Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front Mater Sci Chin    2009, Vol. 3 Issue (2) : 154-162    https://doi.org/10.1007/s11706-009-0027-y
RESEARCH ARTICLE
Biomimetic mineral coatings in dental and orthopaedic implantology
Yue-lian LIU1,2(), Klaas de GROOT3, Ernst B. HUNZIKER2
1. Section of Oral Implantology, Department of Oral Function, Academic Center of Dentistry Amsterdam (ACTA), Louwesweg 1, 1067 EA, Amsterdam, The Netherlands; 2. Center of Regenerative Medicine for Dental and Skeletal Tissue, University of Bern, Bern, Switzerland; 3. Yekimed AG, Bern, Switzerland
 Download: PDF(305 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Biomimetic techniques are used to produce biomimetic coatings that were made on medical devices with layers of calcium phosphate. This procedure was done under more physiological or “biomimetic” conditions of temperature and pH primarily to improve their biocompatibility and biodegradability. The mineral layers generated by biomimetic methods are comparable to biological mineral, which can be used for tissue engineering and can be degraded within a biological milieu.

The biomimetic coating technique involves the nucleation and growth of bone-like crystals upon a pretreated substrate by immersing this in a supersaturated solution of calcium phosphate under physiological conditions of temperature (37°C) and pH (7.4). The method, originally developed by Kokubo in 1990 has since undergone improvement and refinement by several groups of investigators.

Biomimetic coatings are valuable in that they can serve as a vehicle for the slow and sustained release of osteogenic agents at the site of implantation. This attribute is rendered possible by the near-physiological conditions under which these coatings are prepared, which permits an incorporation of bioactive agents into the inorganic crystal latticework rather than merely their superficial adsorption onto preformed layers. In addition, the biomimetic coating technique can be applied to implants of an organic as well as of an inorganic nature and to those with irregular surface geometries, which is a not possible using conventional methodologies.

Keywords biomimetic      biomineralization      osteoinducation      bone growth factor      tissue engineering     
Corresponding Author(s): LIU Yue-lian,Email:y.liu@acta.nl   
Issue Date: 05 June 2009
 Cite this article:   
Yue-lian LIU,Klaas de GROOT,Ernst B. HUNZIKER. Biomimetic mineral coatings in dental and orthopaedic implantology[J]. Front Mater Sci Chin, 2009, 3(2): 154-162.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-009-0027-y
https://academic.hep.com.cn/foms/EN/Y2009/V3/I2/154
Na+Mg2+Ca2+Cl-HPO42-HCO3-
HBP142.01.52.5103.01.027.0
SBF146.71.52.5147.81.04.2
SBF×5733.57.512.5740.05.021.0
CPS140.403.1142.91.860
Tab.1  Millimolar compositions of human blood plasma (HBP), simulated body fluid (SBF), five-times-concentrated SBF (SBF×5), and calcium-phosphate solution (CPS)
Fig.1  Scanning electron micrographs of an octacalcium-phosphate coating at low and high magnifications
Fig.2  Scanning electron micrographs of an amorphous and a nano-crystalline carbonated apatite layer
Fig.3  Light micrographs of a (vertically sectioned) titanium alloy disc bearing a calcium phosphate coating, five weeks after implantation at a subcutaneous site in a rat (low intermediate and high magnifications) (No osseous tissue has been deposited); Light micrographs of a (vertically sectioned) titanium alloy disc bearing a calcium phosphate coating, five weeks after implantation at a subcutaneous site in a rat (low intermediate and high magnifications) (No osseous tissue has been deposited)
Mode of BMP-2 loadingCoating thickness /μm[initial coating thickness= (54.7±8.73) μm]
IncorporatedAdsorbedWeek 1Week 2Week 3
+-22.26±4.262.58±1.361.08±0.45
-+45.53±4.3616.82±5.4513.35±4.17
++14.63±2.466.52±2.820.46±0.2
--52.00±1.8327.72±7.6915.31±3.14
Tab.2  Changes in coating thickness during the three-week monitoring period [Mean values (=6) are represented together with the standard error of the mean]
1 de Groot K. Calciumhydroxylapatite. Journal of Oral Implantology , 1986, 12(3): 485-489
2 de Groot K. Hydroxylapatite coated implants. Journal of Biomedical Materials Research , 1989, 23(11): 1367-1371
3 Kitsugi T, Yamamuro T, Nakamura T, . Four calcium phosphate ceramics as bone substitutes for non-weight-bearing. Biomaterials , 1993, 14(3): 216-224
doi: 10.1016/0142-9612(93)90026-X
4 Klein C P, Driessen A A, de Groot K. Relationship between the degradation behavior of calcium phosphate ceramics and their physical-chemical characteristics and ultrastructural geometry. Biomaterials , 1984, 5(3): 157-160
doi: 10.1016/0142-9612(84)90051-6
5 Klein C P, Wolke J G C, Deblieckhogervorst J M A, . Features of calcium phosphate plasma-sprayed coatings: an in vitro study. Journal of Biomedical Materials Research , 1994, 28(8): 961-967
doi: 10.1002/jbm.820280815
6 Klein C P, Patka P, Wolke J G C, . Long-term in vivo study of plasma-sprayed coatings on titanium alloys of tetracalcium phosphate, hydroxyapatite and alpha-tricalcium phosphate. Biomaterials , 1994, 15(2): 146-150
doi: 10.1016/0142-9612(94)90264-X
7 de Groot K, Geesink R, Klein C P, . Plasma sprayed coatings of hydroxylapatite. Journal of Biomedical Materials Research , 1987, 21(12): 1375-1381
doi: 10.1002/jbm.820211203
8 Wolke J G C, Vandijk K, Schaeken H G, . Study of the surface characteristics of magnetron-sputter calcium phosphate coatings. Journal of Biomedical Materials Research , 1994, 28(12): 1477-1484
doi: 10.1002/jbm.820281213
9 Wolke J G C, van der Waerden J P C M, de Groot K, . Stability of radiofrequency magnetron sputtered calcium phosphate coatings under cyclically loaded conditions. Biomaterials , 1997, 18(6): 483-488
doi: 10.1016/S0142-9612(96)00164-0
10 Wolke J G C, de Groot K, Jansen J A. In vivo dissolution behavior of various RF magnetron sputtered Ca-P coatings. Journal of Biomedical Materials Research , 1998, 39(4): 524-530
doi: 10.1002/(SICI)1097-4636(19980315)39:4<524::AID-JBM3>3.0.CO;2-L
11 Wolke J G C, de Groot K, Jansen J A. Subperiosteal implantation of various RF magnetron sputtered Ca-P coatings in goats. Journal of Biomedical Materials Research , 1998, 43(3): 270-276
doi: 10.1002/(SICI)1097-4636(199823)43:3<270::AID-JBM7>3.0.CO;2-K
12 Jansen J A, Wolke J G, Swann S, . Application of magnetron sputtering for producing ceramic coatings on implant materials. Clinical Oral Implants Research , 1993, 4(1): 28-34
doi: 10.1034/j.1600-0501.1993.040104.x
13 Vehof J W M, van den Dolder J, de Ruijter J E, . Bone formation in CaP-coated and noncoated titanium fiber mesh. Journal of Biomedical Materials Research , 2003, 64A(3): 417-426
doi: 10.1002/jbm.a.10288
14 Agata De Sena L, Calixto De Andrade M, Malta Rossi A, . Hydroxyapatite deposition by electrophoresis on titanium sheets with different surface finishing. Journal of Biomedical Materials Research , 2002, 60(1): 1-7
doi: 10.1002/jbm.10003
15 Wang J, de Boer J, de Groot K. Preparation and characterization of electrodeposited calcium phosphate/chitosan coating on Ti6Al4V plates. Journal of Dental Research , 2004, 83(4): 296-301
doi: 10.1177/154405910408300405
16 Wang J, Layrolle P, Stigter M, . Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials , 2004, 25(4): 583-592
doi: 10.1016/S0142-9612(03)00559-3
17 Zhang H Q, Li S P, Yan Y H, . Dissolution behavior of hydroxyapatite coating by hydrothermal method: an in vitro study. Biomedical Materials and Engineering , 2000, 10(3-4): 213-219
18 Schliephake H, Scharnweber D, Dard M, . Biological performance of biomimetic calcium phosphate coating of titanium implants in the dog mandible. Journal of Biomedical Materials Research , 2003, 64A(2): 225-234
doi: 10.1002/jbm.a.10363
19 Kokubo T, Kushitani H, Sakka S, . Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. Journal of Biomedical Materials Research , 1990, 24(6): 721-734
doi: 10.1002/jbm.820240607
20 Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials , 1991, 12(2): 155-163
doi: 10.1016/0142-9612(91)90194-F
21 Li P. Bioactive ceramic coating and method. US Patent, 6139583, 2000
22 Wen H B, de Wijn J R, van Blitterswijk C A, . Incorporation of bovine serum albumin in calcium phosphate coating on titanium. Journal of Biomedical Materials Research , 1999, 46(2): 245-252
doi: 10.1002/(SICI)1097-4636(199908)46:2<245::AID-JBM14>3.0.CO;2-A
23 Liu Y L, Layrolle P, de Bruijn J, . Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. Journal of Biomedical Materials Research , 2001, 57(3): 327-335
doi: 10.1002/1097-4636(20011205)57:3<327::AID-JBM1175>3.0.CO;2-J
24 Liu Y, Hunziker E B, Layrolle P, . Remineralization of demineralized albumin-calcium phosphate coatings. Journal of Biomedical Materials Research Part A , 2003, 67A(4): 1155-1162
doi: 10.1002/jbm.a.20019
25 de Groot K, Wolke J G, Jansen J A. Calcium phosphate coatings for medical implants. Proceedings of the Institution of Mechanical Engineers Part H , 1998, 212(2): 137-147
doi: 10.1243/0954411981533917
26 Barrere F, van Blitterswijk C A, de Groot K, . Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution. Biomaterials , 2002, 23(9): 1921-1930
doi: 10.1016/S0142-9612(01)00318-0
27 Barrere F, van Blitterswijk C A, de Groot K, . Nucleation of biomimetic Ca-P coatings on Ti6Al4V from a SBF×5 solution: influence of magnesium. Biomaterials , 2002, 23(10): 2211-2220
doi: 10.1016/S0142-9612(01)00354-4
28 Barrere F, Layrolle P, van Blitterswijk C A, . Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate. Journal of Materials Science - Materials in Medicine , 2001, 12(6): 529-534
doi: 10.1023/A:1011271713758
29 Barrere F, Layrolle P, van Blitterswijk C A, . Biomimetic calcium phosphate coatings on Ti6Al4V: a crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3. Bone , 1999, 25(2): 107S-111 S
doi: 10.1016/S8756-3282(99)00145-3
30 Gondolph-Zink B. Effect of hydroxyapatite layering on the osteo-integration of weightbearing and non-weightbearing implants. Comparison to other microporous surfaces in animal experiments . Orthopade, 1998, 27(2): 96-104
doi: 10.1007/PL00003484
31 Layrolle P J F. Method for coating medical implants. US Patent, 6207218, 2001
32 Li P, Ducheyne P. Quasi-biological apatite film induced by titanium in a simulated body fluid. Journal of Biomedical Materials Research , 1998, 41(3): 341-348
doi: 10.1002/(SICI)1097-4636(19980905)41:3<341::AID-JBM1>3.0.CO;2-C
33 Ono I, Gunji H, Kaneko F, . Efficacy of hydroxyapatite ceramic as a carrier for recombinant human bone morphogenetic protein. Journal of Craniofacial Surgery , 1995, 6(3): 238-244
doi: 10.1097/00001665-199505000-00011
34 Fiorellini J P, Buser D, Riley E, . Effect on bone healing of bone morphogenetic protein placed in combination with endosseous implants: a pilot study in beagle dogs. International Journal of Periodontics & Restorative Dentistry , 2001, 21(1): 41-47
35 Kawai T, Mieki A, Ohno Y, . Osteoinductive activity of composites of bone morphogenetic protein and pure titanium. Clinical Orthopaedics and Related Research , 1993, 290: 296-305
36 Reddi A H, Cunningham N S. Bone induction by osteogenin and bone morphogenetic proteins. Biomaterials , 1990, 11: 33-34
37 Agrawal C M, Best J, Heckman J D, . Protein release kinetics of a biodegradable implant for fracture non-unions. Biomaterials , 1995, 16(16): 1255-1260
doi: 10.1016/0142-9612(95)98133-Y
38 Ono I, Gunji H, Suda K, . Bone induction of hydroxyapatite combined with bone morphogenetic protein and covered with periosteum. Plastics and Reconstructive Surgery , 1995, 95(7): 1265-1272
doi: 10.1097/00006534-199506000-00019
39 Esenwein S A, Esenwein S, Herr G, . Osteogenetic activity of BMP-3-coated titanium specimens of different surface texture at the orthotopic implant bed of giant rabbits. Chirurg , 2001, 72(11): 1360-1368
40 Wang X, Jin Y, Liu B L, . Tissue reactions to titanium implants containing bovine bone morphogenetic protein: a scanning electron microscopic investigation. International Journal of Oral and Maxillofacial Surgery , 1994, 23(2): 115-119
doi: 10.1016/S0901-5027(05)80605-8
41 Endo K. Chemical modification of metallic implant surfaces with biofunctional proteins (Part 1). Molecular structure and biological activity of a modified NiTi alloy surface . Dental Materials Journal, 1995, 14(2): 185-198
42 Kim H M, Miyaji F, Kokubo T, . Preparation of bioactive Ti and its alloys via simple chemical surface treatment. Journal of Biomedical Materials Research , 1996, 32(3): 409-417
doi: 10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B
43 Urist M R. Bone formation by autoinduction. Science , 1965, 150: 893
doi: 10.1126/science.150.3698.893
44 Aldinger G, Herr G, Kusswetter W, . Bone morphogenetic protein: a review. International Orthopaedics , 1991, 15(2): 169-177
doi: 10.1007/BF00179720
45 Elima K. Osteoinductive proteins. Annual Medicine , 1993, 25(4): 395-402
doi: 10.3109/07853899309147302
46 Lee M B. Bone morphogenetic proteins: background and implications for oral reconstruction. A review. Journal of Clinical Periodontology , 1997, 24(6): 355-365
doi: 10.1111/j.1600-051X.1997.tb00198.x
47 Takahashi K. Bone morphogenetic protein (BMP): from basic studies to clinical approaches. Nippon Yakurigaku Zasshi , 2000, 116(4): 232-240
doi: 10.1254/fpj.116.232
48 Franceschi R T. The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. Critical Reviews in Oral Biology & Medicine , 1999, 10(1): 40-57
doi: 10.1177/10454411990100010201
49 Yamaguchi A. Recent advances in research on bone formation-BMP action and its mechanism. Nippon Rinsho , 2002, 60S3: 40-47
50 Reddi A H. Initiation of fracture repair by bone morphogenetic proteins. Clinical Orthopaedics and Related Research , 1998, 355: S66-S72
doi: 10.1097/00003086-199810001-00008
51 Lee D D, Tofighi A, Aiolova M, . alpha-BSM: a biomimetic bone substitute and drug delivery vehicle. Clinical Orthopaedics and Related Research , 1999, 367: S396-S405
doi: 10.1097/00003086-199910001-00038
52 Schmidmaier G, Wildemann B, Cromme F, . Bone morphogenetic protein-2 coating of titanium implants increases biomechanical strength and accelerates bone remodeling in fracture treatment: a biomechanical and histological study in rats. Bone , 2002, 30(6): 816-822
doi: 10.1016/S8756-3282(02)00740-8
53 Salata L A, Franke-Stenport V, Rasmusson L. Recent outcomes and perspectives of the application of bone morphogenetic proteins in implant dentistry. Clinical Implant Dentistry and Related Research , 2002, 4(1): 27-32
doi: 10.1111/j.1708-8208.2002.tb00148.x
54 Hollinger J O, Leong K. Poly(alpha-hydroxy acids): carriers for bone morphogenetic proteins. Biomaterials , 1996, 17(2): 187-194
doi: 10.1016/0142-9612(96)85763-2
55 King G N. The importance of drug delivery to optimize the effects of bone morphogenetic proteins during periodontal regeneration. Current Pharmaceutical Biotechnology , 2001, 2(2): 131-142
doi: 10.2174/1389201013378716
56 Kirker-Head C A. Potential applications and delivery strategies for bone morphogenetic proteins. Advanced Drug Delivery Reviews , 2000, 43(1): 65-92
doi: 10.1016/S0169-409X(00)00078-8
57 Liu Y, Hunziker E B, van de Vaal C, . Biomimetic coatings vs. collagen sponges as a carrier for BMP-2: a comparison of the osteogenic responses triggered in vivo using an ectopic rat model. Bioceramics 16 , 2004, 254-256: 619-622
58 Liu Y, Hunziker E B, Layrolle P, . Bone morphogenetic protein 2 incorporated into biomimetic coatings retains its biological activity. Tissue Engineering , 2004, 10(1-2): 101-108
doi: 10.1089/107632704322791745
59 Liu Y. Introduction of ectopic bone formation by BMP-2 incorporated biomimetically into calcium phosphate coatings of titanium-alloy implants. Bioceramics 15 , 2002, 240-242: 667-670
60 Oakes D A, Lieberman J R. Osteoinductive applications of regional gene therapy: ex vivo gene transfer. Clinical Orthopaedics and Related Research , 2000, 379: S101-S112
doi: 10.1097/00003086-200010001-00014
61 Ohgushi H, Caplan A I. Stem cell technology and bioceramics: from cell to gene engineering. Journal of Biomedical Materials Research , 1999, 48(6): 913-927
doi: 10.1002/(SICI)1097-4636(1999)48:6<913::AID-JBM22>3.0.CO;2-0
62 Scaduto A A, Lieberman J R. Gene therapy for osteoinduction. Orthopedic Clinics of North America , 1999, 30(4): 625-633
doi: 10.1016/S0030-5898(05)70115-2
63 Alden T D, Varady P, Kallmes D F, . Bone morphogenetic protein gene therapy. Spine , 2002, 27(16): S87-S93
doi: 10.1097/00007632-200208151-00016
64 Becker W, Becker B E. Periodontal regeneration updated. Journal of the American Dental Association , 1993, 124(7): 37-43
65 Shirkhanzadeh M, Liu G Q. Biocompatible delivery systems for osteoinductive proteins: immobilization of L-lysine in microporous hydroxyapatite coatings. Materials Letters , 1994, 21: 115-118
doi: 10.1016/0167-577X(94)90134-1
66 Coombes A G, Heckman J D. Gel casting of resorbable polymers. 1. Processing and applications. Biomaterials , 1992, 13: 217-224
doi: 10.1016/0142-9612(92)90187-S
67 Liu Y, de Groot K, Hunziker E B. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone , 2005, 36(5): 745-757
doi: 10.1016/j.bone.2005.02.005
68 Liu Y, Enggist L, Kuffer A F, . The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration. Biomaterials , 2007, 28(16): 2677-2686
doi: 10.1016/j.biomaterials.2007.02.003
[1] Inamullah MAITLO, Safdar ALI, Muhammad Yasir AKRAM, Farooq Khurum SHEHZAD, Jun NIE. Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering[J]. Front. Mater. Sci., 2017, 11(4): 307-317.
[2] Qin YANG, Yingying DU, Yifan WANG, Zhiying WANG, Jun MA, Jianglin WANG, Shengmin ZHANG. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration[J]. Front. Mater. Sci., 2017, 11(2): 106-119.
[3] Yinxian YU, Binbin SUN, Chengqing YI, Xiumei MO. Stem cell homing-based tissue engineering using bioactive materials[J]. Front. Mater. Sci., 2017, 11(2): 93-105.
[4] Juan WANG,Binbin SUN,Muhammad Aqeel BHUTTO,Tonghe ZHU,Kui YU,Jiayu BAO,Yosry MORSI,Hany EL-HAMSHARY,Mohamed EL-NEWEHY,Xiumei MO. Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering[J]. Front. Mater. Sci., 2017, 11(1): 22-32.
[5] Shuang GAO,Zhiguo YUAN,Tingfei XI,Xiaojuan WEI,Quanyi GUO. Characterization of decellularized scaffold derived from porcine meniscus for tissue engineering applications[J]. Front. Mater. Sci., 2016, 10(2): 101-112.
[6] Jianchao ZHAN,Yosry MORSI,Hany EI-HAMSHARY,Salem S. AL-DEYAB,Xiumei MO. In vitro evaluation of electrospun gelatin–glutaraldehyde nanofibers[J]. Front. Mater. Sci., 2016, 10(1): 90-100.
[7] Zonggang CHEN,Xiuli ZHANG,Lingzhi KANG,Fei XU,Zhaoling WANG,Fu-Zhai CUI,Zhongwu GUO. Recent progress in injectable bone repair materials research[J]. Front. Mater. Sci., 2015, 9(4): 332-345.
[8] Hong-Man WANG,Fu-Yao LI. Bibliometric analysis of the literature from the mainland of China on animal-derived regenerative implantable medical devices[J]. Front. Mater. Sci., 2014, 8(4): 403-408.
[9] Zhi-Ye QIU,Chun-Sheng TAO,Helen CUI,Chang-Ming WANG,Fu-Zhai CUI. High-strength mineralized collagen artificial bone[J]. Front. Mater. Sci., 2014, 8(1): 53-62.
[10] Zhong-Bing HUANG,Guang-Fu YIN,Xiao-Ming LIAO,Jian-Wen GU. Conducting polypyrrole in tissue engineering applications[J]. Front. Mater. Sci., 2014, 8(1): 39-45.
[11] Lei YANG, Chao ZHONG. Advanced engineering and biomimetic materials for bone repair and regeneration[J]. Front Mater Sci, 2013, 7(4): 313-334.
[12] Zi-Heng LI, Shi-Chen JI, Ya-Zhen WANG, Xing-Can SHEN, Hong LIANG. Silk fibroin-based scaffolds for tissue engineering[J]. Front Mater Sci, 2013, 7(3): 237-247.
[13] Min-Dan WANG, Peng ZHAI, David J. SCHREYER, Ruo-Shi ZHENG, Xiao-Dan SUN, Fu-Zhai CUI, Xiong-Biao CHEN. Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering[J]. Front Mater Sci, 2013, 7(3): 269-284.
[14] Rui-Bo ZHAO, Hua-Feng HAN, Shao DING, Ze-Hao LI, Xiang-Dong KONG. Effect of silk sericin on morphology and structure of calcium carbonate crystal[J]. Front Mater Sci, 2013, 7(2): 177-183.
[15] Ning ZHU, David COOPER, Xiong-Biao CHEN, Catherine Hui NIU. A study on the in vitro degradation of poly(L-lactide)/chitosan microspheres scaffolds[J]. Front Mater Sci, 2013, 7(1): 76-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed