Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2022, Vol. 16 Issue (3) : 220606    https://doi.org/10.1007/s11706-022-0606-8
RESEARCH ARTICLE
Millisecond-timescale electrodeposition of platinum atom-doped molybdenum oxide as an efficient electrocatalyst for hydrogen evolution reaction
Yi XIAO1,2, Wenxue SHANG2,3, Jiyuan FENG2, Airu YU2,4, Lu CHEN1,2, Liqiu ZHANG2(), Hongxia SHEN2, Qiong CHENG2, Lichun LIU1,2,3,4(), Song BAI1()
1. College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321000, China
2. College of Biological, Chemical Sciences and Engineering & Nanotechnology Research Institute, Jiaxing University, Jiaxing 314000, China
3. College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113000, China
4. College of Chemistry, Jilin Normal University, Changchun 130103, China
 Download: PDF(2075 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a straightforward method for one-pot electrodeposition of platinum atoms-doped molybdenum oxide (Pt·MoO3−x) films and show their superior electrocatalytic activity in the hydrogen evolution reaction (HER). A ~15-nm-thick Pt·MoO3−x film was prepared by one-pot electrodeposition at −0.8 V for 1 ms. Due to considerably different solute concentrations, the content of Pt atoms in the electrodeposited composite electrocatalyst is low. No Pt crystals or islands were observed on the flat Pt·MoO3−x films, indicating that Pt atoms were homogeneously dispersed within the MoO3−x thin film. The catalytic performance and physicochemical features of Pt·MoO3−x as a HER electrocatalyst were characterized. The results showed that our Pt·MoO3−x film exhibits 23- and 11-times higher current density than Pt and MoO3−x electrodeposited individually under the same conditions, respectively. It was found that the dramatic enhancement in the HER performance was principally due to the abundant oxygen defects. The use of the developed one-pot electrodeposition and doping method can potentially be extended to various catalytically active metal oxides or hydroxides for enhanced performance in various energy storage and conversion applications.

Keywords platinum      molybdenum oxide      electrodeposition      hydrogen evolution reaction      doping      electrocatalyst     
Corresponding Author(s): Liqiu ZHANG,Lichun LIU,Song BAI   
Issue Date: 21 September 2022
 Cite this article:   
Yi XIAO,Wenxue SHANG,Jiyuan FENG, et al. Millisecond-timescale electrodeposition of platinum atom-doped molybdenum oxide as an efficient electrocatalyst for hydrogen evolution reaction[J]. Front. Mater. Sci., 2022, 16(3): 220606.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-022-0606-8
https://academic.hep.com.cn/foms/EN/Y2022/V16/I3/220606
  Scheme1 Schematic illustration of electrodeposition of the Pt-doped MoO3?x film from a mixed solution containing a high concentration of (NH4)6Mo7O24 and an extremely low concentration of H2PtCl6.
Fig.1  (a) LSV curves featuring reduction potentials of 100 mmol·L?1 (NH4)6Mo7O24·4H2O and 20 mmol·L?1 H2PtCl6 at a scan rate of 100 mV·s?1. (b) Cross-sectional SEM image of the Pt·MoO3?x film obtained by 100-ms long electrodeposition from a mixture containing 100 mmol·L?1 (NH4)6Mo7O24·4H2O and 10 μmol·L?1 H2PtCl6. Inset: SEM image of the Pt·MoO3?x film with 1-ms electrodeposition.
Fig.2  (a) Cyclic voltammograms for polycrystalline Au substrate, Pt, MoO3?x, and Pt·MoO3?x in 1 mol·L?1 KOH (Pt and MoO3?x were electrodeposited separately under the same conditions that were used for the electrodeposition of Pt·MoO3?x). (b) Current enhancement factor f = I(Cn+1)/I(Cn) for electrocatalytic hydrogen evolution plotted as a function of the H2PtCl6 concentration at ?0.3 V in LSV at 50 mV·s?1. f refers to the HER current ratio at ?0.3 V using Pt·MoO3?x electrodeposited with a concentration and a neighboring lower concentration of H2PtCl6 in 0.1 mol·L?1 (NH4)6Mo7O24·4H2O.
Fig.3  (a) HAADF-TEM image of the Pt·MoO3?x film. Insets: film thickness ~15 nm (upper right) and electron diffraction (lower right). (b)(c)(d) Elemental mappings of the Pt·MoO3?x film for Mo, O, and Pt. (e) Electron diffraction spectrum. (f) EDS result for the Pt·MoO3?x film.
Fig.4  (a) Linear sweep voltammograms on three different electrodes recorded at a scan rate of 50 mV·s?1. Inset: enhancement of current on the Pt·MoO3?x electrocatalyst vs. pure electrodeposited Pt and MoO3?x at different overpotentials. (b) Tafel slopes. (c) Electrochemical impedance spectra: Nyquist plot (0.01 Hz?1 MHz). Lower inset: analog circuit (Rs, solution resistance; Rct, charge transfer resistance; W, Warburg resistance; Q, imperfect capacitor). (d) Chronoamperometry curves at ?0.4 V. The electrolyte used in each test was 0.1 mol·L?1 KOH.
Fig.5  XPS spectra of (a) Mo 3d and (b) O 1s for MoO3?x and Pt·MoO3?x films.
Fig.6  (a) Electron paramagnetic resonance spectra and (b) Raman spectra for MoO3?x and Pt·MoO3?x films.
1 J O, Abe A P I, Popoola E, Ajenifuja , et al.. Hydrogen energy, economy and storage: review and recommendation. International Journal of Hydrogen Energy, 2019, 44( 29): 15072– 15086
https://doi.org/10.1016/j.ijhydene.2019.04.068
2 F, Dawood M, Anda G M Shafiullah . Hydrogen production for energy: an overview. International Journal of Hydrogen Energy, 2020, 45( 7): 3847– 3869
https://doi.org/10.1016/j.ijhydene.2019.12.059
3 J, Ren S, Gao H, Liang , et al.. Chapter 1 — The role of hydrogen energy: strengths, weaknesses, opportunities, and threats. In: Scipioni A, Manzardo A, Ren J, eds. Hydrogen Economy: Supply Chain, Life Cycle Analysis and Energy Transition for Sustainability. Academic Press, 2017, 1– 33
4 J, Zhu L, Hu P, Zhao , et al.. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chemical Reviews, 2020, 120( 2): 851– 918
https://doi.org/10.1021/acs.chemrev.9b00248 pmid: 31657904
5 X, Zou Y Zhang . Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015, 44( 15): 5148– 5180
https://doi.org/10.1039/C4CS00448E pmid: 25886650
6 Y, Zheng Y, Jiao A, Vasileff , et al.. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angewandte Chemie International Edition in English, 2018, 57( 26): 7568– 7579
https://doi.org/10.1002/anie.201710556 pmid: 29194903
7 A, Zhang Y, Liang H, Zhang , et al.. Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 2021, 50( 17): 9817– 9844
https://doi.org/10.1039/D1CS00330E pmid: 34308950
8 Castro I A, de R S, Datta J Z, Ou , et al.. Molybdenum oxides — from fundamentals to functionality. Advanced Materials, 2017, 29( 40): 1701619– 1701649
https://doi.org/10.1002/adma.201701619 pmid: 28815807
9 V S, Saji C W Lee . Molybdenum, molybdenum oxides, and their electrochemistry. ChemSusChem, 2012, 5( 7): 1146– 1161
https://doi.org/10.1002/cssc.201100660 pmid: 22693154
10 Z, Luo R, Miao T D, Huan , et al.. Mesoporous MoO3−x material as an efficient electrocatalyst for hydrogen evolution reactions. Advanced Energy Materials, 2016, 6( 16): 1600528– 1600538
https://doi.org/10.1002/aenm.201600528
11 Y J, Tang M R, Gao C H, Liu , et al.. Porous molybdenum-based hybrid catalysts for highly efficient hydrogen evolution. Angewandte Chemie International Edition in English, 2015, 54( 44): 12928– 12932
https://doi.org/10.1002/anie.201505691 pmid: 26435162
12 W, Hua H H, Sun F, Xu , et al.. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Metals, 2020, 39( 4): 335– 351
https://doi.org/10.1007/s12598-020-01384-7
13 C, Jian Q, Cai W, Hong , et al.. Enhanced hydrogen evolution reaction of MoOx/Mo cathode by loading small amount of Pt nanoparticles in alkaline solution. International Journal of Hydrogen Energy, 2017, 42( 27): 17030– 17037
https://doi.org/10.1016/j.ijhydene.2017.05.223
14 R S, Datta F, Haque M, Mohiuddin , et al.. Highly active two dimensional α-MoO3−x for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5( 46): 24223– 24231
https://doi.org/10.1039/C7TA07705J
15 F, Haque A, Zavabeti B Y, Zhang , et al.. Ordered intracrystalline pores in planar molybdenum oxide for enhanced alkaline hydrogen evolution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 1): 257– 268
https://doi.org/10.1039/C8TA08330D
16 Vidales A, Gomez S Omanovic . Evaluation of nickel‒molybdenum-oxides as cathodes for hydrogen evolution by water electrolysis in acidic, alkaline, and neutral media. Electrochimica Acta, 2018, 262: 115– 123
https://doi.org/10.1016/j.electacta.2018.01.007
17 R, Mardosaitė E Valatka . S-containing molybdenum oxide films as pH neutral hydrogen evolution electrocatalyst prepared by electrodeposition. International Journal of Electrochemical Science, 2019, 14( 1): 387– 401
https://doi.org/10.20964/2019.01.37
18 L, Li T, Zhang J, Yan , et al.. P doped MoO3−x nanosheets as efficient and stable electrocatalysts for hydrogen evolution. Small, 2017, 13( 25): 1700441– 1700447
https://doi.org/10.1002/smll.201700441 pmid: 28508567
19 N, Xu G, Cao L, Gan , et al.. Carbon-coated cobalt molybdenum oxide as a high-performance electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43( 52): 23101– 23108
https://doi.org/10.1016/j.ijhydene.2018.10.201
20 B, Hu S, Jian G, Yin , et al.. Hetero-element-doped molybdenum oxide materials for energy storage systems. Nanomaterials, 2021, 11( 12): 3302– 3317
https://doi.org/10.3390/nano11123302 pmid: 34947651
21 P, Jiang Y, Yang R, Shi , et al.. Pt-like electrocatalytic behavior of Ru–MoO2 nanocomposites for the hydrogen evolution reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5( 11): 5475– 5485
https://doi.org/10.1039/C6TA09994G
22 S, Liu C, Chen Y, Zhang , et al.. Vacancy-coordinated hydrogen evolution reaction on MoO3−x anchored atomically dispersed MoRu pairs. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 24): 14466– 14472
https://doi.org/10.1039/C9TA03719E
23 D, Lee Y, Kim H W, Kim , et al.. In situ electrochemically synthesized Pt‒MoO3−x nanostructure catalysts for efficient hydrogen evolution reaction. Journal of Catalysis, 2020, 381: 1– 13
https://doi.org/10.1016/j.jcat.2019.10.027
24 J, Xu C, Zhang H, Liu , et al.. Amorphous MoOx-stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy, 2020, 70: 104529– 104536
https://doi.org/10.1016/j.nanoen.2020.104529
25 W, Shang Y, Xiao A, Yu , et al.. Visible-light-enhanced electrocatalytic hydrogen evolution using electrodeposited molybdenum oxide. Journal of the Electrochemical Society, 2022, 169( 3): 034529– 034535
https://doi.org/10.1149/1945-7111/ac5d94
26 J, Klein A K, Engstfeld S, Brimaud , et al.. Pt nanocluster size effects in the hydrogen evolution reaction: approaching the theoretical maximum activity. Physical Chemistry Chemical Physics, 2020, 22( 34): 19059– 19068
https://doi.org/10.1039/D0CP02793F pmid: 32812961
27 J, Sun X, Zhang M, Jin , et al.. Robust enhanced hydrogen production at acidic conditions over molybdenum oxides-stabilized ultrafine palladium electrocatalysts. Nano Research, 2021, 14( 1): 268– 274
https://doi.org/10.1007/s12274-020-3083-3
28 L, Seguin M, Figlarz R, Cavagnat , et al.. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3·xH2O molybdenum trioxide hydrates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1995, 51( 8): 1323– 1344
https://doi.org/10.1016/0584-8539(94)00247-9
29 F, Ji X, Ren X, Zheng , et al.. 2D-MoO3 nanosheets for superior gas sensors. Nanoscale, 2016, 8( 16): 8696– 8703
https://doi.org/10.1039/C6NR00880A pmid: 27053379
30 M, Dieterle G, Weinberg G Mestl . Raman spectroscopy of molybdenum oxides. Part I: Structural characterization of oxygen defects in MoO3−x by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Physical Chemistry Chemical Physics , 2002, 4: 812– 821
https://doi.org/10.1039/b107012f
31 W, Pan R, Tian H, Jin , et al.. Structure, optical, and catalytic properties of novel hexagonal metastable h-MoO3 nano- and microrods synthesized with modified liquid-phase processes. Chemistry of Materials, 2010, 22( 22): 6202– 6208
https://doi.org/10.1021/cm102703s
[1] Xinping LI, Min ZHOU, Zhuoxun YIN, Xinzhi MA, Yang ZHOU. Bimetallic Ni–Mo nitride@C3N4 for highly active and stable water catalysis[J]. Front. Mater. Sci., 2022, 16(3): 220613-.
[2] Yanqiu YU, Shantang LIU. Facile synthesis of Ni-doped SnO2 nanorods and their high gas sensitivity to isopropanol[J]. Front. Mater. Sci., 2022, 16(1): 220585-.
[3] Yun LI, Wang YANG, Hanlin LIU, Zhiqiang TU, Sai CHE, Bo JIANG, Chong XU, Guang MA, Guoyong HUANG, Yongfeng LI. Template-mediated strategy to regulate hierarchically nitrogen--sulfur co-doped porous carbon as superior anode material for lithium capacity[J]. Front. Mater. Sci., 2022, 16(1): 220584-.
[4] Nabi ULLAH, Rizwan ULLAH, Saraf KHAN, Yuanguo XU. Boron nitride-based electrocatalysts for HER, OER, and ORR: A mini-review[J]. Front. Mater. Sci., 2021, 15(4): 543-552.
[5] Yingying WEI, Lin CHEN, Shaoban ZHAO, Xuguang LIU, Yongzhen YANG, Jinglei DU, Qiang LI, Shiping YU. Green-emissive carbon quantum dots with high fluorescence quantum yield: Preparation and cell imaging[J]. Front. Mater. Sci., 2021, 15(2): 253-265.
[6] Liangshuo LI, Lin QIN, Xin FAN, Xinyu LI, Ming DENG. A novel and simple nitrogen-doped carbon/polyaniline electrode material for supercapacitors[J]. Front. Mater. Sci., 2021, 15(1): 147-157.
[7] Jingze ZHANG, Sheng ZHU, Yulin MIN, Qunjie XU. Mn-doped perovskite-type oxide LaFeO3 as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions[J]. Front. Mater. Sci., 2020, 14(4): 459-468.
[8] Elias ASSAYEHEGN, Ananthakumar SOLAIAPPAN, Yonas CHEBUDIE, Esayas ALEMAYEHU. Influence of temperature on preparing mesoporous mixed phase N/TiO2 nanocomposite with enhanced solar light photocatalytic activity[J]. Front. Mater. Sci., 2019, 13(4): 352-366.
[9] Meng LIU, Lei LIU, Yifeng YU, Haijun LV, Aibing CHEN, Senlin HOU. Synthesis of nitrogen-doped carbon spheres using the modified Stöber method for supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 156-164.
[10] Bin CAI, Changxiang SHAO, Liangti QU, Yuning MENG, Lin JIN. Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 145-155.
[11] Wang YANG, Wu YANG, Lina KONG, Shuanlong DI, Xiujuan QIN. Nitrogen--oxygen co-doped corrugation-like porous carbon for high performance supercapacitor[J]. Front. Mater. Sci., 2018, 12(3): 283-291.
[12] Infant RAJ, Yongli DUAN, Daniel KIGEN, Wang YANG, Liqiang HOU, Fan YANG, Yongfeng LI. Catalytically enhanced thin and uniform TaS2 nanosheets for hydrogen evolution reaction[J]. Front. Mater. Sci., 2018, 12(3): 239-246.
[13] M. Mohamed Jaffer SADIQ, U. Sandhya SHENOY, D. Krishna BHAT. Synthesis of BaWO4/NRGO‒g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Front. Mater. Sci., 2018, 12(3): 247-263.
[14] Xiaoxiao WANG, Wanwan WANG, Baichuan ZHU, Fangfang QIAN, Zhen FANG. Mo-doped Na3V2(PO4)3@C composites for high stable sodium ion battery cathode[J]. Front. Mater. Sci., 2018, 12(1): 53-63.
[15] Qinglin SHENG, Dan ZHANG, Yu SHEN, Jianbin ZHENG. Synthesis of hollow Prussian blue cubes as an electrocatalyst for the reduction of hydrogen peroxide[J]. Front. Mater. Sci., 2017, 11(2): 147-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed