Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2021, Vol. 14 Issue (4) : 383-398    https://doi.org/10.1007/s12200-021-1226-0
REVIEW ARTICLE
Recent progress of semiconductor optoelectronic fibers
Hei Chit Leo TSUI(), Noel HEALY
Emerging Technologies and Materials Group, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle, NE1 7RU, UK
 Download: PDF(1995 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Semiconductor optoelectronic fiber technology has seen rapid development in recent years thanks to advancements in fabrication and post-processing techniques. Integrating the optical and electronic functionality of semiconductor materials into a fiber geometry has opened up many possibilities, such as in-fiber frequency generation, signal modulation, photodetection, and solar energy harvesting. This review provides an overview of the state-of-the-art in semiconductor optoelectronic fibers, including fabrication and post-processing methods, materials and their optical properties. The applications in nonlinear optics, optical-electrical conversion, lasers and multimaterial functional fibers will also be highlighted.

Keywords optical fibers      semiconductor photonics      nonlinear optics     
Corresponding Author(s): Hei Chit Leo TSUI   
Just Accepted Date: 25 May 2021   Online First Date: 13 July 2021    Issue Date: 06 December 2021
 Cite this article:   
Hei Chit Leo TSUI,Noel HEALY. Recent progress of semiconductor optoelectronic fibers[J]. Front. Optoelectron., 2021, 14(4): 383-398.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-021-1226-0
https://academic.hep.com.cn/foe/EN/Y2021/V14/I4/383
Fig.1  Schematics of the various semiconductor optoelectronic fiber fabrication processes. (a) HPCVD method. (b) PAMF method. (c) MCD method
Fig.2  (a) Schematic of the tapering process with over-sleeve fiber. (b) Schematic of the laser recrystallization process
Fig.3  (a) Cross-section scanning electron micrograph of silicon core fiber (scale bar: 20 μm). Reprinted with permission from Ref. [53]. Copyright 2016, American Chemical Society. (b) Cross-section X-ray computed tomography image of SiGe core fiber after recrystallization (scale bar: 200 μm). Reprinted from Ref. [61]. (c) Scanning electron micrograph of ZnSe core fiber (scale bar: 5 μm). Reprinted with permission from Ref. [78]. Copyright 2011, WILEY-VCH Verlag GmbH & Co. KGaA. (d) Image of the guided optical mode at 1.55 μm of Cr2+:ZnSe core fiber. Reprinted with permission from Ref. [79]. Copyright 2020, The Optical Society. (e) Scanning electron micrograph of SeTe core fiber. Reprinted with permission from Ref. [80]. Copyright 2018, Elsevier
Fig.4  (a) Measured spectra of a supercontinuum generated in a silicon fiber; pump powers labeled in the legend. Dashed lines are a guide to show the power dependent four-wave mixing (FWM) frequency detuning. Reprinted with permission from Ref. [94]. Copyright 2014, The Optical Society. (b) Femtosecond probe spectrogram from XPM using a silicon fiber. Reprinted with permission from Ref. [97]. Copyright 2012, The Optical Society. (c) Measured spectra at the maximum wavelength shifting showing the extinction ratios for the conversion shown in (b). Reprinted with permission from Ref. [97]. Copyright 2012, The Optical Society. (d) Normalized profiles of soliton evolution in a 10 mm tapered silicon fiber. Reprinted with permission from Ref. [98]. Copyright 2010, The Optical Society. (e) Pulse evolution towards the parabolic regime. Reprinted with permission from Ref. [99]. Copyright 2010, The Optical Society
Fig.5  (a) Electrodes fabricated on the Pt/n-Si diode using a focused ion beam system, with platinum electrodes contacting the platinum and n+-Si layers (Scale bar: 5 μm). Reprinted from Ref. [100]. (b) Photodetection response of a Pt–Si diode to 10 ps laser pulses at wavelengths of 1310 and 1550 nm, measured by an oscilloscope. Reprinted from Ref. [100]. (c) Scanning electron micrograph of a deposited and cleaved junction in-fiber p-i-n structure. Reprinted with permission from Ref. [101]. Copyright 2013, WILEY-VCH Verlag GmbH & Co. KGaA. (d) Photoconduction of laser-crystallized silicon optical fibers measured as a function of excitation energy (F1: fiber irradiated for a duration of 500 μs, F2: fiber irradiated for a duration of 5 ms) and of a single-crystal standard reference. Reprinted from Ref. [105]
Fig.6  (a) Spectral emission of Cr2+:ZnSe fiber laser above and below the laser threshold. Reprinted with permission from Ref. [79]. Copyright 2020, The Optical Society. (b) Lasing spectrum of free running Fe2+:ZnSe optical fiber at full pump power (600 mW) with cryogenic cooling. Reprinted with permission from Ref. [88]. Copyright 2020, The Optical Society
Fig.7  (a) Schematic of the fabrication of multimaterial preforms. Reprinted with permission from Ref. [30]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA. (b) Schematic of the thermal drawing of multimaterial fibers with several embedded materials and functionalities. Reprinted with permission from Ref. [30]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA. (c) Cross-section scanning electron micrograph of the fiber field-effect device (lower panel) and magnification of one of the two devices (upper panel). Reprinted with permission from Ref. [112]. Copyright 2010, WILEY-VCH Verlag GmbH & Co. KGaA
1 E Desurvire, J R Simpson, P C Becker. High-gain erbium-doped traveling-wave fiber amplifier. Optics Letters, 1987, 12(11): 888–890
https://doi.org/10.1364/OL.12.000888 pmid: 19741905
2 R Mears, L Reekie, I Jauncey, D Payne. Low-noise erbium-doped fibre amplifier operating at 1.54 µm. Electronics Letters, 1987, 23(2): 1026–1028
3 P. Urquhart Review of rare earth doped fibre lasers and amplifiers. IEE Proceedings J (Optoelectronics), 1988, 135(6): 385–407
4 W J Miniscalco. Erbium-doped glasses for fiber amplifiers at 1500 nm. Journal of Lightwave Technology, 1991, 9(2): 234–250
https://doi.org/10.1109/50.65882
5 C R Giles, E Desurvire. Modeling erbium-doped fiber amplifiers. Journal of Lightwave Technology, 1991, 9(2): 271–283
https://doi.org/10.1109/50.65886
6 G P Agrawal. Optical pulse propagation in doped fiber amplifiers. Physical Review A, 1991, 44(11): 7493–7501
https://doi.org/10.1103/PhysRevA.44.7493 pmid: 9905889
7 C Barnard, P Myslinski, J Chrostowski, M Kavehrad. Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE Journal of Quantum Electronics, 1994, 30(8): 1817–1830
https://doi.org/10.1109/3.301646
8 A B Seddon, Z Tang, D Furniss, S Sujecki, T M Benson. Progress in rare-earth-doped mid-infrared fiber lasers. Optics Express, 2010, 18(25): 26704–26719
https://doi.org/10.1364/OE.18.026704 pmid: 21165021
9 D J Richardson, J Nilsson, W A Clarkson. High power fiber lasers: current status and future perspectives. Journal of the Optical Society of America B, Optical Physics, 2010, 27(11): B63–B92
https://doi.org/10.1364/JOSAB.27.000B63
10 A C Peacock, N Healy. Semiconductor optical fibres for infrared applications: a review. Semiconductor Science and Technology, 2016, 31(10): 103004
https://doi.org/10.1088/0268-1242/31/10/103004
11 P D Dragic, M Cavillon, J Ballato. Materials for optical fiber lasers: a review. Applied Physics Reviews, 2018, 5(4): 041301
https://doi.org/10.1063/1.5048410
12 L Wetenkamp, G F West, H Többen. Optical properties of rare earth-doped ZBLAN glasses. Journal of Non-Crystalline Solids, 1992, 140: 35–40
https://doi.org/10.1016/S0022-3093(05)80737-9
13 Y Miyajima, T Komukai, T Sugawa, T Yamamoto. Rare earth-doped fluoride fiber amplifiers and fiber lasers. Optical Fiber Technology, 1994, 1(1): 35–47
https://doi.org/10.1006/ofte.1994.1004
14 J Wang, E Vogel, E Snitzer. Tellurite glass: a new candidate for fiber devices. Optical Materials, 1994, 3(3): 187–203
https://doi.org/10.1016/0925-3467(94)90004-3
15 D Sidebottom, M Hruschka, B Potter, R Brow. Structure and optical properties of rare earth-doped zinc oxyhalide tellurite glasses. Journal of Non-Crystalline Solids, 1997, 222(1–2): 282–289
https://doi.org/10.1016/S0022-3093(97)00403-1
16 M Clara Gonçalves , L F Santos, R M Almeida. Rare-earth-doped transparent glass ceramics. Comptes Rendus Chimie, 2002, 5(12): 845–854
https://doi.org/10.1016/S1631-0748(02)01457-1
17 J S Sanghera, L Brandon Shaw, I D Aggarwal. Chalcogenide glass-fiber-based mid-IR sources and applications. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 114–119
https://doi.org/10.1109/JSTQE.2008.2010245
18 N G Boetti, D Pugliese, E Ceci-Ginistrelli, J Lousteau, D Janner, D Milanese. Highly doped phosphate glass fibers for compact lasers and amplifiers: a review. Applied Sciences (Basel, Switzerland), 2017, 7(12): 1295
https://doi.org/10.3390/app7121295
19 K Richardson, D Krol, K Hirao. Glasses for photonic applications. International Journal of Applied Glass Science, 2010, 1(1): 74–86
https://doi.org/10.1111/j.2041-1294.2010.00008.x
20 I Dajani, X Zhu, N Peyghambarian. High-power ZBLAN glass fiber lasers: review and prospect. Advances in OptoElectronics, 2010, 2010: 501956
21 L Calvez. Chalcogenide glasses and glass-ceramics: transparent materials in the infrared for dual applications. Comptes Rendus Physique, 2017, 18(5–6): 314–322
https://doi.org/10.1016/j.crhy.2017.05.003
22 J M Harbold, F O Ilday, F W Wise, J S Sanghera, V Q Nguyen, L B Shaw, I D Aggarwal. Highly nonlinear As-S-Se glasses for all-optical switching. Optics Letters, 2002, 27(2): 119–121
https://doi.org/10.1364/OL.27.000119 pmid: 18007731
23 J S Sanghera, L B Shaw, P Pureza, V Q Nguyen, D Gibson, L Busse, I D Aggarwal, C M Florea, F H Kung. Nonlinear properties of chalcogenide glass fibers. International Journal of Applied Glass Science, 2010, 1(3): 296–308
https://doi.org/10.1111/j.2041-1294.2010.00021.x
24 F Gan. Optical properties of fluoride glasses: a review. Journal of Non-Crystalline Solids, 1995, 184: 9–20
https://doi.org/10.1016/0022-3093(94)00592-3
25 B J Eggleton, B Luther-Davies, K Richardson. Chalcogenide photonics. Nature Photonics, 2011, 5(3): 141–148
https://doi.org/10.1038/nphoton.2011.309
26 J Ballato, T Hawkins, P Foy, B Yazgan-Kokuoz, C McMillen, L Burka, S Morris, R Stolen, R Rice. Advancements in semiconductor core optical fiber. Optical Fiber Technology, 2010, 16(6): 399–408
https://doi.org/10.1016/j.yofte.2010.08.006
27 A C Peacock, J R Sparks, N Healy. Semiconductor optical fibres: progress and opportunities. Laser & Photonics Reviews, 2014, 8(1): 53–72
https://doi.org/10.1002/lpor.201300016
28 A C Peacock, U J Gibson, J Ballato. Silicon optical fibres—past, present, and future. Advances in Physics: X, 2016, 1(1): 114–127
https://doi.org/10.1080/23746149.2016.1146085
29 M Ordu, S N Basu. Recent progress in germanium-core optical fibers for mid-infrared optics. Infrared Physics & Technology, 2020, 111: 103507
https://doi.org/10.1016/j.infrared.2020.103507
30 W Yan, A Page, T Nguyen-Dang, Y Qu, F Sordo, L Wei, F Sorin. Advanced multimaterial electronic and optoelectronic fibers and textiles. Advanced Materials, 2019, 31(1): e1802348
https://doi.org/10.1002/adma.201802348 pmid: 30272829
31 Z Wang, M Chen, Y Zheng, J Zhang, Z Wang, J Yang, Q Zhang, B He, M Qi, H Zhang, K Li, L Wei. Advanced thermally drawn multimaterial fibers: structure-enabled functionalities. Advanced Devices & Instrumentation, 2021, 2021: 9676470
https://doi.org/10.34133/2021/9676470
32 M Bayindir, F Sorin, A F Abouraddy, J Viens, S D Hart, J D Joannopoulos, Y Fink. Metal-insulator-semiconductor optoelectronic fibres. Nature, 2004, 431(7010): 826–829
https://doi.org/10.1038/nature02937 pmid: 15483607
33 A F Abouraddy, O Shapira, M Bayindir, J Arnold, F Sorin, D S Hinczewski, J D Joannopoulos, Y Fink. Large-scale optical-field measurements with geometric fibre constructs. Nature Materials, 2006, 5(7): 532–536
https://doi.org/10.1038/nmat1674 pmid: 16799549
34 T Zhang, K Li, J Zhang, M Chen, Z Wang, S Ma, N Zhang, L Wei. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy, 2017, 41: 35–42
https://doi.org/10.1016/j.nanoen.2017.09.019
35 T Zhang, Z Wang, B Srinivasan, Z Wang, J Zhang, K Li, C Boussard-Pledel, J Troles, B Bureau, L Wei. Ultraflexible glassy semiconductor fibers for thermal sensing and positioning. ACS Applied Materials & Interfaces, 2019, 11(2): 2441–2447
https://doi.org/10.1021/acsami.8b20307 pmid: 30576098
36 J Zhang, T Zhang, H Zhang, Z Wang, C Li, Z Wang, K Li, X Huang, M Chen, Z Chen, Z Tian, H Chen, L D Zhao, L Wei. Single-crystal SnSe thermoelectric fibers via laser-induced directional crystallization: from 1D fibers to multidimensional fabrics. Advanced Materials, 2020, 32(36): e2002702
https://doi.org/10.1002/adma.202002702 pmid: 32715534
37 P J A Sazio, A Amezcua-Correa, C E Finlayson, J R Hayes, T J Scheidemantel, N F Baril, B R Jackson, D J Won, F Zhang, E R Margine, V Gopalan, V H Crespi, J V Badding. Microstructured optical fibers as high-pressure microfluidic reactors. Science, 2006, 311(5767): 1583–1586
https://doi.org/10.1126/science.1124281 pmid: 16543454
38 N Healy, L Lagonigro, J R Sparks, S Boden, P J A Sazio, J V Badding, A C Peacock. Polycrystalline silicon optical fibers with atomically smooth surfaces. Optics Letters, 2011, 36(13): 2480–2482
https://doi.org/10.1364/OL.36.002480 pmid: 21725451
39 J R Sparks, P J Sazio, V Gopalan, J V Badding. Templated chemically deposited semiconductor optical fiber materials. Annual Review of Materials Research, 2013, 43(1): 527–557
https://doi.org/10.1146/annurev-matsci-073012-125958
40 N Healy, U Gibson, A C Peacock. A review of materials engineering in silicon-based optical fibres. Semiconductor Science and Technology, 2018, 33(2): 023001
https://doi.org/10.1088/1361-6641/aaa143
41 H K Tyagi, M A Schmidt, L Prill Sempere, P S Russell. Optical properties of photonic crystal fiber with integral micron-sized Ge wire. Optics Express, 2008, 16(22): 17227–17236
https://doi.org/10.1364/OE.16.017227 pmid: 18958003
42 H W Lee, M A Schmidt, R F Russell, N Y Joly, H K Tyagi, P Uebel, P S J Russell. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Optics Express, 2011, 19(13): 12180–12189
https://doi.org/10.1364/OE.19.012180 pmid: 21716455
43 H Chen, S Fan, G Li, M A Schmidt, N Healy. Single crystal Ge core fiber produced via pressure assisted melt filling and CO2 laser crystallization. IEEE Photonics Technology Letters, 2020, 32(2): 81–84
https://doi.org/10.1109/LPT.2019.2957702
44 J Ballato, E Snitzer. Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications. Applied Optics, 1995, 34(30): 6848–6854
https://doi.org/10.1364/AO.34.006848 pmid: 21060544
45 J Ballato, T Hawkins, P Foy, R Stolen, B Kokuoz, M Ellison, C McMillen, J Reppert, A M Rao, M Daw, S R Sharma, R Shori, O Stafsudd, R R Rice, D R Powers. Silicon optical fiber. Optics Express, 2008, 16(23): 18675–18683
https://doi.org/10.1364/OE.16.018675 pmid: 19581953
46 B L Scott, G R Pickrell. Silicon optical fiber diameter dependent grain size. Journal of Crystal Growth, 2013, 371: 134–141
https://doi.org/10.1016/j.jcrysgro.2013.02.022
47 J Ballato, T Hawkins, P Foy, B Yazgan-Kokuoz, R Stolen, C McMillen, N K Hon, B Jalali, R Rice. Glass-clad single-crystal germanium optical fiber. Optics Express, 2009, 17(10): 8029–8035
https://doi.org/10.1364/OE.17.008029 pmid: 19434134
48 E F Nordstrand, A N Dibbs, A J Eraker, U J Gibson. Alkaline oxide interface modifiers for silicon fiber production. Optical Materials Express, 2013, 3(5): 651–657
https://doi.org/10.1364/OME.3.000651
49 C Hou, X Jia, L Wei, S C Tan, X Zhao, J D Joannopoulos, Y Fink. Crystalline silicon core fibres from aluminium core preforms. Nature Communications, 2015, 6(1): 6248
https://doi.org/10.1038/ncomms7248 pmid: 25697119
50 C Hou, X Jia, L Wei, A M Stolyarov, O Shapira, J D Joannopoulos, Y Fink. Direct atomic-level observation and chemical analysis of ZnSe synthesized by in situ high-throughput reactive fiber drawing. Nano Letters, 2013, 13(3): 975–979
https://doi.org/10.1021/nl304023z pmid: 23368645
51 C Spinella, S Lombardo, F Priolo. Crystal grain nucleation in amorphous silicon. Journal of Applied Physics, 1998, 84(10): 5383–5414
https://doi.org/10.1063/1.368873
52 X Z Bo, N Yao, S R Shieh, T S Duffy, J C Sturm. Large-grain polycrystalline silicon films with low intra- granular defect density by low-temperature solid-phase crystallization without underlying oxide. Journal of Applied Physics, 2002, 91(5): 2910–2915
https://doi.org/10.1063/1.1448395
53 S Chaudhuri, J R Sparks, X Ji, M Krishnamurthi, L Shen, N Healy, A C Peacock, V Gopalan, J V Badding. Crystalline silicon optical fibers with low optical loss. ACS Photonics, 2016, 3(3): 378–384
https://doi.org/10.1021/acsphotonics.5b00434
54 N Gupta, C McMillen, R Singh, R Podila, A M Rao, T Hawkins, P Foy, S Morris, R Rice, K F Poole, L Zhu, J Ballato. Annealing of silicon optical fibers. Journal of Applied Physics, 2011, 110(9): 093107
https://doi.org/10.1063/1.3660270
55 S Xue, M A van Eijkelenborg, G W Barton, P Hambley. Theoretical, numerical, and experimental analysis of optical fiber tapering. Journal of Lightwave Technology, 2007, 25(5): 1169–1176
https://doi.org/10.1109/JLT.2007.893028
56 F H Suhailin, L Shen, N Healy, L Xiao, M Jones, T Hawkins, J Ballato, U J Gibson, A C Peacock. Tapered polysilicon core fibers for nonlinear photonics. Optics Letters, 2016, 41(7): 1360–1363
https://doi.org/10.1364/OL.41.001360 pmid: 27192236
57 Y Franz, A F J Runge, H Ren, N Healy, K Ignatyev, M Jones, T Hawkins, J Ballato, U J Gibson, A C Peacock. Material properties of tapered crystalline silicon core fibers. Optical Materials Express, 2017, 7(6): 2055–2061
https://doi.org/10.1364/OME.7.002055
58 N Healy, M Fokine, Y Franz, T Hawkins, M Jones, J Ballato, A C Peacock, U J Gibson. CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss. Advanced Optical Materials, 2016, 4(7): 1004–1008
https://doi.org/10.1002/adom.201500784
59 X Ji, S Lei, S Y Yu, H Y Cheng, W Liu, N Poilvert, Y Xiong, I Dabo, S E Mohney, J V Badding, V Gopalan. Single-crystal silicon optical fiber by direct laser crystallization. ACS Photonics, 2017, 4(1): 85–92
https://doi.org/10.1021/acsphotonics.6b00584
60 Z Zhao, Y Mao, L Ren, J Zhang, N Chen, T Wang. CO2 laser annealing of Ge core optical fibers with different laser power. Optical Materials Express, 2019, 9(3): 1333–1347
https://doi.org/10.1364/OME.9.001333
61 D A Coucheron, M Fokine, N Patil, D W Breiby, O T Buset, N Healy, A C Peacock, T Hawkins, M Jones, J Ballato, U J Gibson. Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres. Nature Communications, 2016, 7(1): 13265
https://doi.org/10.1038/ncomms13265 pmid: 27775066
62 W Wu, M Balci, S Song, C Liu, M Fokine, F Laurell, T Hawkins, J Ballato, U J Gibson. CO2 laser annealed SiGe core optical fibers with radial Ge concentration gradients. Optical Materials Express, 2020, 10(4): 926–936
https://doi.org/10.1364/OME.390482
63 M Fokine, A Theodosiou, S Song, T Hawkins, J Ballato, K Kalli, U J Gibson. Laser structuring, stress modification and Bragg grating inscription in silicon-core glass fibers. Optical Materials Express, 2017, 7(5): 1589
https://doi.org/10.1364/OME.7.001589
64 N Healy, J R Sparks, M N Petrovich, P J A Sazio, J V Badding, A C Peacock. Large mode area silicon microstructured fiber with robust dual mode guidance. Optics Express, 2009, 17(20): 18076–18082
https://doi.org/10.1364/OE.17.018076 pmid: 19907597
65 N Healy, J R Sparks, R R He, P J A Sazio, J V Badding, A C Peacock. High index contrast semiconductor ARROW and hybrid ARROW fibers. Optics Express, 2011, 19(11): 10979–10985
https://doi.org/10.1364/OE.19.010979 pmid: 21643359
66 D Wu, L Shen, H Ren, M Huang, C Lacava, J Campling, S Sun, T W Hawkins, U J Gibson, P Petropoulos, J Ballato, A C Peacock. Four-wave mixing-based wavelength conversion and parametric amplification in submicron silicon core fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27(2): 1–11
https://doi.org/10.1109/JSTQE.2020.3022100
67 M Kudinova, G Bouwmans, R Habert, S Plus, K Baudelle, R Bernard, B Chazallon, A Cassez, H E Hamzaoui, O Vanvincq, J Troles, L Bigot. Hundreds of meter-long low-loss silicon-core optical fiber. In: Proceedings of SPIE 11276, Optical Components and Materials XVII. San Francisco: SPIE, 2020, 161–166
68 Z Zhao, L Ren, J Zhang, S Wang, F Xue, Y Mao. High temperature annealing of Si core fiber with different annealing time. Optical Fiber Technology, 2020, 58: 102288
https://doi.org/10.1016/j.yofte.2020.102288
69 C E Finlayson, A Amezcua-Correa, P J A Sazio, N F Baril, J V Badding. Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers. Applied Physics Letters, 2007, 90(13): 132110
https://doi.org/10.1063/1.2713755
70 P Mehta, M Krishnamurthi, N Healy, N F Baril, J R Sparks, P J A Sazio, V Gopalan, J V Badding, A C Peacock. Mid-infrared transmission properties of amorphous germanium optical fibers. Applied Physics Letters, 2010, 97(7): 071117
https://doi.org/10.1063/1.3481413
71 X Ji, R L Page, S Chaudhuri, W Liu, S Y Yu, S E Mohney, J V Badding, V Gopalan. Single-crystal germanium core optoelectronic fibers. Advanced Optical Materials, 2017, 5(1): 1600592
https://doi.org/10.1002/adom.201600592
72 J Ballato, T Hawkins, P Foy, S Morris, N K Hon, B Jalali, R Rice. Silica-clad crystalline germanium core optical fibers. Optics Letters, 2011, 36(5): 687–688
https://doi.org/10.1364/OL.36.000687 pmid: 21368949
73 M Ordu, J Guo, B Tai, M K Hong, S Erramilli, S Ramachandran, S N Basu. Mid-infrared transmission through germanium-core borosilicate glass-clad semiconductor fibers. Optical Materials Express, 2017, 7(9): 3107–3115
https://doi.org/10.1364/OME.7.003107
74 J Shi, F Han, C Cui, Y Yu, X Feng. Mid-infrared dielectric-metal-semiconductor composite fiber. Optics Communications, 2020, 459: 125093
https://doi.org/10.1016/j.optcom.2019.125093
75 R S Caldwell, H Y Fan. Optical properties of tellurium and selenium. Physical Review, 1959, 114(3): 664–675
https://doi.org/10.1103/PhysRev.114.664
76 G W Tang, Q Qian, K L Peng, X Wen, G X Zhou, M Sun, X D Chen, Z M Yang. Selenium semiconductor core optical fibers. AIP Advances, 2015, 5(2): 027113
https://doi.org/10.1063/1.4908020
77 S Peng, G Tang, K Huang, Q Qian, D Chen, Q Zhang, Z Yang. Crystalline selenium core optical fibers with low optical loss. Optical Materials Express, 2017, 7(6): 1804–1812
https://doi.org/10.1364/OME.7.001804
78 J R Sparks, R He, N Healy, M Krishnamurthi, A C Peacock, P J A Sazio, V Gopalan, J V Badding. Zinc selenide optical fibers. Advanced Materials, 2011, 23(14): 1647–1651
https://doi.org/10.1002/adma.201003214 pmid: 21360771
79 J R Sparks, S C Aro, R He, M L Goetz, J P Krug, S A McDaniel, P A Berry, G Cook, K L Schepler, P J Sazio, V Gopalan, J V Badding. Chromium doped zinc selenide optical fiber lasers. Optical Materials Express, 2020, 10(8): 1843–1852
https://doi.org/10.1364/OME.397123
80 K Huang, G Tang, Q Luo, G Qian, L Yang, F Yuan, Z Shi, Q Qian, Z Yang. SeTe alloy semiconductor core optical fibers. Materials Research Bulletin, 2018, 100: 382–385
https://doi.org/10.1016/j.materresbull.2017.12.052
81 M Sinobad, C Monat, B Luther-davies, P Ma, S Madden, D J Moss, A Mitchell, D Allioux, R Orobtchouk, S Boutami, J M Hartmann, J M Fedeli, C Grillet. Mid-infrared octave spanning supercontinuum generation to 8.5 µm in silicon-germanium waveguides. Optica, 2018, 5(4): 360–366
https://doi.org/10.1364/OPTICA.5.000360
82 S Chaudhuri, X Ji, H T Huang, T Day, V Gopalan, J Badding. Small core SiGe alloy optical fibers by templated deposition. In: Proceedings of Conference on Lasers and Electro-Optics. San Jose: Optical Society of America, 2017, JW2A.69
83 W Wu, M H Balci, K Mühlberger, M Fokine, F Laurell, T Hawkins, J Ballato, U J Gibson. Ge-capped SiGe core optical fibers. Optical Materials Express, 2019, 9(11): 4301–4306
https://doi.org/10.1364/OME.9.004301
84 M Ordu, J Guo, A E Akosman, S Erramilli, S Ramachandran, S N Basu. Effect of thermal annealing on mid-infrared transmission in semiconductor alloy-core glass-cladded fibers. Advanced Fiber Materials, 2020, 2(3): 178–184
https://doi.org/10.1007/s42765-020-00030-2
85 E M Gavrushchuk. Polycrystalline zinc selenide for IR optical applications. Inorganic Materials, 2003, 39(9): 883–899
https://doi.org/10.1023/A:1025529017192
86 I T Sorokina. Cr2+-doped II–VI materials for lasers and nonlinear optics. Optical Materials, 2004, 26(4): 395–412
87 S Mirov, V Fedorov, I Moskalev, D Martyshkin, C Kim. Progress in Cr2+ and Fe2+ doped mid-IR laser materials. Laser & Photonics Reviews, 2010, 4(1): 21–41
https://doi.org/10.1002/lpor.200810076
88 M G Coco, S C Aro, S A McDaniel, A Hendrickson, J P Krug, P J Sazio, G Cook, V Gopalan, J V Badding. Continuous wave Fe2+:ZnSe mid-IR optical fiber lasers. Optics Express, 2020, 28(20): 30263–30274
https://doi.org/10.1364/OE.402197 pmid: 33114909
89 J Ballato, T Hawkins, P Foy, C McMillen, L Burka, J Reppert, R Podila, A M Rao, R R Rice. Binary III-V semiconductor core optical fiber. Optics Express, 2010, 18(5): 4972–4979
https://doi.org/10.1364/OE.18.004972 pmid: 20389508
90 S Song, N Healy, S K Svendsen, U L Österberg, A V C Covian, J Liu, A C Peacock, J Ballato, F Laurell, M Fokine, U J Gibson. Crystalline GaSb-core optical fibers with room-temperature photoluminescence. Optical Materials Express, 2018, 8(6): 1435–1440
https://doi.org/10.1364/OME.8.001435
91 S Song, K Lønsethagen, F Laurell, T W Hawkins, J Ballato, M Fokine, U J Gibson. Laser restructuring and photoluminescence of glass-clad GaSb/Si-core optical fibres. Nature Communications, 2019, 10(1): 1790
https://doi.org/10.1038/s41467-019-09835-1 pmid: 30996257
92 G Tang, Q Qian, X Wen, X Chen, W Liu, M Sun, Z Yang. Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers. Optics Express, 2015, 23(18): 23624–23633
https://doi.org/10.1364/OE.23.023624 pmid: 26368460
93 J M Dudley, G Genty, S Coen. Fibre Supercontinuum Generation Overview. Cambridge: Cambridge University Press, 2010, 52–61
94 L Shen, N Healy, L Xu, H Y Cheng, T D Day, J H V Price, J V Badding, A C Peacock. Four-wave mixing and octave-spanning supercontinuum generation in a small core hydrogenated amorphous silicon fiber pumped in the mid-infrared. Optics Letters, 2014, 39(19): 5721–5724
https://doi.org/10.1364/OL.39.005721 pmid: 25360968
95 D J Won, M O Ramirez, H Kang, V Gopalan, N F Baril, J Calkins, J V Badding, P J A Sazio. All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers. Applied Physics Letters, 2007, 91(16): 161112
https://doi.org/10.1063/1.2790079
96 P Mehta, N Healy, T D Day, J R Sparks, P J A Sazio, J V Badding, A C Peacock. All-optical modulation using two-photon absorption in silicon core optical fibers. Optics Express, 2011, 19(20): 19078–19083
https://doi.org/10.1364/OE.19.019078 pmid: 21996848
97 P Mehta, N Healy, T D Day, J V Badding, A C Peacock. Ultrafast wavelength conversion via cross-phase modulation in hydrogenated amorphous silicon optical fibers. Optics Express, 2012, 20(24): 26110–26116
https://doi.org/10.1364/OE.20.026110 pmid: 23187466
98 A C Peacock. Soliton propagation in tapered silicon core fibers. Optics Letters, 2010, 35(21): 3697–3699
https://doi.org/10.1364/OL.35.003697 pmid: 21042395
99 A Peacock, N Healy. Parabolic pulse generation in tapered silicon fibers. Optics Letters, 2010, 35(11): 1780–1782
https://doi.org/10.1364/OL.35.001780 pmid: 20517414
100 R He, P J A Sazio, A C Peacock, N Healy, J R Sparks, M Krishnamurthi, V Gopalan, J V Badding. Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres. Nature Photonics, 2012, 6(3): 174–179
https://doi.org/10.1038/nphoton.2011.352
101 R He, T D Day, M Krishnamurthi, J R Sparks, P J A Sazio, V Gopalan, J V Badding. Silicon p-i-n junction fibers. Advanced Materials, 2013, 25(10): 1461–1467
https://doi.org/10.1002/adma.201203879 pmid: 23212830
102 R Davis, R Rice, A Ballato, T Hawkins, P Foy, J Ballato. Toward a photoconducting semiconductor RF optical fiber antenna array. Applied Optics, 2010, 49(27): 5163–5168
https://doi.org/10.1364/AO.49.005163 pmid: 20856292
103 K Sui, X Feng, Y Hou, Q Zhang, S Qi, Y Wang, P Wang. Glass-clad semiconductor germanium fiber for high-speed photodetecting applications. Optical Materials Express, 2017, 7(4): 1211–1219
https://doi.org/10.1364/OME.7.001211
104 T Lühder, J Plentz, J Kobelke, K Wondraczek, M A Schmidt. All-fiber integrated in-line semiconductor photoconductor. Journal of Lightwave Technology, 2019, 37(13): 3244–3251
https://doi.org/10.1109/JLT.2019.2913561
105 N Healy, S Mailis, N M Bulgakova, P J A Sazio, T D Day, J R Sparks, H Y Cheng, J V Badding, A C Peacock. Extreme electronic bandgap modification in laser-crystallized silicon optical fibres. Nature Materials, 2014, 13(12): 1122–1127
https://doi.org/10.1038/nmat4098 pmid: 25262096
106 M Tonouchi. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105
https://doi.org/10.1038/nphoton.2007.3
107 D Grischkowsky, S Keiding, M van Exter, C Fattinger. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America B, Optical Physics, 1990, 7(10): 2006–2015
https://doi.org/10.1364/JOSAB.7.002006
108 D A Bas, S K Cushing, J Ballato, A D Bristow. Terahertz waveguiding in silicon-core fibers. 2013, arXiv:1305.0520
109 T Sørgård , S Song, P E Vullum, C Kores, K M Mølster, F Laurell, T Hawkins, J Ballato, U L Österberg, U J Gibson. Broadband infrared and THz transmitting silicon core optical fiber. Optical Materials Express, 2020, 10(10): 2491–2499
https://doi.org/10.1364/OME.403591
110 T Sørgård, T Hawkins, J Ballato, U L Österberg, U J Gibson. All-optical high-speed modulation of THz transmission through silicon core optical fibers. Optics Express, 2021, 29(3): 3543–3552
https://doi.org/10.1364/OE.414545 pmid: 33770951
111 P Zhou, X Wang, Y Ma, H Lu, Z Liu. Review on recent progress on mid-infrared fiber lasers. Laser Physics, 2012, 22(11): 1744–1751
https://doi.org/10.1134/S1054660X12110199
112 S Danto, F Sorin, N D Orf, Z Wang, S A Speakman, J D Joannopoulos, Y Fink. Fiber field-effect device via in situ channel crystallization. Advanced Materials, 2010, 22(37): 4162–4166
https://doi.org/10.1002/adma.201000268 pmid: 20730810
113 W Yan, T Nguyen-Dang, C Cayron, T D Gupta, A G Page, Y Qu, F Sorin. Microstructure tailoring of selenium-core multimaterial optoelectronic fibers. Optical Materials Express, 2017, 7(4): 1388–1397
https://doi.org/10.1364/OME.7.001388
114 L Wei, C Hou, E Levy, G Lestoquoy, A Gumennik, A F Abouraddy, J D Joannopoulos, Y Fink. Optoelectronic fibers via selective amplification of in-fiber capillary instabilities. Advanced Materials, 2017, 29(1): 1603033
https://doi.org/10.1002/adma.201603033 pmid: 27797161
115 A Gumennik, L Wei, G Lestoquoy, A M Stolyarov, X Jia, P H Rekemeyer, M J Smith, X Liang, B J B Grena, S G Johnson, S Gradečak, A F Abouraddy, J D Joannopoulos, Y Fink. Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nature Communications, 2013, 4(1): 2216
https://doi.org/10.1038/ncomms3216 pmid: 23900398
116 M Rein, V D Favrod, C Hou, T Khudiyev, A Stolyarov, J Cox, C C Chung, C Chhav, M Ellis, J Joannopoulos, Y Fink. Diode fibres for fabric-based optical communications. Nature, 2018, 560(7717): 214–218
https://doi.org/10.1038/s41586-018-0390-x pmid: 30089921
117 W Yan, Y Qu, T D Gupta, A Darga, D T Nguyên, A G Page, M Rossi, M Ceriotti, F Sorin. Semiconducting nanowire-based optoelectronic fibers. Advanced Materials, 2017, 29(27): 1700681
https://doi.org/10.1002/adma.201700681 pmid: 28497903
[1] Clément Strutynski, Vincent Couderc, Tigran Mansuryan, Giorgio Santarelli, Philippe Thomas, Sylvain Danto, Thierry Cardinal. Spatial beam reshaping and large-band nonlinear conversion in rectangular-core phosphate glass fibers[J]. Front. Optoelectron., 2022, 15(1): 4-.
[2] Kejia WANG, Xinyang GU, Jinsong LIU, Zhengang YANG, Shenglie WANG. Proposal for CEP measurement based on terahertz air photonics[J]. Front. Optoelectron., 2018, 11(4): 407-412.
[3] Christian REIMER, Yanbing ZHANG, Piotr ROZTOCKI, Stefania SCIARA, Luis Romero CORTÉS, Mehedi ISLAM, Bennet FISCHER, Benjamin WETZEL, Alfonso Carmelo CINO, Sai Tak CHU, Brent LITTLE, David MOSS, Lucia CASPANI, José AZAÑA, Michael KUES, Roberto MORANDOTTI. On-chip frequency combs and telecommunications signal processing meet quantum optics[J]. Front. Optoelectron., 2018, 11(2): 134-147.
[4] Eric Y. ZHU, Costantino CORBARI, Alexey V. GLADYSHEV, Peter G. KAZANSKY, Li QIAN. Franson interferometry with a single pulse[J]. Front. Optoelectron., 2018, 11(2): 148-154.
[5] Shaghik ATAKARAMIANS, Tanya M. MONRO, Shahraam AFSHAR V.. Dipole-fiber system: from single photon source to metadevices[J]. Front. Optoelectron., 2018, 11(1): 30-36.
[6] Yi YU,Evarist PALUSHANI,Mikkel HEUCK,Leif Katsuo OXENLØWE,Kresten YVIND,Jesper MØRK. Switching dynamics in InP photonic-crystal nanocavity[J]. Front. Optoelectron., 2016, 9(3): 395-398.
[7] Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
[8] Wei JIN, Jian JU, Hoi Lut HO, Yeuk Lai HOO, Ailing ZHANG. Photonic crystal fibers, devices, and applications[J]. Front Optoelec, 2013, 6(1): 3-24.
[9] Xian ZHU, Xinben ZHANG, Jinggang PENG, Xiang CHEN, Jinyan LI. Photonic crystal fibers for supercontinuumβgeneration[J]. Front Optoelec Chin, 2011, 4(4): 415-419.
[10] Yujie ZHOU, Liqun FENG, Qian HU, Junqiang SUN. Mode overlap analyses of propagated waves in direct bonded PPMgLN ridge waveguide[J]. Front Optoelec Chin, 2011, 4(3): 343-347.
[11] LIU Bo, ZHANG Ruobing, LIU Huagang, MA Jing, ZHU Chen, WANG Qingyue. Investigation of spectral bandwidth of BBO-I phase matching non-collinear optical parametric amplification from visible to near-infrared[J]. Front. Optoelectron., 2008, 1(1-2): 101-108.
[12] WANG Jian, SUN Junqiang, SUN Qizhen, ZHANG Weiwei, HU Zhefeng, ZHANG Xinliang, HUANG Dexiu. Experimental realization of 40 Gbit/s single-to-single and single-to-dual channel wavelength conversions in LiNbO waveguides with two-pump configuration[J]. Front. Optoelectron., 2008, 1(1-2): 3-13.
[13] Ren Tiexiong, Yu Jian, Sang Mei, Fu Weijia, Ni Wenjun, Kang Yuzhuo, Li Shichen, Hu Yonglan, Shi Ruize. Real-time monitoring in fabrication of PPKTP crystals utilizing electro-optical effect[J]. Front. Optoelectron., 2008, 1(1-2): 151-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed