Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2022, Vol. 16 Issue (4) : 220623    https://doi.org/10.1007/s11706-022-0623-7
RESEARCH ARTICLE
Multifunction ZnO/carbon hybrid nanofiber mats for organic dyes treatment via photocatalysis with enhanced solar-driven evaporation
Wenxin WANG1, Yang CHEN1, Ning WANG1(), Zhiqiang DU1, Martin JENSEN2, Zihan AN3, Xianfeng LI1
1. State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Municipal Key Lab of Advanced Energy Storage Material and Devices, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
2. Department of Chemistry and Bioscience, Aalborg University, DK-9220 Aalborg, Denmark
3. The Institute of Seawater Desalination and Multipurpose Utilization (MNR), Tianjin 300192, China
 Download: PDF(6286 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

ZnO-based photocatalytic materials have received widespread attention due to their usefulness than other photocatalytic materials in organic dye wastewater treatment. However, its photocatalytic efficiency and surface stability limit further applicability. This paper uses a one-step carbonization method to prepare multifunctional ZnO/carbon hybrid nanofiber mats. The carbonization creates a π-conjugated carbonaceous structure of the mats, which prolongs the electron recovery time of ZnO nanoparticles to yield improved photocatalytic efficiency. Further, the carbonization reduces the fiber diameter of the carbon hybrid nanofiber mats, which quadruples the specific surface area to yield enhanced adsorption and photocatalytic performance. At the same time, the prepared nanofiber mats can increase the evaporation rate of water under solar irradiation to a level of 1.46 kg·m−2·h−1 with an efficiency of 91.9%. Thus, the nanofiber mats allow the facile incorporation of photocatalysts to clean contaminated water through adsorption, photodegradation, and interfacial heat-assisted distillation mechanisms.

Keywords hybrid nanofiber mats      zinc oxide      photocatalysis      solar-driven evaporation     
Corresponding Author(s): Ning WANG   
Issue Date: 25 December 2022
 Cite this article:   
Wenxin WANG,Yang CHEN,Ning WANG, et al. Multifunction ZnO/carbon hybrid nanofiber mats for organic dyes treatment via photocatalysis with enhanced solar-driven evaporation[J]. Front. Mater. Sci., 2022, 16(4): 220623.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-022-0623-7
https://academic.hep.com.cn/foms/EN/Y2022/V16/I4/220623
Fig.1  Schematic illustration of preparation and application of hybrid carbon nanofiber mats.
Fig.2  (a)(b)(c)(d) Surface morphology and (e)(f) fiber diameter distribution of ZnO/PAN@NMs (upper panels) and ZnO@CNMs (lower panels). Magnification: ×5000 (left panels); ×20 000 (middle panels).
Fig.3  (a) XRD patterns of ZnO@CNMs and ZnO/PAN@NMs. (b) XPS spectrum of ZnO/PAN@NFMs and ZnO@CNMs. (c) Nitrogen adsorption isotherm of ZnO@CNMs and ZnO/PAN@NMs. (d) Conductivity of composite fiber mats with different ZnO loadings before and after carbonization.
Fig.4  (a) Adsorption curves of MO for nanofiber mats with different contents of zinc oxide before and after carbonization. (b) Adsorption curves of MO, RhB, and MB for ZnO@CNMs-3. (c) First-order kinetic model fits for MO adsorption to ZnO@CNMs. (d) Second-order kinetic model fits for Mo adsorption to ZnO@CNMs. (e) First-order kinetic model fits for adsorption of MO, RhB, and MB to ZnO@CNMs. (f) Second-order kinetic model fits of adsorption for MO, RhB, and MB to ZnO@CNMs.
Sampleqe,expThe first-order dynamicsThe second-order dynamics
k1/min?1qt,cal/(mg·g?1)R2Δq/%k2/(g·mg?1·min?1)qt,cal/(mg·g?1)R2Δq/%
PAN1.290.1091.280.78414102.50.71291.30.9952475.3
ZnO/PAN@NFMs-12.090.0942.0750.7896586.790.41812.0760.9981527.49
ZnO/PAN@NFMs-21.960.1011.950.9264851.50.4261.980.9981628.01
ZnO/PAN@NFMs-32.190.0832.1750.9630129.650.40272.1940.9984724.09
ZnO/PAN@NFMs-41.780.091.7730.9880918.080.48511.8080.9910570.33
Tab.1  Adsorption kinetic parameters of MO on the surface of PAN@CNMs, ZnO@CNMs-1, ZnO@CNMs-2, ZnO@CNMs-3, and ZnO@CNMs-4 after carbonization
Sampleqt,expThe first-order kineticsThe second-order kinetics
k1/min?1qt,cal/(mg·g?1)R2Δq/%k2/(g·mg?1·min?1)qt,cal/(mg·g?1)R2Δq/%
MO2.180.075962.160.974422.840.40252.180.9984724.1
RhB2.910.098982.750.9827723.890.31362.9220.999649.09
MB3.640.09513.620.9777326.160.25093.6510.999568.06
Tab.2  Adsorption kinetic parameters of MO, RhB, and MB on the surface of carbonized ZnO@CNMs-3
Fig.5  Photocatalytic efficiency of the carbonized hybrid nanofiber mat: (a) Relative concentration of MO against time with the irradiation staring at 0 min. (b) Adsorption–photocatalysis of MO, RhB, and MB by ZnO@CNMs-3. (c) Cycling runs of ZnO@CNMs-3 for MO photodegradation where the first 60 min of each cycle is in the dark. (d) The photocatalytic mechanism.
Fig.6  (a) Water contact angles of ZnO/PAN@NMs and ZnO@CNMs. (b) Absorption spectra of wet ZnO@CNMs and dry ZnO@CNMs. (c) Water loss values of pure water, ZnO/PAN@NMs, and ZnO@CNMs. (d) Evaporation rate and efficiency with different contents of ZnO after carbonization.
1 M M, Mekonnen A Y Hoekstra . Four billion people facing severe water scarcity.Science Advances, 2016, 2(2): e1500323
https://doi.org/10.1126/sciadv.1500323
2 P, Tao G, Ni C Y, Song et al.. Solar-driven interfacial evaporation.Nature Energy, 2018, 3(12): 1031–1041
https://doi.org/10.1038/s41560-018-0260-7
3 M A, Shannon P W, Bohn M, Elimelech et al.. Science and technology for water purification in the coming decades.Nature, 2008, 452(7185): 301–310
https://doi.org/10.1038/nature06599
4 L F, Cui P P, Zhang Y K, Xiao et al.. High rate production of clean water based on the combined photo-electro-thermal effect of graphene architecture.Advanced Materials, 2018, 30(22): 1706805
https://doi.org/10.1002/adma.201706805
5 J, Wang Y Y, Li L, Deng et al.. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles.Advanced Materials, 2017, 29(3): 1603730
https://doi.org/10.1002/adma.201603730
6 A Y, Hoekstra M M Mekonnen . The water footprint of humanity.Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): 3232–3237
https://doi.org/10.1073/pnas.1109936109
7 R A, Khaparde A A Smita . Efficient photocatalytic degradation of malachite green dye under visible irradiation by water soluble ZnS: Mn/ZnS core/shell nanoparticles.AIP Conference Proceedings, 1953, 2018: 030139
8 H W, Huang R R, Cao S X, Yu et al.. Single-unit-cell layer established Bi2WO6 3D hierarchical architectures: efficient adsorption, photocatalysis and dye-sensitized photoelectrochemical performance.Applied Catalysis B: Environmental, 2017, 219: 526–537
https://doi.org/10.1016/j.apcatb.2017.07.084
9 M M, Abdel-Mottaleb A, Mohamed S A, Karim et al.. Preparation, characterization, and mechanical properties of polyacrylonitrile (PAN)/graphene oxide (GO) nanofibers.Mechanics of Advanced Materials and Structures, 2020, 27(4): 346–351
https://doi.org/10.1080/15376494.2018.1473535
10 A, Mohamed A, Salama W S, Nasser et al.. Photodegradation of ibuprofen, cetirizine, and naproxen by PAN-MWCNT/TiO2-NH2 nanofiber membrane under UV light irradiation.Environmental Sciences Europe, 2018, 30(1): 47
https://doi.org/10.1186/s12302-018-0177-6
11 F, Cicek D, Ozer A, Ozer et al.. Low cost removal of reactive dyes using wheat bran.Journal of Hazardous Materials, 2007, 146(1–2): 408–416
https://doi.org/10.1016/j.jhazmat.2006.12.037
12 N M, Aboamera A, Mohamed A, Salama et al.. An effective removal of organic dyes using surface functionalized cellulose acetate/graphene oxide composite nanofibers.Cellulose, 2018, 25(7): 4155–4166
https://doi.org/10.1007/s10570-018-1870-8
13 J J, Yin F K, Zhan T F, Jiao et al.. Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment.Chinese Chemical Letters, 2020, 31(4): 992–995
https://doi.org/10.1016/j.cclet.2019.08.047
14 R D, Jackson Bavel C H Van . Solar distillation of water from soil and plant materials: a simple desert survival technique.Science, 1965, 149(3690): 1377–1379
https://doi.org/10.1126/science.149.3690.1377
15 C, Li Y, Goswami E Stefanakos . Solar assisted sea water desalination: a review.Renewable & Sustainable Energy Reviews, 2013, 19: 136–163
https://doi.org/10.1016/j.rser.2012.04.059
16 A F, Muftah M A, Alghoul A, Fudholi et al.. Factors affecting basin type solar still productivity: a detailed review.Renewable & Sustainable Energy Reviews, 2014, 32: 430–447
https://doi.org/10.1016/j.rser.2013.12.052
17 I, Poulios E, Micropoulou R, Panou et al.. Photooxidation of eosin Y in the presence of semiconducting oxide.Applied Catalysis B: Environmental, 2003, 41(4): 345–355
https://doi.org/10.1016/S0926-3373(02)00160-1
18 C, Lizama J, Freer J, Baeza et al.. Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO suspensions.Catalysis Today, 2002, 76(2‒4): 235–246
https://doi.org/10.1016/S0920-5861(02)00222-5
19 L, Shi Y S, Shi S F, Zhuo et al.. Multi-functional 3D honeycomb ceramic plate for clean water production by heterogeneous photo-fenton reaction and solar-driven water evaporation.Nano Energy, 2019, 60: 222–230
https://doi.org/10.1016/j.nanoen.2019.03.039
20 J, Huang Y, He L, Wang et al.. Bifunctional Au@TiO2 core‒shell nanoparticle films for clean water generation by photocatalysis and solar evaporation.Energy Conversion and Management, 2017, 132: 452–459
https://doi.org/10.1016/j.enconman.2016.11.053
21 L, Noureen Z J, Xie Y, Gao et al.. Multifunctional Ag3PO4‒rGO-coated textiles for clean water production by solar-driven evaporation, photocatalysis, and disinfection.ACS Applied Materials & Interfaces, 2020, 12(5): 6343–6350
https://doi.org/10.1021/acsami.9b16043
22 K V, Karthik C V, Reddy K R, Reddy et al.. Barium titanate nanostructures for photocatalytic hydrogen generation and photodegradation of chemical pollutants.Journal of Materials Science: Materials in Electronics, 2019, 30(23): 20646–20653
https://doi.org/10.1007/s10854-019-02430-6
23 C V, Reddy K R, Reddy V V N, Harish et al.. Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes.International Journal of Hydrogen Energy, 2020, 45(13): 7656–7679
https://doi.org/10.1016/j.ijhydene.2019.02.144
24 V, Manikandan P, Jayanthi A, Priyadharsan et al.. Green synthesis of pH-responsive Al2O3 nanoparticles: application to rapid removal of nitrate ions with enhanced antibacterial activity.Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371: 205–215
https://doi.org/10.1016/j.jphotochem.2018.11.009
25 H, Kaur H S, Bhatti K Singh . Pr doped SnO2 nanostructures: morphology evolution, efficient photocatalysts and fluorescent sensors for the detection of Cd2+ ions in water.Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388: 112144
https://doi.org/10.1016/j.jphotochem.2019.112144
26 E, Yuce E H, Mert P, Krajnc et al.. Influence of titania on the morphological and mechanical properties of 1,3-butanediol dimethacrylate based poly-HIPE composites.Macromolecular Materials and Engineering, 2018, 130: 8–15
27 S M T H, Moghaddas B, Elahi V Javanbakht . Biosynthesis of pure zinc oxide nanoparticles using Quince seed mucilage for photocatalytic dye degradation.Journal of Alloys and Compounds, 2020, 821: 153519
https://doi.org/10.1016/j.jallcom.2019.153519
28 Q Z, Luo X L, Yang X X, Zhao et al.. Facile preparation of well-dispersed ZnO/cyclized polyacrylonitrile nanocomposites with highly enhanced visible-light photocatalytic activity.Applied Catalysis B: Environmental, 2017, 204: 304–315
https://doi.org/10.1016/j.apcatb.2016.11.037
29 S, Patel M, Konar H, Sahoo et al.. Surface functionalization of electrospun PAN nanofibers with ZnO–Ag heterostructure nanoparticles: synthesis and antibacterial study.Nanotechnology, 2019, 30(20): 205704
https://doi.org/10.1088/1361-6528/ab045d
30 Z Q, Du Y, Chen M, Jensen et al.. Preparation of 3D crimped ZnO/PAN hybrid nanofiber mats with photocatalytic activity and antibacterial properties by blow-spinning.Journal of Applied Polymer Science, 2021, 138(9): 49908
https://doi.org/10.1002/app.49908
31 X Q, Gu C Y, Li S, Yuan et al.. ZnO based heterojunctions and their application in environmental photocatalysis.Nanotechnology, 2016, 27(40): 402001
https://doi.org/10.1088/0957-4484/27/40/402001
32 Y, Chen N, Wang M, Jensen et al.. Catalyst-free large-scale synthesis of composite SiC@SiO2/carbon nanofiber mats by blow-spinning.Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2019, 7(48): 15233–15242
https://doi.org/10.1039/C9TC05257G
33 K Z, Lu N, Wang J Y, Ren et al.. High-efficiency preparation of continuous three-dimensional curly C1−XNXTi‒C composite nanofibers mat by airspinning.Composites Communications, 2016, 1: 44–47
https://doi.org/10.1016/j.coco.2016.09.005
34 J X, Wang X W, Sun Y, Yang et al.. Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications.Nanotechnology, 2006, 17(19): 4995–4998
https://doi.org/10.1088/0957-4484/17/19/037
35 W, Wang H M, Huang Z Y, Li et al.. Zinc oxide nanofiber gas sensors via electrospinning.Journal of the American Ceramic Society, 2008, 91: 3817–3819
36 J B, Mu C L, Shao Z C, Guo et al.. High photocatalytic activity of ZnO‒carbon nanofiber heteroarchitectures.ACS Applied Materials & Interfaces, 2011, 3: 590–596
37 J T, Zhang Z J, Zhu C M, Chen et al.. ZnO‒carbon nanofibers for stable, high response, and selective H2S sensors.Nanotechnology, 2018, 29: 275501
38 C, Chen P, Liu C Lu . Synthesis and characterization of nano-sized ZnO powders by direct precipitation method.Chemical Engineering Journal, 2008, 144(3): 509–513
https://doi.org/10.1016/j.cej.2008.07.047
39 M, Zhang E, Uchaker S, Hu et al.. CoO‒carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithium-ion batteries with enhanced properties.Nanoscale, 2013, 5(24): 12342–12349
https://doi.org/10.1039/c3nr03931e
40 H, Li Z J, Peng J W, Qian et al.. C fibers@WSe2 nanoplates core‒shell composite: highly efficient solar-driven photocatalyst.ACS Applied Materials & Interfaces, 2017, 9(34): 28704–28715
https://doi.org/10.1021/acsami.7b10376
41 L-X, He S-C Tjong . Internal field emission and conductivity relaxation in carbon nanofiber filled polymer system.Synthetic Metals, 2010, 160(19‒20): 2085–2088
https://doi.org/10.1016/j.synthmet.2010.07.028
42 Y, Zhang W B, Wang J P, Zhang et al.. A comparative study about adsorption of natural palygorskite for methylene blue.Chemical Engineering Journal, 2015, 262: 390–398
https://doi.org/10.1016/j.cej.2014.10.009
43 Y Z, Shi D Z, Yang Y, Li et al.. Fabrication of PAN@TiO2/Ag nanofibrous membrane with high visible light response and satisfactory recyclability for dye photocatalytic degradation.Applied Surface Science, 2017, 426: 622–629
https://doi.org/10.1016/j.apsusc.2017.06.302
44 X Y, He K B, Male P N, Nesterenko et al.. Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose.ACS Applied Materials & Interfaces, 2013, 5(17): 8796–8804
https://doi.org/10.1021/am403222u
45 M, Feng W, You Z S, Wu et al.. Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate.ACS Applied Materials & Interfaces, 2013, 5(23): 12654–12662
https://doi.org/10.1021/am404011k
46 Y, Jin J, Chang Y, Shi et al.. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(17): 7942–7949
https://doi.org/10.1039/C8TA00187A
[1] FMS-22623-OF-Wwx_suppl_1 Download
[1] Shemeena MULLAKKATTUTHODI, Vijayasree HARIDAS, Sankaran SUGUNAN, Binitha N. NARAYANAN. Z-scheme mechanism for methylene blue degradation over Fe2O3/g-C3N4 nanocomposite prepared via one-pot exfoliation and magnetization of g-C3N4[J]. Front. Mater. Sci., 2022, 16(3): 220612-.
[2] Haibo REN, Huaipeng WENG, Pengfei ZHAO, Ruzhong ZUO, Xiaojing LU, Jiarui HUANG. Preparation of porous sea-urchin-like CuO/ZnO composite nanostructure consisting of numerous nanowires with improved gas-sensing performance[J]. Front. Mater. Sci., 2022, 16(1): 220583-.
[3] Tingting MA, Zhen LI, Wen LIU, Jiaxu CHEN, Moucui WU, Zhenghua WANG. Microwave hydrothermal synthesis of WO3(H2O)0.333/CdS nanocomposites for efficient visible-light photocatalytic hydrogen evolution[J]. Front. Mater. Sci., 2021, 15(4): 589-600.
[4] Bharat BARUAH, Christopher KELLEY, Grace B. DJOKOTO, Kelly M. HARTNETT. Polymer-capped gold nanoparticles and ZnO nanorods form binary photocatalyst on cotton fabrics: Catalytic breakdown of dye[J]. Front. Mater. Sci., 2021, 15(3): 431-447.
[5] Gang LOU, Yizhi WANG, Yun MA, Jianlong KOU, Fengmin WU, Jintu FAN. Reduced graphene oxide-based calcium alginate hydrogel as highly efficient solar steam generation membrane for desalination[J]. Front. Mater. Sci., 2021, 15(1): 138-146.
[6] Xuhua YE, Xiangyu YAN, Xini CHU, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Construction of upconversion fluoride/attapulgite nanocomposite for visible-light-driven photocatalytic nitrogen fixation[J]. Front. Mater. Sci., 2020, 14(4): 469-480.
[7] Xiangyu YAN, Da DAI, Kun MA, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Microwave hydrothermal synthesis of lanthanum oxyfluoride nanorods for photocatalytic nitrogen fixation: Effect of Pr doping[J]. Front. Mater. Sci., 2020, 14(1): 43-51.
[8] Timur Sh. ATABAEV, Anara MOLKENOVA. Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives[J]. Front. Mater. Sci., 2019, 13(4): 335-341.
[9] Zhongchi WANG, Gongsheng SONG, Jianle XU, Qiang FU, Chunxu PAN. Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis[J]. Front. Mater. Sci., 2018, 12(4): 379-391.
[10] Chuan DENG, Xianxian WEI, Ruixiang LIU, Yajie DU, Lei PAN, Xiang ZHONG, Jianhua SONG. Synthesis of sillenite-type Bi36Fe2O57 and elemental bismuth with visible-light photocatalytic activity for water treatment[J]. Front. Mater. Sci., 2018, 12(4): 415-425.
[11] Palepu Teja RAVINDAR, Vidya Sagar CHOPPELLA, Anil Kumar MOKSHAGUNDAM, M. KIRUBA, Sunil G. BABU, Korupolu Raghu BABU, L. John BERCHMANS, Gosipathala SREEDHAR. Enhanced visible-light-driven photocatalysis of Bi2YO4Cl heterostructures functionallized by bimetallic RhNi nanoparticles[J]. Front. Mater. Sci., 2018, 12(4): 405-414.
[12] Ruirui LIU, Zhijiang JI, Jing WANG, Jinjun ZHANG. Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue[J]. Front. Mater. Sci., 2018, 12(3): 292-303.
[13] Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Front. Mater. Sci., 2017, 11(4): 366-374.
[14] Alberto ESTRELLA GONZÁLEZ, Maximiliano ASOMOZA, Ulises ARELLANO, Sandra CIPAGAUTA DíAZ, Silvia SOLÍS. Preparation and characterization of phosphate-modified mesoporous TiO2 incorporated in a silica matrix and their photocatalytic properties in the photodegradation of Congo red[J]. Front. Mater. Sci., 2017, 11(3): 250-261.
[15] Hao WANG, Yuhan WU, Pengcheng WU, Shanshan CHEN, Xuhong GUO, Guihua MENG, Banghua PENG, Jianning WU, Zhiyong LIU. Environmentally benign chitosan as reductant and supporter for synthesis of Ag/AgCl/chitosan composites by one-step and their photocatalytic degradation performance under visible-light irradiation[J]. Front. Mater. Sci., 2017, 11(2): 130-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed