Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2010, Vol. 4 Issue (1) : 17-28    https://doi.org/10.1007/s11706-010-0001-8
Research articles
Diameters of single-walled CNTs (SWCNTs) and related nanochemistry and nanobiology
Jie MA1,Jian-Nong WANG2,Chung-Jung TSAI3,Buyong MA3,Ruth NUSSINOV4,
1.Shanghai Key Laboratory for Laser Processing and Materials Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2.Shanghai Key Laboratory for Metallic Functional Materials, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, Shanghai 200092, China; 3.Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, NIH, Frederick, MD 21702, USA; 4.Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, NIH, Frederick, MD 21702, USA;Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
 Download: PDF(523 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We reviewed and examined recent progresses related to the nanochemistry and nanobiology of signal-walled carbon nanotubes (SWCNTs), focusing on the diameters of SWCNTs and how the diameters affect the interactions of SWCNT with protein and DNA, which underlay more complex biological responses. The diameters of SWCNTs are closely related to the electronic structure and surface chemistry of SWCNTs, and subsequently affect the interaction of SWCNTs with membrane, protein, and DNA. The surfaces of SWCNT with smaller diameters are more polar, and these with large diameters are more hydrophobic. The preference of SWCNT to interact with Trp/Phe/Met residues indicates it is possible that SWCNT may interfere with normal protein-protein interactions. SWCNT-DNA interactions often change DNA conformation. Besides the promising future of using SWCNTs as delivering nanomaterial, thermal therapy, and other biological applications, we should thoroughly examine the possible effects of carbon nanotube on interrupting normal protein-protein interaction network and other genetic effects at the cellular level.
Keywords carbon nanotube (CNT)      nanobiology      protein      DNA      toxicity      cancer      
Issue Date: 05 March 2010
 Cite this article:   
Jie MA,Jian-Nong WANG,Chung-Jung TSAI, et al. Diameters of single-walled CNTs (SWCNTs) and related nanochemistry and nanobiology[J]. Front. Mater. Sci., 2010, 4(1): 17-28.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-010-0001-8
https://academic.hep.com.cn/foms/EN/Y2010/V4/I1/17
Ferrari M. Cancernanotechnology: opportunities and challenges. Nature Reviews Cancer, 2005, 5(3): 161–171

doi: 10.1038/nrc1566
Hede S, Huilgol N. “Nano”:the new nemesis of cancer. Journal of CancerResearch and Therapeutics, 2006, 2(4): 186–195

doi: 10.4103/0973-1482.29829
Portney N G, Ozkan M. Nano-oncology: drug delivery,imaging, and sensing. Analytical and BioanalyticalChemistry, 2006, 384(3): 620–630

doi: 10.1007/s00216-005-0247-7
Zhang Y, Yang M, Portney N G,et al. Zeta potential: a surface electrical characteristicto probe the interaction of nanoparticles with normal and cancer humanbreast epithelial cells. Biomedical Microdevices, 2008, 10(2): 321–328

doi: 10.1007/s10544-007-9139-2
Yang J, Lee C H, Ko H J, et al. Multifunctional magneto-polymeric nanohybridsfor targeted detection and synergistic therapeutic effects on breastcancer. Angewandte Chemie InternationalEdition English, 2007, 46(46): 8836–8839

doi: 10.1002/anie.200703554
Wang X, Ren J, Qu X. Targeted RNA interference of cyclin A2 mediated by functionalizedsingle-walled CNTs induces proliferation arrest and apoptosis in chronicmyelogenous leukemia K562 cells. ChemMedChem, 2008, 3(6): 940–945

doi: 10.1002/cmdc.200700329
Vega-Villa K R, Takemoto J K, Yáñez J A, et al. Clinical toxicitiesof nanocarrier systems. Advanced Drug DeliveryReviews, 2008, 60(8): 929–938

doi: 10.1016/j.addr.2007.11.007
Bianco A, Kostarelos K, Prato M. Opportunities and challenges of carbon-based nanomaterialsfor cancer therapy. Expert Opinion on DrugDelivery, 2008, 5(3): 331–342

doi: 10.1517/17425247.5.3.331
Wang Y Y, Wang X, Wu B, et al. Dispersion of single-walled CNTs in poly(diallyldimethylammoniumchloride) for preparation of a glucose biosensor. Sensors and Actuators B: Chemical, 2008, 130(2): 809–815

doi: 10.1016/j.snb.2007.10.054
Tkac J, Whittaker J W, Ruzgas T. The use of single walled CNTs dispersed in a chitosanmatrix for preparation of a galactose biosensor. Biosensors and Bioelectronics, 2007, 22(8): 1820–1824

doi: 10.1016/j.bios.2006.08.014
Pope-Harman A, Cheng M M, Robertson F,et al. Biomedical nanotechnology for cancer. Medical Clinics of North America, 2007, 91(5): 899–927

doi: 10.1016/j.mcna.2007.05.008
Peters R. Nanoscopicmedicine: the next frontier. Small, 2006, 2(4): 452–456

doi: 10.1002/smll.200500480
Cui D. Advancesand prospects on biomolecules functionalized CNTs. Journal of Nanoscience and Nanotechnology, 2007, 7(4): 1298–1314

doi: 10.1166/jnn.2007.654
Ajayan P M, Colliex C, Lambert J M,et al. Growth of manganese filled carbon nanofibersin the vapor phase. Physical Review Letters, 1994, 72(11): 1722–1725

doi: 10.1103/PhysRevLett.72.1722
Dravid V P, Lin X, Wang Y, et al. Buckytubes and derivatives: their growth andimplications for buckyball formation. Science, 1993, 259(5101): 1601–1604

doi: 10.1126/science.259.5101.1601
Colbert D T, Zhang J, McClure S M, et al. Growth and sintering of fullerene nanotubes. Science, 1994, 266(5188): 1218–1222

doi: 10.1126/science.266.5188.1218
Guo T, Nikolaev P, Rinzler A G,et al. Self-assembly of tubular fullerenes. The Journal of Physical Chemistry, 1995, 99(27): 10694–10697

doi: 10.1021/j100027a002
Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic CNTs. Science, 1996, 273(5274): 483–487

doi: 10.1126/science.273.5274.483
Fan S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of CNTs and theirfield emission properties. Science, 1999, 283(5401): 512–514

doi: 10.1126/science.283.5401.512
Li S H, Liu H, Li H F, et al. The controlled pattern growth of aligned CNTs. Synthetic Metals, 2003, 135―136(4): 815–816

doi: 10.1016/S0379-6779(02)00908-6
Xu D S, Guo G, Gui L, et al. Controlling growth and field emission propertyof aligned CNTs on porous silicon substrates. Applied Physics Letters, 1999, 75(4): 481–483

doi: 10.1063/1.124415
Cheng H M, Li F, Sun X,et al. Bulk morphology and diameter distribution ofsingle-walled CNTs synthesized by catalytic decomposition of hydrocarbons. Chemical Physics Letters, 1998, 289(5―6): 602–610

doi: 10.1016/S0009-2614(98)00479-5
Iijima S. Helicalmicrotubules of graphitic carbon. Nature, 1991, 354(6348): 56–58

doi: 10.1038/354056a0
Iijima S, Ichihashi T. Single-shell CNTs of 1-nmdiameter. Nature, 1993, 363(6430): 603–605

doi: 10.1038/363603a0
Bethune D S, Klang C H, de Vries M S,et al. Cobalt-catalyzed growth of CNTs with single-atomic-layerwalls. Nature, 1993, 363(6430): 605–607

doi: 10.1038/363605a0
Guo T, Nikolaev P, Thess A,et al. Catalytic growth of single-walled nanotubes bylaser vaporization. Chemical Physics Letters, 1995, 243(1―2): 49–54

doi: 10.1016/0009-2614(95)00825-O
Zhang M F, Yudasaka M, Iijima S. Production of large-diameter single-wall CNTs by addingFe to a NiCo catalyst in laser ablation. The Journal of Physical Chemistry B, 2004, 108(34): 12757–12762

doi: 10.1021/jp0490047
Kiang C H. Growth of large-diameter single-walled CNTs. The Journal of Physical Chemistry A, 2000, 104(11): 2454–2456

doi: 10.1021/jp991451c
Lebedkin S, Schweiss P, Renker B,et al. Single-wall CNTs with diameters approaching 6?nmobtained by laser vaporization. Carbon, 2002, 40(3): 417–423

doi: 10.1016/S0008-6223(01)00119-1
Yang Q H, Bai S, Sauvajol J-L,et al. Large-diameter single-walled CNTs synthesizedby chemical vapor deposition. AdvancedMaterials, 2003, 15(10): 792–795

doi: 10.1002/adma.200304567
Lupo F, Rodriguezmanzo J, Zamudio A,et al. Pyrolytic synthesis of long strands of largediameter single-walled CNTs at atmospheric pressure in the absenceof sulphur and hydrogen. Chemical PhysicsLetters, 2005, 410(4―6): 384–390

doi: 10.1016/j.cplett.2005.05.116
Huang S M, Woodson M, Smalley R, et al. Growth mechanism of oriented long single walledCNTs using “fast-heating” chemical vapor deposition process. Nano Letters, 2004, 4(6): 1025–1028

doi: 10.1021/nl049691d
Ma J, Wang J N. Purification of single-walledCNTs by a highly efficient and nondestructive approach. Chemistry of Materials, 2008, 20(9): 2895–2902

doi: 10.1021/cm8001699
Ma J, Wang J N, Wang X X. Large-diameter and water-dispersible single-walled CNTs:synthesis, characterization and applications. Journal of Materials Chemistry, 2009, 19(19): 3033–3041

doi: 10.1039/b820088b
Moors M, Amara H, de Bocarmé T V, et al. Early stages inthe nucleation process of CNTs. ACS Nano, 2009, 3(3): 511–516

doi: 10.1021/nn800769w
Ohta Y, Okamoto Y, Irle S,et al. Rapid growth of a single-walled CNT on an ironcluster: density-functional tight-binding molecular dynamics simulations. ACS Nano, 2008, 2(7): 1437–1444

doi: 10.1021/nn8001906
Jin C, Suenaga K, Iijima S. How does a CNT grow? An in situ investigation on the cap evolution. ACSNano, 2008, 2(6): 1275–1279

doi: 10.1021/nn800121v
Amara H, Bichara C, Ducastelle F. Understanding the nucleation mechanisms of CNTs in catalyticchemical vapor deposition. Physical ReviewLetters, 2008, 100(5): 056105 4 pages
Yao Y, Feng C, Zhang J, et al. “Cloning” of single-walled CNTsvia open-end growth mechanism. Nano Letters, 2009, 9(4): 1673–1677

doi: 10.1021/nl900207v
Hamada N, Sawada S, Oshiyama A. New one-dimensional conductors: Graphitic microtubules. Physical Review Letters, 1992, 68(10): 1579–1581

doi: 10.1103/PhysRevLett.68.1579
Kam N W, O’Connell M, Wisdom J A, et al. CNTs as multifunctional biologicaltransporters and near-infrared agents for selective cancer cell destruction. Proceedings of the National Academy of SciencesUSA, 2005, 102(33): 11600–11605

doi: 10.1073/pnas.0502680102
Painter G S, Ellis D E. Electronic band structureand optical properties of graphite from a variational approach. Physical Review B, 1970, 1(12): 4747–4752

doi: 10.1103/PhysRevB.1.4747
Blase X, Benedict L X, Shirley E L, et al. Hybridization effects and metallicity in smallradius CNTs. Physics Review Letters, 1994, 72(12): 1878–1881

doi: 10.1103/PhysRevLett.72.1878
Zhang H, Liu Y, Cao L. A facile, low-cost, and scalable method of selectiveetching of semiconducting single-walled CNTs by a gas reaction. Advanced Materials, 2009, 21(7): 813–816

doi: 10.1002/adma.200800703
Kanungo M, Lu H, Malliaras G G, et al. Suppression of metallic conductivity of single-walledCNTs by cycloaddition reactions. Science, 2009, 323(5911): 234–237

doi: 10.1126/science.1166087
Wang J, Li Y. Selective band structuremodulation of single-walled CNTs in ionic liquids. Journal of the American Chemical Society, 2009, 131(15): 5364–5365

doi: 10.1021/ja807202m
Fraczek A, Menaszek E, Paluszkiewicz C, et al. Comparative in vivo biocompatibility study of single- and multi-wallCNTs. Acta Biomaterialia, 2008, 4(6): 1593–1602

doi: 10.1016/j.actbio.2008.05.018
Tasis D, Papagelis K, Douroumis D,et al. Diameter-selective solubilization of CNTs bylipid micelles. Journal of Nanoscienceand Nanotechnology, 2008, 8(1): 420–423

doi: 10.1166/jnn.2008.104
Kang S, Pinault M, Pfefferle L D, et al. Single-walled CNTs exhibit strong antimicrobialactivity. Langmuir, 2007, 23(17): 8670–8673

doi: 10.1021/la701067r
Kang S, Herzberg M, Rodrigues D F, et al. Antibacterial effects of CNTs: size does matter! Langmuir, 2008, 24(13): 6409–6413

doi: 10.1021/la800951v
Takagi A, Hirose A, Nishimura T, et al. Induction of mesothelioma in p53+/– mouseby intraperitoneal application of multi-wall CNT. The Journal of Toxicological Sciences, 2008, 33(1): 105–116

doi: 10.2131/jts.33.105
Kaiser J P, Wick P, Manser P, et al. Single walled CNTs (SWCNT) affect cell physiologyand cell architecture. Journal of MaterialsScience ― Materials in Medicine, 2008, 19(4): 1523–1527

doi: 10.1007/s10856-007-3296-y
Wu X C, Zhang W J, Sammynaiken R, et al. Non-functionalized CNT binding with hemoglobin. Colloids and Surfaces B Biointerfaces, 2008, 65(1): 146–149

doi: 10.1016/j.colsurfb.2008.02.011
Li X, Chen W, Zhan Q, et al. Direct measurements of interactions betweenpolypeptides and CNTs. Journal of PhysicalChemistry B, 2006, 110(25): 12621–12625

doi: 10.1021/jp061518d
Poenitzsch V Z, Winters D C, Xie H,et al. Effect of electron-donating and electron-withdrawinggroups on peptide/single-walled CNT interactions. Journal of the American Chemical Society, 2007, 129(47): 14724–14732

doi: 10.1021/ja0750827
Su Z, Mui K, Daub E,et al. Single-walled CNT binding peptides: probing tryptophan’simportance by unnatural amino acid substitution. Journal of Physical Chemistry B, 2007, 111(51): 14411–14417

doi: 10.1021/jp0740301
Su Z, Leung T, Honek J F. Conformational selectivity of peptides for single-walledCNTs. Journal of Physical Chemistry B, 2006, 110(47): 23623–23627

doi: 10.1021/jp065837g
Brown S, Jespersen T S, Nygard J A. genetic analysis of carbon-nanotube-binding proteins. Small, 2008, 4(4): 416–420

doi: 10.1002/smll.200700940
Ma B, Elkayam T, Wolfson H, et al. Protein-protein interactions: structurally conservedresidues distinguish between binding sites and exposed protein surfaces. Proceedings of National Academy of Sciences USA, 2003, 100(10): 5772–5777

doi: 10.1073/pnas.1030237100
Linse S, Cabaleiro-Lago C, Xue W F,et al. Nucleation of protein fibrillation by nanoparticles. Proceedings of National Academy of Sciences USA, 2007, 104(21): 8691–8696

doi: 10.1073/pnas.0701250104
Ma B, Nussinov R. Simulations as analyticaltools to understand protein aggregation and predict amyloid conformation. Current Opinion in Chemical Biology, 2006, 10(5): 445–452

doi: 10.1016/j.cbpa.2006.08.018
Ma B, Nussinov R. Trp/Met/Phe hot spots inprotein-protein interactions: potential targets in drug design. Current Topics in Medicinal Chemistry, 2007, 7(10): 999–1005

doi: 10.2174/156802607780906717
Meng J, Song L, Xu H,et al. Effects of single-walled CNTs on the functionsof plasma proteins and potentials in vascular prostheses. Nanomedicine, 2005, 1(2): 136–142
Zhao C, Ren J, Qu X. Single-walled CNTs binding to human telomeric i-motifDNA under molecular-crowding conditions: more water molecules released. Chemistry (Easton), 2008, 14(18): 5435–5439
Zhao X, Johnson J K. Simulation of adsorptionof DNA on CNTs. Journal of the AmericanChemical Society, 2007, 129(34): 10438–10445

doi: 10.1021/ja071844m
Johnson R R, Johnson (Charlie) A T, Klein M L. Probing the structure of DNA-CNT hybridswith molecular dynamics. Nano Letters, 2008, 8(1): 69–75

doi: 10.1021/nl071909j
Li X, Peng Y, Qu X. CNTs selective destabilization of duplex and triplexDNA and inducing B-A transition in solution. Nucleic Acids Research, 2006, 34(13): 3670–3676

doi: 10.1093/nar/gkl513
Peng Y, Li X, Ren J,et al. Single-walled CNTs binding to human telomerici-motif DNA: significant acceleration of S1 nuclease cleavage rate. Chemical Communications (Cambridge), 2007, (48): 5176–5178

doi: 10.1039/b710950d
Kisin E R, Murray A R, Keane M J,et al. Single-walled CNTs: geno- and cytotoxic effectsin lung fibroblast V79 cells. Journal ofToxicology and Environmental Health A, 2007, 70(24): 2071–2079

doi: 10.1080/15287390701601251
Sharma C S, Sarkar S, Periyakaruppan A, et al. Single-walled CNTs induces oxidativestress in rat lung epithelial cells. Journalof Nanoscience and Nanotechnology, 2007, 7(7): 2466–2472

doi: 10.1166/jnn.2007.431
Zhu L, Chang D W, Dai L,et al. DNA damage induced by multiwalled CNTs in mouseembryonic stem cells. Nano Letters, 2007, 7(12): 3592–3597

doi: 10.1021/nl071303v
[1] Shalmali BASU, Kamalika SEN. A review on graphene-based materials as versatile cancer biomarker sensors[J]. Front. Mater. Sci., 2020, 14(4): 353-372.
[2] Shuang GAO,Zhiguo YUAN,Tingfei XI,Xiaojuan WEI,Quanyi GUO. Characterization of decellularized scaffold derived from porcine meniscus for tissue engineering applications[J]. Front. Mater. Sci., 2016, 10(2): 101-112.
[3] Dai-Wei MA,Rong ZHU,Yi-Yu WANG,Zong-Rui ZHANG,Xin-Yu WANG. Evaluation on biocompatibility of biomedical polyurethanes with different hard segment contents[J]. Front. Mater. Sci., 2015, 9(4): 397-404.
[4] Ya-Wei DU,Li-Nan ZHANG,Xin YE,He-Min NIE,Zeng-Tao HOU,Teng-Hui ZENG,Guo-Ping YAN,Peng SHANG. In vitro and in vivo evaluation of bone morphogenetic protein-2 (BMP-2) immobilized collagen-coated polyetheretherketone (PEEK)[J]. Front. Mater. Sci., 2015, 9(1): 38-50.
[5] Zhi-Qin YAN,Wei ZHANG. The development of graphene-based devices for cell biology research[J]. Front. Mater. Sci., 2014, 8(2): 107-122.
[6] Da-Fu CHEN,Zhi-Yu ZHOU,Xue-Jun DAI,Man-Man GAO,Bao-Ding HUANG,Tang-Zhao LIANG,Rui SHI,Li-Jin ZOU,Hai-Sheng LI,Cody BÜNGER,Wei TIAN,Xue-Nong ZOU. Time-sequential changes of differentially expressed miRNAs during the process of anterior lumbar interbody fusion using equine bone protein extract, rhBMP-2 and autograft[J]. Front. Mater. Sci., 2014, 8(1): 72-86.
[7] Ke ZHU, Yuan-Yuan SHANG, Peng-Zhan SUN, Zhen LI, Xin-Ming LI, Jin-Quan WEI, Kun-Lin WANG, De-Hai WU, An-Yuan CAO, Hong-Wei ZHU. Oil spill cleanup from sea water by carbon nanotube sponges[J]. Front Mater Sci, 2013, 7(2): 170-176.
[8] Xiao-Na WANG, Ping-An HU. Carbon nanomaterials: controlled growth and field-effect transistor biosensors[J]. Front Mater Sci, 2012, 6(1): 26-46.
[9] Yu ZHANG, Qing-Shui YIN, Hua-Fu ZHAO, Jian LI, Yue-Teng WEI, Fu-Zhai CUI, Hua-Yang HUANG. Antibacterial and biological properties of silver-loaded coralline hydroxyapatite[J]. Front Mater Sci Chin, 2010, 4(4): 359-365.
[10] A. VEIS, K. ALVARES, S. N. DIXIT, J. S. ROBACH, S. R. STOCK. Characterization of two distinctly different mineral-related proteins from the teeth of the Camarodont sea urchin Lytechinus variegatus: Specificity of function with relation to mineralization[J]. Front Mater Sci Chin, 2009, 3(2): 163-168.
[11] ZHANG Chun-mei, FU Ya-bo, CHEN Qiang, ZHANG Yue-fei. Effects of oxygen on multiwall carbon nanotubes growth by PECVD[J]. Front. Mater. Sci., 2008, 2(1): 37-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed