cn/foe/EN/Y2016/V9/I2/318
Fig.1  (a) Cross-sectional SEM image of as-grown InGaN/GaN DINWs; (b) HAADF-STEM image of a single InGaN/GaN DINW, the area with bright contrast represents the InGaN QD; (c) EDS results of a line scan along the red arrow in (b), the green curve for Ga counts and the red one for In counts
Fig.2  Distribution of NW diameter in (a) sample A and (b) sample B
Fig.3  (a) and (b) are TDPL spectra of samples A and B; (c) and (d) are the integral PL intensities and peak energies versus temperature for samples A and B
Fig.4  Low temperature PL spectrum of sample A fitted by two Gaussian peaks
1 Holmes M J, Choi K, Kako S, Arita M, Arakawa Y. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Letters, 2014, 14(2): 982–986
https://doi.org/10.1021/nl404400d pmid: 24422516
2 Guo W, Zhang M, Banerjee A, Bhattacharya P. Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy. Nano Letters, 2010, 10(9): 3355–3359
https://doi.org/10.1021/nl101027x pmid: 20701296
3 Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu M Y, Li B H, Qiu X, Chang W H, Chen L J, Shvets G, Shih C K, Gwo S. Plasmonic nanolaser using epitaxially grown silver film. Science, 2012, 337(6093): 450–453
https://doi.org/10.1126/science.1223504 pmid: 22837524
4 Calleja E, Sanchez-Garcia M A, Sanchez F J, Calle F, Naranjo F B, Munoz E, Jahn U, Ploog K. Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy. Physical Review B: Condensed Matter and Materials Physics, 2000, 62(24): 16826–16834
https://doi.org/10.1103/PhysRevB.62.16826
5 Tourbot G, Bougerol C, Grenier A, Den Hertog M, Sam-Giao D, Cooper D, Gilet P, Gayral B, Daudin B. Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE. Nanotechnology, 2011, 22(7): 075601
https://doi.org/10.1088/0957-4484/22/7/075601 pmid: 21233547
6 Nguyen H P, Zhang S, Cui K, Han X, Fathololoumi S, Couillard M, Botton G A, Mi Z. p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). Nano Letters, 2011, 11(5): 1919–1924
https://doi.org/10.1021/nl104536x pmid: 21517080
7 Pan C, Dong L, Zhu G, Niu S, Yu R, Yang Q, Liu Y, Wang Z L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nature Photonics, 2013, 7(9): 752–758
https://doi.org/10.1038/nphoton.2013.191
8 Nguyen H P, Djavid M, Woo S Y, Liu X, Connie A T, Sadaf S, Wang Q, Botton G A, Shih I, Mi Z. Engineering the carrier dynamics of InGaN nanowire white light-emitting diodes by distributed p-AlGaN electron blocking layers. Scientific Reports, 2015, 5: 7744
https://doi.org/10.1038/srep07744 pmid: 25592057
9 Consonni V. Self-induced growth of GaN nanowires by molecular beam epitaxy: a critical review of the formation mechanisms. Physica Status Solidi (RRL) - Rapid Research Letters., 2013, 7(10): 699–712
10 Fernández-Garrido S, Grandal J, Calleja E, Sánchez-García M A, López-Romero D. A growth diagram for plasma-assisted molecular beam epitaxy of GaN nanocolumns on Si(111). Journal of Applied Physics, 2009, 106(12): 126102
https://doi.org/10.1063/1.3267151
11 Lang N. Studies on the growth of III-nitride quantum dots by MBE and related properties. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2014, 35–36
[1] E. KASPER, M. OEHME, J. WERNER, T. AGUIROV, M. KITTLER. Direct band gap luminescence from Ge on Si pin diodes[J]. Front Optoelec, 2012, 5(3): 256-260.
[2] Yijie HUO, Hai LIN, Robert CHEN, Yiwen RONG, Theodore I. KAMINS, James S. HARRIS. MBE growth of tensile-strained Ge quantum wells and quantum dots[J]. Front Optoelec, 2012, 5(1): 112-116.
[3] Zhongwei SHI, Lirong HUANG, Yi YU, Peng TIAN, Hanchao WANG. Influence of V/III ratio on QD size distribution[J]. Front Optoelec Chin, 2011, 4(4): 364-368.
[4] Caixia SONG, Yuwei SUN, Yaohua XU, Debao WANG. Synthesis and optical property of ZnO nano-/micro-rods[J]. Front Optoelec Chin, 2011, 4(2): 156-160.
[5] Pijus Kanti SAMANTA, Partha Roy CHAUDHURI. Substrate effect on morphology and photoluminescence from ZnO monopods and bipods[J]. Front Optoelec Chin, 2011, 4(2): 130-136.
[6] Jieying KONG, Bin LIU, Rong ZHANG, Zili XIE, Yong ZHANG, Xiangqian XIU, Youdou ZHENG. Optical properties of InN films grown by MOCVD[J]. Front Optoelec Chin, 2008, 1(3-4): 341-344.
[7] JIA Guozhi, YAO Jianghong, SHU Yongchun, WANG Zhanguo. Optical properties and structure of InAs quantum dots in near-infrared band[J]. Front. Optoelectron., 2008, 1(1-2): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed