Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2009, Vol. 3 Issue (2) : 124-131    https://doi.org/10.1007/s11706-009-0026-z
RESEARCH ARTICLE
Towards understanding biomineralization: calcium phosphate in a biomimetic mineralization process
Yu-rong CAI1,2, Rui-kang TANG2()
1. The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2. Department of Chemistry and Center for Biopathways and Biomaterials, Zhejiang University, Hangzhou 310027, China
 Download: PDF(404 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biomineralization processes result in organic/inorganic hybrid materials with complex shapes, hierarchical structures, and superior material properties. Recent developments in biomineralization and biomaterials have demonstrated that calcium phosphate particles play an important role in the formation of hard tissues in nature. In this paper, current concepts in biomineralization, such as nano assembly, biomimetic shell structure, and their applications are introduced. It is confirmed experimentally that enamel- or bone-liked apatite can be achieved by oriented aggregations using nano calcium phosphates as starting materials. The assembly of calcium phosphate can be either promoted or inhibited by different biomolecules so that the kinetics can be regulated biologically. In this paper, the role of nano calcium phosphate in tissue repair is highlighted. Furthermore, a new, interesting result on biomimetic mineralization is introduced, which can offer an artificial shell for living cells via a biomimetic method.

Keywords biomineralization      calcium phosphate      tissue repair     
Corresponding Author(s): TANG Rui-kang,Email:rtang@zju.edu.cn   
Issue Date: 05 June 2009
 Cite this article:   
Yu-rong CAI,Rui-kang TANG. Towards understanding biomineralization: calcium phosphate in a biomimetic mineralization process[J]. Front Mater Sci Chin, 2009, 3(2): 124-131.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0026-z
https://academic.hep.com.cn/foms/EN/Y2009/V3/I2/124
Fig.1  A schematic model of apatite evolution via the conglutination of HAP nanocrystallites (Under the control of biological components, such as Gly and Glu, the HAP subunits could be reorganized). The modifiers could determine the different evolutionary forms, e.g., one-dimensional linear assemblies or two-dimensional plates. The crystallized HAP was cemented by the amorphous phase with the flexible structure. The ACP could transform into thermodynamically stable HAP phases with time, and the individual HAP domains could fuse to form single HAP crystals (red). These single crystals might be used as the building blocks in the next level of architectures, and the hierarchical structures of apatite was achieved. The SEMs showed the corresponding experimental states of the nano-assembly of HAP [].)
Fig.2  Hierarchically constructed enamel-like apatite in the presence of amelogenin by using nano HAP as building blocks []
Fig.3  Enamel surface restored by nano-HAP; the typical “fish scale-like” structure remained (the 20 nm artifical HAP particles on the enamel rods are shown clearly in the insert); The HAP nanoparticles are integrated into the enamel rod after one week (the boundaries of the individual particles become blurry [])
Fig.4  Proliferations of MSCs on different HAP substrates (the control experiment was performed on glass)
Fig.5  Agarose electrophoresis gels showing the relative collagen I, osteopontin, osteocalcin, and beta-actin expression level studied by RT-PCR (The cells were cultured for two weeks under the same conditions as those in the ALP assay. It shows that nano HAP can act as an inorganic inducer in the differentiation [].)
Fig.6  SEM of bare ; can hardly be calcified and calcium minerals precipitate separately; Some calcium minerals precipitate randomly on the bare cell; with mineral coat after the LbL treatment; A large-scale view of the mineralized cells; TEM of a wrapped ; top insert, SAED pattern indicates the shells contains OCP; bottom insert, enlarged image of the shell; Dark field image shows the OCP phase (bright) around the cell; Ultra-thin section image of the encapsulated cell []
Fig.7  Survived cells in the presence of zymolyase (Lysis can be measured spectrophotometrically in a hypotonic solution in the present of zymolyase. The optical density of the cell suspension decreases as the cells lyse. Two inserts are the corresponding optical photos of the cells at the end of the experiments. It can be seen that zymolyase digests the walls, and the cells cannot maintain homeostasis and explode without the protection of the mineral shells [].)
1 Weiner S, Addadi L. At the cutting edge. Science , 2002, 298(5592): 375-376
doi: 10.1126/science.1078093
2 Mann S. Biomineralization Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press, 2001
3 Boskey A. Biomineralization: conflicts, challenges, and opportunities. Journal of Cellular Biochemistry , 1999, 72: 83-91
doi: 10.1002/(SICI)1097-4644(1998)72:30/31+<83::AID-JCB12>3.0.CO;2-F
4 Gupta H S, Wagermaier W, Zickler G A, . Nanoscale deformation mechanisms in bone. Nano Letters , 2005, 5(10): 2108-2111
doi: 10.1021/nl051584b
5 Gao H J, Ji B H, Jager I L, . Materials become insensitive to flaws at nanoscale: lessons from nature. Proceedings of the National Academy of Sciences of the United States of America , 2003, 100(10): 5597-5600
doi: 10.1073/pnas.0631609100
6 Cui F Z, Ge J. New observations of the hierarchical structure of human enamel, from nanoscale to microscale. Journal of Tissue Engineering and Regenerative Medicine , 2007, 1: 185-191
doi: 10.1002/term.21
7 Cui F Z, Li Y, Ge J. Self-assembly of mineralized collagen composites. Materials Science & Engineering R: Reports , 2007, 57(1-6): 1-27
8 Currey J D. Materials science — hierarchies in biomineral structures. Science , 2005, 309(5732): 253-254
doi: 10.1126/science.1113954
9 Giachelli C M. Ectopic calcification — gathering hard facts about soft tissue mineralization. American Journal of Pathology , 1999, 154(3): 671-675
10 Kirsch T. Determinants of pathological mineralization. Current Opinion in Rheumatology , 2006, 18(2): 174-180
doi: 10.1097/01.bor.0000209431.59226.46
11 Christian R C, Fitzpatrick L A. Vascular calcification. Current Opinion in Nephrology and Hypertension , 1999, 8(4): 443-448
doi: 10.1097/00041552-199907000-00008
12 Feng Q L, Cui F Z, Wang H, . Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH-treatment. Journal of Crystal Growth , 2000, 210(4): 735-740
doi: 10.1016/S0022-0248(99)00502-3
13 Wang L J, Tang R, Bonstein T, . Enamel demineralization in primary and permanent teeth. Journal of Dental Research , 2006, 85(4): 359-363
doi: 10.1177/154405910608500415
14 Boskey A. Bone mineral crystal size. Osteoporosis International , 2003, 14: S16-S20
doi: 10.1007/s00198-003-1468-2
15 Narayan R J, Kumta P N, Sfeir C, . Nanostructured ceramics in medical devices: applications and prospects. JOM , 2004, 56(10): 38-43
doi: 10.1007/s11837-004-0289-x
16 Lee S H, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced Drug Delivery Reviews , 2007, 59(4-5): 339-359
doi: 10.1016/j.addr.2007.03.016
17 Xu H H K, Weir M D, Burguera E F, . Injectable and macroporous calcium phosphate cement scaffold. Biomaterials , 2006, 27(24): 4279-4287
doi: 10.1016/j.biomaterials.2006.03.001
18 de Yoreo J J, Vekilov P G. Principles of crystal nucleation and growth. Biomineralization , 2003, 54: 57-93
19 Colfen H, Mann S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angewandte Chemie - International Edition , 2003, 42(21): 2350-2365
doi: 10.1002/anie.200200562
20 Gilbert B, Banfield J F. Molecular-scale processes involving nanoparticulate minerals in biogeochemical systems. Reviews in Mineralogy and Geochemistry , 2005, 59: 109-155
doi: 10.2138/rmg.2005.59.6
21 Banfield J F, Welch S A, Zhang H Z, . Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science , 2000, 289(5480): 751-754
doi: 10.1126/science.289.5480.751
22 Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science , 1998, 281(5379): 969-971
doi: 10.1126/science.281.5379.969
23 Penn R L. Kinetics of oriented aggregation. Journal of Physical Chemistry B , 2004, 108(34): 12707-12712
doi: 10.1021/jp036490+
24 Huang F, Zhang H Z, Banfield J F. Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Letters , 2003, 3(3): 373-378
doi: 10.1021/nl025836+
25 Yang H G, Zeng H C. Creation of intestine-like interior space for metal-oxide nanostructures with a quasi-reverse emulsion. Angewandte Chemie - International Edition , 2004, 43(39): 5206-5209
doi: 10.1002/anie.200460767
26 Cho K S, Talapin D V, Gaschler W, . Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. Journal of the American Chemical Society , 2005, 127(19): 7140-7147
doi: 10.1021/ja050107s
27 Colfen H, Antonietti M. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angewandte Chemie - International Edition , 2005, 44(35): 5576-5591
doi: 10.1002/anie.200500496
28 Addadi L, Raz S, Weiner S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Advanced Materials , 2003, 15(12): 959-970
doi: 10.1002/adma.200300381
29 Sethmann I, Putnis A, Grassmann O, . Observation of nano-clustered calcite growth via a transient phase mediated by organic polyanions: a close match for biomineralization. American Mineralogist , 2005, 90(7): 1213-1217
doi: 10.2138/am.2005.1833
30 Wang T X, Colfen H, Antonietti M. Nonclassical crystallization: mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive. Journal of the American Chemical Society , 2005, 127(10): 3246-3247
doi: 10.1021/ja045331g
31 Xu A W, Antonietti M, Colfen H, . Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Advanced Functional Materials , 2006, 16(7): 903-908
doi: 10.1002/adfm.200500716
32 Tao J H, Pan H H, Zeng Y W, . Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. Journal of Physical Chemistry B , 2007, 111(47): 13410-13418
doi: 10.1021/jp0732918
33 Wang L J, Guan X Y, Du C, . Amelogenin promotes the formation of elongated apatite microstructures in a controlled crystallization system. Journal of Physical Chemistry C , 2007, 111(17): 6398-6404
doi: 10.1021/jp0675429
34 Proudfoot D, Skepper J N, Shanahan C M, . Calcification of human vascular cells in vitro is correlated with high levels of matrix Gla protein and low levels of osteopontin expression. Arteriosclerosis Thrombosis and Vascular Biology , 1998, 18(3): 379-388
35 Puy M C, Rodrìguez-Arias J M, Casan P. Lung calcifications and chronic kidney failure. Arch Bronconeumol , 2007, 43: 349-351
doi: 10.1016/S1579-2129(07)60082-2
36 Liu P, Tao J H, Cai Y R, . Role of fetal bovine serum in the prevention of calcification in biological fluids. Journal of Crystal Growth , 2008, 310(22): 4672-4675
doi: 10.1016/j.jcrysgro.2008.09.002
37 Dorozhkin S V, Epple M. Biological and medical significance of calcium phosphates. Angewandte Chemie - International Edition , 2002, 41(17): 3130-3146
doi: 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1
38 Narasaraju T S B, Phebe D E. Some physico-chemical aspects of hydroxylapatite. Journal of Materials Science , 1996, 31(1): 1-21
doi: 10.1007/BF00355120
39 Hench L L. Bioceramics — from concept to clinic. Journal of the American Ceramic Society , 1991, 74(7): 1487-1510
doi: 10.1111/j.1151-2916.1991.tb07132.x
40 de Leeuw N H. Resisting the onset of hydroxyapatite dissolution through the incorporation of fluoride. Journal of Physical Chemistry B , 2004, 108(6): 1809-1811
doi: 10.1021/jp036784v
41 Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research , 1998, 13(1): 94-117
doi: 10.1557/JMR.1998.0015
42 Whitters C J, Strang R, Brown D, . Dental materials: 1997 literature review. Journal of Dentistry , 1999, 27(6): 401-435
doi: 10.1016/S0300-5712(99)00007-X
43 Robinson C, Connell S, Kirkham J, . Dental enamel — a biological ceramic: regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. Journal of Materials Chemistry , 2004, 14(14): 2242-2248
doi: 10.1039/b401154f
44 Acil Y, Mobasseri A E, Warnke P H, . Detection of mature collagen in human dental enamel. Calcified Tissue International , 2005, 76(2): 121-126
doi: 10.1007/s00223-004-0122-0
45 Ahn E S, Gleason N J, Nakahira A, . Nanostructure processing of hydroxyapatite-based bioceramics. Nano Letters , 2001, 1(3): 149-153
doi: 10.1021/nl0055299
46 Li L, Pan H H, Tao J H, . Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. Journal of Materials Chemistry , 2008, 18(34): 4079-4084
doi: 10.1039/b806090h
47 Stupp S I, Braun P V. Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors. Science , 1997, 277(5330): 1242-1248
doi: 10.1126/science.277.5330.1242
48 Cai Y R, Liu Y K, Yan W Q, . Role of hydroxyapatite nanoparticle size in bone cell proliferation. Journal of Materials Chemistry , 2007, 17(36): 3780-3787
doi: 10.1039/b705129h
49 Hu Q H, Tan Z, Liu Y K, . Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. Journal of Materials Chemistry , 2007, 17(44): 4690-4698
doi: 10.1039/b710936a
50 Sarikaya M. Biomimetics: Materials fabrication through biology. Proceedings of the National Academy of Sciences of the United States of America , 1999, 96(25): 14183-14185
doi: 10.1073/pnas.96.25.14183
51 Hamm C E, Merkel R, Springer O, . Architecture and material properties of diatom shells provide effective mechanical protection. Nature , 2003, 421(6925): 841-843
doi: 10.1038/nature01416
52 Wang B, Liu P, Jiang W G, . Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization. Angewandte Chemie - International Edition , 2008, 47(19): 3560-3564
doi: 10.1002/anie.200704718
[1] Inamullah MAITLO, Safdar ALI, Muhammad Yasir AKRAM, Farooq Khurum SHEHZAD, Jun NIE. Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering[J]. Front. Mater. Sci., 2017, 11(4): 307-317.
[2] Yu-Hong ZOU,Rong-Chang ZENG,Qing-Zhao WANG,Li-Jun LIU,Qian-Qian XU,Chuang WANG,Zhiwei LIU. Blood compatibility of zinc–calcium phosphate conversion coating on Mg–1.33Li–0.6Ca alloy[J]. Front. Mater. Sci., 2016, 10(3): 281-289.
[3] Zonggang CHEN,Xiuli ZHANG,Lingzhi KANG,Fei XU,Zhaoling WANG,Fu-Zhai CUI,Zhongwu GUO. Recent progress in injectable bone repair materials research[J]. Front. Mater. Sci., 2015, 9(4): 332-345.
[4] Jin-Ning WANG,Bin PI,Peng WANG,Xue-Feng LI,Hui-Lin YANG,Xue-Song ZHU. Sustained release of Semaphorin 3A from α-tricalcium phosphate based cement composite contributes to osteoblastic differentiation of MC3T3-E1 cells[J]. Front. Mater. Sci., 2015, 9(3): 282-292.
[5] Lei YANG, Chao ZHONG. Advanced engineering and biomimetic materials for bone repair and regeneration[J]. Front Mater Sci, 2013, 7(4): 313-334.
[6] Zi-Heng LI, Shi-Chen JI, Ya-Zhen WANG, Xing-Can SHEN, Hong LIANG. Silk fibroin-based scaffolds for tissue engineering[J]. Front Mater Sci, 2013, 7(3): 237-247.
[7] Rui-Bo ZHAO, Hua-Feng HAN, Shao DING, Ze-Hao LI, Xiang-Dong KONG. Effect of silk sericin on morphology and structure of calcium carbonate crystal[J]. Front Mater Sci, 2013, 7(2): 177-183.
[8] Xing ZHANG, Kenneth S. VECCHIO. Conversion of natural marine skeletons as scaffolds for bone tissue engineering[J]. Front Mater Sci, 2013, 7(2): 103-117.
[9] Hua DENG, Xing-Can SHEN, Xiu-Mei WANG, Chang DU. Calcium carbonate crystallization controlled by functional groups: A mini-review[J]. Front Mater Sci, 2013, 7(1): 62-68.
[10] Zhen-Hua CHEN, Xiu-Li REN, Hui-Hui ZHOU, Xu-Dong LI. The role of hyaluronic acid in biomineralization[J]. Front Mater Sci, 2012, 6(4): 283-296.
[11] Xiao-Hong WANG, Ute SCHLO?MACHER, Shun-Feng WANG, Heinz C. SCHR?DER, Matthias WIENS, Renato BATEL, Werner E. G. MüLLER. From nanoparticles via microtemplates and milliparticles to deep-sea nodules: biogenically driven mineral formation[J]. Front Mater Sci, 2012, 6(2): 97-115.
[12] Shun-Feng WANG, Xiao-Hong WANG, Lu GAN, Matthias WIENS, Heinz C. SCHR?DER, Werner E. G. MüLLER. Biosilica-glass formation using enzymes from sponges [silicatein]: Basic aspects and application in biomedicine [bone reconstitution material and osteoporosis][J]. Front Mater Sci, 2011, 5(3): 266-281.
[13] Chang YANG, Yun-Qing KANG, Xiao-Ming LIAO, Ya-Dong YAO, Zhong-Bing HUANG, Guang-Fu YIN, . Preparation of PLGA/β-TCP composite scaffolds with supercritical CO 2 foaming technique[J]. Front. Mater. Sci., 2010, 4(3): 314-320.
[14] Chuan-lin LIU, Xiao-jie CHENG, Jian-gao ZHAO, Xia QIAN, Cheng-hua GUO, De-jiao YU, Xi-guang CHEN. Biogenic nanoparticles and mineral composition in the radula of chiton Acanthochitonrubrolineatus[J]. Front Mater Sci Chin, 2009, 3(3): 248-254.
[15] Yue-lian LIU, Klaas de GROOT, Ernst B. HUNZIKER. Biomimetic mineral coatings in dental and orthopaedic implantology[J]. Front Mater Sci Chin, 2009, 3(2): 154-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed