Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2016, Vol. 9 Issue (1) : 112-120    https://doi.org/10.1007/s12200-015-0483-1
RESEARCH ARTICLE
Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range
Jing DAI1,2,Minming ZHANG1,2,*(),Feiya ZHOU1,2,Deming LIU1,2
1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(643 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A highly efficient tunable optical filter of liquid crystal (LC) optical micro-ring resonator (MRR) was proposed. The 4-μm-radius ring consists of a silicon-on-insulator (SOI) asymmetric bent slot waveguide with a LC cladding. The geometry of the slot waveguide resulted in the strong electro-optic effect of the LC, and therefore induced an increase in effective refractive index by 0.0720 for the quasi-TE mode light in the slot-waveguide. The ultra-wide tuning range (56.0 nm) and large free spectral range (FSR) (~28.0 nm) of the optical filters enabled wavelength reconfigurable multiplexing devices with a drive voltage of only 5 V. The influences of parameters, such as the slot width, total width of Si rails and slot shift on the device’s performance, were analyzed and the optimal design was given. Moreover, the influence of fabrication tolerances and the loss of device were both investigated. Compared with state-of-the-art tunable MRRs, the proposed electrically tunable micro-ring resonator owns the excellent features of wider tuning ranges, larger FSRs and ultralow voltages.

Keywords integrated optics devices      liquid crystals      micro-ring resonator      slot waveguide      wavelength tuning     
Corresponding Author(s): Minming ZHANG   
Online First Date: 30 June 2015    Issue Date: 18 March 2016
 Cite this article:   
Jing DAI,Minming ZHANG,Feiya ZHOU, et al. Highly efficient tunable optical filter based on liquid crystal micro-ring resonator with large free spectral range[J]. Front. Optoelectron., 2016, 9(1): 112-120.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-015-0483-1
https://academic.hep.com.cn/foe/EN/Y2016/V9/I1/112
Fig.1  Schematic top view of the tunable optical filter based on a silicon slot-waveguide micro-resonator infiltrated with LC cladding
Fig.2  Schematic cross-sectional view of the SOI strip-loaded bent slot waveguide with LC cladding (where g is the slot width, x represents the slot shift, which is defined as the distance (in nm) from the center of the waveguide to the center of the slot, W (W = wl + wr) is the total width of two Si rails in the slot waveguide, H and h are the height of the Si rails and Si slab, respectively)
Fig.3  (a) Two states of LC molecules director for slot waveguides: (1, U = 0) no external voltage is applied to the slot waveguide, the LC molecules align parallel to z-direction; (2, U>0) a large external voltage is applied to the slot waveguide, the LC will partly realign along the x-direction; (b) calculated refractive index nLC(θ) on the voltage for the SOI LC slot waveguide (g = 100 nm)
Fig.4  Comparison of different SOI slot- and strip-waveguides with LC cladding. (a) Transverse E-field amplitude of the quasi-TE optical mode field for slot waveguide; (b) transverse E-field amplitude of the TE0 optical mode for strip waveguide; (c) vertical E-field amplitude of the TM0 optical mode for strip waveguide
Fig.5  Relationship between the resonant wavelength and the voltage: for SOI slot LC micro-ring resonator with quasi-TE mode (red curve); for LC MRR based on strip waveguide with TE mode (black curve) and TM mode (blue curve) [9]
Fig.6  Tuning range of a silicon single-slot waveguide LC microring (R = 4 μm, non-shift) as a function of the slot width g at different over widths W = 400, 480 and 600 nm
Fig.7  Tuning range of resonance wavelength of a silicon single-slot waveguide LC micro-ring (R = 4 μm) as a function of the slot shift x (a) at different overall Si rail widths W = 400, 480 and 600 nm with g = 100 nm; and (b) at different slot widths g = 60, 100 and140 nm with W = 400 nm
Fig.8  Free spectrum range of a silicon single-slot waveguide LC micro-ring (R = 4 μm) as a function of the slot shift x (a) at different overall Si rail widths W = 400, 480 and 600 nm with g = 100 nm; and (b) at different slot widths g = 60, 100 and 140 nm with W = 400 nm
Fig.9  (a) Tuning range of wavelength as a function of the total Si strips width W (g = 100 nm, R = 4 μm and x = 60 nm); (b) wavelength tuning range for a slot microrings as a function of non vertical sidewall tilting angle θ (W = 400 nm, g = 100 nm, R = 4 μm and x = 60 nm)
Fig.10  Electric intensity |E|2 of the quasi-TE optical mode field for the bent LC slot-waveguide with slot shift position x = 60 nm (R = 4 μm, W = 400 nm and g = 100 nm)
1 Selvaraja S K, Jaenen P, Bogaerts W, Van Thourhout D, Dumon P, Baets R. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. Journal of Lightwave Technology, 2009, 27(18): 4076–4083
https://doi.org/10.1109/JLT.2009.2022282
2 Dumon P, Bogaerts W, Wiaux V, Wouters J, Beckx S, Van Campenhout J, Taillaert D, Luysaert B, Bienstman P, Van Thourhout D, Baets R. Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonics Technology Letters, 2004, 16(5): 1328–1330
https://doi.org/10.1109/LPT.2004.826025
3 Basch E B, Egorov R, Gringeri S, Elby S. Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(4): 615–626
https://doi.org/10.1109/JSTQE.2006.876167
4 Ng H, Wang M R, Li D, Wang X, Martinez J, Panepucci R R, Pathak K. 1×4 wavelength reconfigurable photonic switch using thermally tuned microring resonators fabricated on silicon substrate. IEEE Photonics Technology Letters, 2007, 19(9): 704–706
https://doi.org/10.1109/LPT.2007.895420
5 Yalcin A, Popat K C, Aldridge J C, Desai T A, Hryniewicz J, Chbouki N, Little B E, King O, Van V, Chu S, Gill D, Anthes-Washburn M, Unlu M S, Goldberg B B. Optical sensing of biomolecules using microring resonators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(1): 148–155
https://doi.org/10.1109/JSTQE.2005.863003
6 Dong P, Qian W, Liang H, Shafiiha R, Feng N, Feng D, Zheng X, Krishnamoorthy A V, Asghari M. Low power and compact reconfigurable multiplexing devices based on silicon microring resonators. Optics Express, 2010, 18(10): 9852–9858
https://doi.org/10.1364/OE.18.009852 pmid: 20588834
7 Guarino A, Poberaj G, Rezzonico D, Degl’innocenti R, Günter P. Electro-optically tunable microring resonators in lithium niobate. Nature Photonics, 2007, 1(7): 407–410
https://doi.org/10.1038/nphoton.2007.93
8 Liu A, Liao L, Rubin D, Nguyen H, Ciftcioglu B, Chetrit Y, Izhaky N, Paniccia M. High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express, 2007, 15(2): 660–668
https://doi.org/10.1364/OE.15.000660 pmid: 19532289
9 Dong P, Qian W, Liang H, Shafiiha R, Feng D, Li G, Cunningham J E, Krishnamoorthy A V, Asghari M. Thermally tunable silicon racetrack resonators with ultralow tuning power. Optics Express, 2010, 18(19): 20298–20304
https://doi.org/10.1364/OE.18.020298 pmid: 20940921
10 Nishihara H, Haruna M, Suhara T. Optical Integrated Circuit. New York: McGraw-Hill1985, 36–44
11 Soref R A, Bennett B R. Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 1987, 23(1): 123–129
https://doi.org/10.1109/JQE.1987.1073206
12 Maune B, Lawson R, Gunn C, Scherer A, Dalton L. Electrically tunable ring resonators incorporating nematic liquid crystals as cladding layers. Applied Physics Letters, 2003, 83(23): 4689–4691
https://doi.org/10.1063/1.1630370
13 Falco A D, Assanto G. Tunable wavelength-selective add–drop in liquid crystals on a silicon microresonator. Optics Communications, 2007, 279(1): 210–213
https://doi.org/10.1016/j.optcom.2007.06.063
14 De Cort W, Beeckman J, James R, Fernandez F A, Baets R, Neyts K. Tuning silicon-on-insulator ring resonators with in-plane switching liquid crystals. Journal of the Optical Society of America B, Optical Physics, 2011, 28(1): 79–85
https://doi.org/10.1364/JOSAB.28.000079
15 De Cort W, Beeckman J, Claes T, Neyts K, Baets R. Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Optics Letters, 2011, 36(19): 3876–3878
https://doi.org/10.1364/OL.36.003876 pmid: 21964127
16 Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
https://doi.org/10.1364/OL.29.001209 pmid: 15209249
17 Anderson P A, Schmidt B S, Lipson M. High confinement in silicon slot waveguides with sharp bends. Optics Express, 2006, 14(20): 9197–9202
https://doi.org/10.1364/OE.14.009197 pmid: 19529300
18 Kargar A, Chao C. Design and optimization of waveguide sensitivity in slot microring sensors. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(4): 596–603
https://doi.org/10.1364/JOSAA.28.000596 pmid: 21478955
19 Pfeifle J, Alloatti L, Freude W, Leuthold J, Koos C. Silicon-organic hybrid phase shifter based on a slot waveguide with a liquid-crystal cladding. Optics Express, 2012, 20(14): 15359–15376
https://doi.org/10.1364/OE.20.015359 pmid: 22772233
20 Barrios C A, Lipson M. Electrically driven silicon resonant light emitting device based on slot-waveguide. Optics Express, 2005, 13(25): 10092–10101
https://doi.org/10.1364/OPEX.13.010092 pmid: 19503222
21 Gould M, Baehr-Jones T, Ding R, Huang S, Luo J, Jen A K, Fedeli J M, Fournier M, Hochberg M. Silicon-polymer hybrid slot waveguide ring-resonator modulator. Optics Express, 2011, 19(5): 3952–3961
https://doi.org/10.1364/OE.19.003952 pmid: 21369221
22 Desmet H, Neyts K, Baets R. Liquid crystal orientation on patterns etched in silicon on insulator. Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits, 2006, 6183: 61831Z
23 Ge Z, Wu T X, Lu R, Zhu X, Hong Q, Wu S. Comprehensive three-dimensional dynamic modeling of liquid crystal devices using finite element method. Journal of Display Technology, 2005, 1(2): 194–206
https://doi.org/10.1109/JDT.2005.858885
24 Fallahkhair A B, Li K S, Murphy T E. Vector finite difference modesolver for anisotropic dielectric waveguides. Journal of Lightwave Technology, 2008, 26(11): 1423–1431
https://doi.org/10.1109/JLT.2008.923643
25 Dell’Olio F, Passaro V M. Optical sensing by optimized silicon slot waveguides. Optics Express, 2007, 15(8): 4977–4993
https://doi.org/10.1364/OE.15.004977 pmid: 19532747
26 Donisi D, Bellini B, Beccherelli R, Asquini R, Gilardi G, Trotta M, d’ Alessandro A. A switchable liquid-crystal optical channel waveguide on silicon. IEEE Journal of Quantum Electronics, 2010, 46(5): 762–768
https://doi.org/10.1109/JQE.2009.2038241
[1] Yuhe ZHAO, Xu WANG, Dingshan GAO, Jianji DONG, Xinliang ZHANG. On-chip programmable pulse processor employing cascaded MZI-MRR structure[J]. Front. Optoelectron., 2019, 12(2): 148-156.
[2] Changming CHEN,Daming ZHANG. Cross-cascaded AWG-based wavelength selective switching integrated module using polymer optical waveguide circuits[J]. Front. Optoelectron., 2016, 9(3): 428-435.
[3] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[4] Ning ZHANG,Kenan CICEK,Jiangbo ZHU,Shimao LI,Huanlu LI,Marc SOREL,Xinlun CAI,Siyuan YU. Manipulating optical vortices using integrated photonics[J]. Front. Optoelectron., 2016, 9(2): 194-205.
[5] Chuan WANG,Xiaoying LIU,Peng ZHOU,Peng LI,Jia DU. Dispersion of double-slot microring resonators in optical buffer[J]. Front. Optoelectron., 2016, 9(1): 106-111.
[6] Charles CAER,Xavier LE ROUX,Samuel SERNA,Weiwei ZHANG,Laurent VIVIEN,Eric CASSAN. Large group-index bandwidth product empty core slow light photonic crystal waveguides for hybrid silicon photonics[J]. Front. Optoelectron., 2014, 7(3): 376-384.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed