Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2018, Vol. 12 Issue (3) : 292-303    https://doi.org/10.1007/s11706-018-0429-9
RESEARCH ARTICLE
Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue
Ruirui LIU(), Zhijiang JI(), Jing WANG, Jinjun ZHANG
State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China
 Download: PDF(668 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mesocrystalline TiO2/sepiolite (TiS) composites with the function of adsorption and degradation of liquid organic pollutants were successfully fabricated via a facile and low-cost solvothermal reaction. The prepared TiS composites were characterized by FESEM, HRTEM, XRD, XPS, N2 adsorption–desorption, UV-vis DRS, and EPR. Results revealed the homogeneous dispersion of highly reactive TiO2 mesocrystals on the sepiolite nanofibers. Thereinto each single-crystal-like TiO2 mesocrystal comprised many [001]-oriented anatase nanoparticles about 10–20 nm in diameter. The photocatalytic activity was further evaluated by the degradation of anionic dye (methyl orange) and cationic dye (methylene blue) under the UV-vis light (350≤λ≤780 nm) irradiation. By selecting appropriate experimental conditions, we can easily manipulate the photocatalytic performance of TiS composites. The optimal TiS catalyst (the sepiolite content of 28.5 wt.%, and the reaction time of 24 h) could efficiently degrade methyl orange to 90.7% after 70 min, or methylene blue to 97.8% after 50 min, under UV-vis light irradiation. These results can be attributed to their synergistic effect of high crystallinity, large specific surface area, abundant hydroxyl radicals, and effective photogenerated charge separation.

Keywords TiO2/sepiolite      mesocrystal      solvothermal      composites      photocatalysis     
Corresponding Author(s): Ruirui LIU,Zhijiang JI   
Online First Date: 27 July 2018    Issue Date: 10 September 2018
 Cite this article:   
Ruirui LIU,Zhijiang JI,Jing WANG, et al. Mesocrystalline TiO2/sepiolite composites for the effective degradation of methyl orange and methylene blue[J]. Front. Mater. Sci., 2018, 12(3): 292-303.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-018-0429-9
https://academic.hep.com.cn/foms/EN/Y2018/V12/I3/292
Component Content/wt.%
SiO2 64.1037
MgO 20.4845
Al2O3 7.1091
Fe2O3 3.0048
CaO 2.7046
F 1.0838
K2O 0.4461
P2O5 0.4437
TiO2 0.3323
Na2O 0.1153
SO3 0.0476
Cr2O3 0.0297
ZnO 0.0229
NiO 0.0153
MnO 0.0138
SrO 0.0104
CuO 0.0084
Co2O3 0.0082
ZrO2 0.0067
Y2O3 0.0049
Rb2O 0.0042
Tab.1  The chemical compositions of sepiolite
Fig.1  FESEM images of (a) sepiolite, (b) TiS3, (c) TiS4, and (d) TiS3-12h.
Fig.2  HRTEM images of (a)(b) TiO2, (c)(d) TiS3, and (e)(f) TiS3-12h. The inset in (f) shows the SAED pattern of TiS3-12h.
Fig.3  XRD patterns: (a) TiO2, TiS1, TiS2, TiS3, TiS4, and sepiolite; (b) TiS3-2h and TiS3-12h.
Fig.4  XPS spectra of TiS3: (a) survey spectrum; (b) Ti 2p; (c) O 1s.
Fig.5  (a) N2 adsorption–desorption isotherms and (b) corresponding BJH pore size distribution curves of TiO2, TiS2, TiS3, TiS4 and sepiolite. (c) N2 adsorption–desorption isotherms and (d) corresponding BJH pore size distribution curves of TiS3-2h and TiS3-12h.
Sample SBET a)/(m2·g−1) V b)/(cm3·g−1) Eg c)/eV
Sepiolite 73.35 0.32
TiO2 110.84 0.35 3.06
TiS2 157.84 0.30 2.97
TiS3 123.50 0.37 2.80
TiS4 148.29 0.35 3.82
TiS3-2h 122.20 0.36 2.78
TiS3-12h 139.36 0.33 2.92
Tab.2  The physicochemical and optical properties of as-prepared materials
Fig.6  (a) UV-vis DRS of samples. (b) EPR spectra of TiS3 under UV light and natural light.
Fig.7  Degradation profiles of (a) MO and (b) MB over TiS composites with different sepiolite contents under UV-vis light irradiation. (c) The influence of pH on the zeta potential of TiS3.
Fig.8  UV-vis spectra of MO in the presence of (a) TiS3-2h, (b) TiS3-12h and (c) TiS3 under UV-vis light irradiation at different time intervals. (d) Comparison of photocatalytic activities of above samples for the degradation of MO under UV-vis light irradiation.
Fig.9  (a) Photocatalytic activity of TiS3 on MO during the 4-cycle photodegradation. (b) XRD patterns of the fresh and used TiS3 catalyst before and after degradation of MO.
Fig.10  The active-species trapping tests of TiS3 in the degradation of (a) MO and (b) MB.
Fig.11  The possible photocatalytic mechanism of mesocrystalline TiS composites in the degradation of organic dyes.
1 Trandafilovic L V, Jovanovic D J, Zhang X, et al.. Enhanced photocatalytic degradation of methylene blue and methylorange by ZnO:Eu nanoparticles. Applied Catalysis B: Environmental, 2017, 203: 740–752
https://doi.org/10.1016/j.apcatb.2016.10.063
2 Stathatos E, Papoulis D, Aggelopoulos C A, et al.. TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: synergistic effect to the photocatalytic degradation of an azo-dye in water. Journal of Hazardous Materials, 2012, 211–212: 68–76
https://doi.org/10.1016/j.jhazmat.2011.11.055 pmid: 22177018
3 Kibanova D, Sleiman M, Cervini-Silva J, et al.Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO2 composite. Journal of Hazardous Materials, 2012, 211–212: 233–239
https://doi.org/10.1016/j.jhazmat.2011.12.008
4 Zhang Y L, Wang D J, Zhang G K. Photocatalytic degradation of organic contaminants by TiO2/sepiolite composites prepared at low temperature. Chemical Engineering Journal, 2011, 173(1): 1–10
https://doi.org/10.1016/j.cej.2010.11.028
5 Lei X F, Xue X X, Yang H. Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light. Applied Surface Science, 2014, 321: 396–403
https://doi.org/10.1016/j.apsusc.2014.10.045
6 Akkari M, Aranda P, Mayoral A, et al.. Sepiolite nanoplatform for the simultaneous assembly of magnetite and zinc oxide nanoparticles as photocatalyst for improving removal of organic pollutants. Journal of Hazardous Materials, 2017, 340: 281–290
https://doi.org/10.1016/j.jhazmat.2017.06.067 pmid: 28715751
7 Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959
https://doi.org/10.1021/cr0500535 pmid: 17590053
8 Fu X X, Ren Z M, Fan C Y, et al.. Designed fabrication of anatase mesocrystals constructed from crystallographically oriented nanocrystals for improved photocatalytic activity. RSC Advances, 2015, 5(51): 41218–41223
https://doi.org/10.1039/C5RA06465A
9 Dai H, Xu G, Zhang S, et al.. A ratiometric biosensor for metallothionein based on a dual heterogeneous electro-chemiluminescent response from a TiO2 mesocrystalline interface. Chemical Communications, 2015, 51(36): 7697–7700
https://doi.org/10.1039/C5CC01402F pmid: 25848971
10 Ye J, Liu W, Cai J, et al.. Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. Journal of the American Chemical Society, 2011, 133(4): 933–940
https://doi.org/10.1021/ja108205q pmid: 21142068
11 Zhang P, Tachikawa T, Fujitsuka M, et al.. Efficient charge separation on 3D architectures of TiO2 mesocrystals packed with a chemically exfoliated MoS2 shell in synergetic hydrogen evolution. Chemical Communications, 2015, 51(33): 7187–7190
https://doi.org/10.1039/C5CC01753J pmid: 25811106
12 Li F F, Dai Y Z, Gong M, et al.. Synthesis, characterization of magnetic-sepiolite supported with TiO2, and the photocatalytic performance over Cr(VI) and 2,4-dichlorophenol co-existed wastewater. Journal of Alloys and Compounds, 2015, 638: 435–442
https://doi.org/10.1016/j.jallcom.2015.03.070
13 Okte A N, Sayınsoz E. Characterization and photocatalytic activity of TiO2 supported sepiolite catalysts. Separation and Purification Technology, 2008, 62(3): 535–543
https://doi.org/10.1016/j.seppur.2008.03.011
14 Zhang G K, Xiong Q, Xu W, et al.. Synthesis of bicrystalline TiO2 supported sepiolite fibers and their photocatalytic activity for degradation of gaseous formaldehyde. Applied Clay Science, 2014, 102: 231–237
https://doi.org/10.1016/j.clay.2014.10.001
15 Portela R, Jansson I, Suárez S, et al.. Natural silicate-TiO2 hybrids for photocatalytic oxidation of formaldehyde in gas phase. Chemical Engineering Journal, 2017, 310: 560–570
https://doi.org/10.1016/j.cej.2016.06.018
16 Ugurlu M, Karaoglu M H. TiO2 supported on sepiolite: preparation, structural and thermal characterization and catalytic behaviour in photocatalytic treatment of phenol and lignin from olive mill wastewater. Chemical Engineering Journal, 2011, 166(3): 859–867
https://doi.org/10.1016/j.cej.2010.11.056
17 Liu R R, Wang J, Zhang J J, et al.. Honeycomb-like micro-mesoporous structure TiO2/sepiolite composite for combined chemisorption and photocatalytic elimination of formaldehyde. Microporous and Mesoporous Materials, 2017, 248: 234–245
https://doi.org/10.1016/j.micromeso.2017.04.029
18 Aranda P, Kun R, Martín-Luengo M A, et al.. Titania–sepiolite nanocomposites prepared by a surfactant templating colloidal route. Chemistry of Materials, 2008, 20(1): 84–91
https://doi.org/10.1021/cm702251f
19 Bautista F M, Campelo J M, Luna D, et al.. Vanadium oxides supported on TiO2–sepiolite and sepiolite: preparation, structural and acid characterization and catalytic behaviour in selective oxidation of toluene. Applied Catalysis A: General, 2007, 325(2): 336–344
https://doi.org/10.1016/j.apcata.2007.02.033
20 Knapp C, Gil-Llambías F J, Gulppi-Cabra M, et al.. Phase distribution in titania–sepiolite catalyst supports prepared by different methods. Journal of Materials Chemistry, 1997, 7(8): 1641–1645
https://doi.org/10.1039/a702077e
21 Liu Y Q, Zhang Y, Wang J. Mesocrystals as a class of multifunctional materials. CrystEngComm, 2014, 16(27): 5948–5967
https://doi.org/10.1039/C4CE00256C
22 Cölfen H, Antonietti M. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angewandte Chemie International Edition, 2005, 44(35): 5576–5591
https://doi.org/10.1002/anie.200500496 pmid: 16035009
23 Zhou L, O’Brien P. Mesocrystals: a new class of solid materials. Small, 2008, 4(10): 1566–1574
https://doi.org/10.1002/smll.200800520 pmid: 18844308
24 Ma Y, Wu X Y, Zhang G K. Core–shell Ag@Pt nanoparticles supported on sepiolite nanofibers for the catalytic reduction of nitrophenols in water: Enhanced catalytic performance and DFT study. Applied Catalysis B: Environmental, 2017, 205: 262–270
https://doi.org/10.1016/j.apcatb.2016.12.025
25 Krekeler M P S, Guggenheim S. Defects in microstructure in palygorskite–sepiolite minerals: A transmission electron microscopy (TEM) study. Applied Clay Science, 2008, 39(1–2): 98–105
https://doi.org/10.1016/j.clay.2007.05.001
26 Wei S H, Ni S, Xu X X. A new approach to inducing Ti3+ in anatase TiO2 for efficient photocatalytic hydrogen production. Chinese Journal of Catalysis, 2018, 39(3): 510–516
https://doi.org/10.1016/S1872-2067(17)62968-1
27 Laskova B, Moehl T, Kavan L, et al.. Electron kinetics in dye sensitized solar cells employing anatase with (101) and (001) facets. Electrochimica Acta, 2015, 160: 296–305
https://doi.org/10.1016/j.electacta.2015.02.016
28 Pei Z X, Zhu M S, Huang Y, et al.. Dramatically improved energy conversion and storage efficiencies by simultaneously enhancing charge transfer and creating active sites in MnOx/TiO2 nanotube composite electrodes. Nano Energy, 2016, 20: 254–263
https://doi.org/10.1016/j.nanoen.2015.12.025
29 Rasalingam S, Kibombo H S, Wu C M, et al.. Influence of Ti–O–Si hetero-linkages in the photocatalytic degradation of Rhodamine B. Catalysis Communications, 2013, 31: 66–70
https://doi.org/10.1016/j.catcom.2012.11.016
30 Hu X L, Sun Z M, Song J Y, et al.. Facile synthesis of nano-TiO2/stellerite composite with efficient photocatalytic degradation of phenol. Advanced Powder Technology, 2018, 29(7): 1644–1654
https://doi.org/10.1016/j.apt.2018.03.030
31 Liu R R, Ji Z J, Wang J, et al.. Solvothermal fabrication of TiO2/sepiolite composite gel with exposed {001} and {101} facets and its enhanced photocatalytic activity. Applied Surface Science, 2018, 441: 29–39
https://doi.org/10.1016/j.apsusc.2018.01.309
32 Zhang G K, Qin X. Efficient photocatalytic degradation of gaseous formaldehyde by the TiO2/tourmaline composites. Materials Research Bulletin, 2013, 48(10): 3743–3749
https://doi.org/10.1016/j.materresbull.2013.05.112
33 Zhang Y Y, Gu D, Zhu L Y, et al.. Highly ordered Fe3+/TiO2 nanotube arrays for efficient photocataltyic degradation of nitrobenzene. Applied Surface Science, 2017, 420: 896–904
https://doi.org/10.1016/j.apsusc.2017.05.213
34 Jimenez-Relinque E, Llorente I, Castellote M. TiO2 cement-based materials: Understanding optical properties and electronic band structure of complex matrices. Catalysis Today, 2017, 287: 203–209
https://doi.org/10.1016/j.cattod.2016.11.015
35 Chen S F, Zhao W, Liu W, et al.. Preparation, characterization and activity evaluation of p-n junction photocatalyst p-CaFe2O4/n-ZnO. Chemical Engineering Journal, 2009, 155(1–2): 466–473
https://doi.org/10.1016/j.cej.2009.07.009
36 Zhang Y, Tang Z R, Fu X, et al.. TiO2–graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2–graphene truly different from other TiO2–carbon composite materials? ACS Nano, 2010, 4(12): 7303–7314
https://doi.org/10.1021/nn1024219 pmid: 21117654
37 Zhu H J, Li Z K, Yang J H. A novel composite hydrogel for adsorption and photocatalytic degradation of bisphenol A by visible light irradiation. Chemical Engineering Journal, 2018, 334: 1679–1690
https://doi.org/10.1016/j.cej.2017.11.148
38 Liu B K, Mu L L, Han B, et al.. Fabrication of TiO2/Ag2O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation. Applied Surface Science, 2017, 396: 1596–1603
https://doi.org/10.1016/j.apsusc.2016.11.220
39 Zhu Q W, Zhang Y H, Lv F Z, et al.. Cuprous oxide created on sepiolite: Preparation, characterization, and photocatalytic activity in treatment of red water from 2,4,6-trinitrotoluene manufacturing. Journal of Hazardous Materials, 2012, 217–218: 11–18
https://doi.org/10.1016/j.jhazmat.2011.12.053
40 Tahir M. Photocatalytic carbon dioxide reduction to fuels in continuous flow monolith photoreactor using montmorillonite dispersed Fe/TiO2 nanocatalyst. Journal of Cleaner Production, 2018, 170: 242–250
https://doi.org/10.1016/j.jclepro.2017.09.118
41 Wang L, Wu D P, Guo Z, et al.. Ultra-thin TiO2 sheets with rich surface disorders for enhanced photocatalytic performance under simulated sunlight. Journal of Alloys and Compounds, 2018, 745: 26–32
https://doi.org/10.1016/j.jallcom.2018.02.070
42 Gordon T R, Cargnello M, Paik T, et al.. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. Journal of the American Chemical Society, 2012, 134(15): 6751–6761
https://doi.org/10.1021/ja300823a pmid: 22444667
43 Ye F, Wang F, Meng C C, et al.. Crystalline phase engineering on cocatalysts: A promising approach to enhancement on photocatalytic conversion of carbon dioxide to fuels. Applied Catalysis B: Environmental, 2018, 230: 145–153
https://doi.org/10.1016/j.apcatb.2018.02.046
44 Zhang G X, Song A K, Duan Y W, et al.. Enhanced photocatalytic activity of TiO2/zeolite composite for abatement of pollutants. Microporous and Mesoporous Materials, 2018, 255: 61–68
https://doi.org/10.1016/j.micromeso.2017.07.028
45 Yang J J, Chen D M, Zhu Y, et al.. 3D-3D porous Bi2WO6/graphene hydrogel composite with excellentsynergistic effect of adsorption-enrichment and photocatalytic degradation. Applied Catalysis B: Environmental, 2017, 205: 228–237
https://doi.org/10.1016/j.apcatb.2016.12.035
46 Chen Y, Liu K. Preparation and characterization of nitrogen-doped TiO2/diatomite integrated photocatalytic pellet for the adsorption–degradation of tetracycline hydrochloride using visible light. Chemical Engineering Journal, 2016, 302: 682–696
https://doi.org/10.1016/j.cej.2016.05.108
47 Cheng W H, Li C D, Ma X, et al.. Effect of SiO2-doping on photogenerated cathodic protection of nano-TiO2 films on 304 stainless steel. Materials & Design, 2017, 126: 155–161
https://doi.org/10.1016/j.matdes.2017.04.041
48 Zhou C H, Li G L, Zhuang X Y, et al.. Roles of texture and acidity of acid-activated sepiolite catalysts in gas-phase catalytic dehydration of glycerol to acrolein. Molecular Catalysis, 2017, 434: 219–231
https://doi.org/10.1016/j.mcat.2016.12.022
49 Kelly M T, Chun J K M, Bocarsly A B. General bronsted acid behavior of porous silicon: a mechanistic evaluation of proton-gated quenching of photoemission from oxide-coated porous silicon. Journal of Physical Chemistry, 1997, 101(14): 2702–2708
https://doi.org/10.1021/jp962750u
50 Chen J, Guan M, Cai W, et al.. The dominant {001} facet-dependent enhanced visible-light photoactivity of ultrathin BiOBr nanosheets. Physical Chemistry Chemical Physics, 2014, 16(38): 20909–20914
https://doi.org/10.1039/C4CP02972K pmid: 25171684
[1] Xuhua YE, Xiangyu YAN, Xini CHU, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Construction of upconversion fluoride/attapulgite nanocomposite for visible-light-driven photocatalytic nitrogen fixation[J]. Front. Mater. Sci., 2020, 14(4): 469-480.
[2] Yang SHENG, Jie YANG, Qiliang ZHU, Yixin SUN, Rong ZHANG, Xiaosheng TANG. Facile synthesis of Cu--In--Zn--S alloy nanospheres for fast photoelectric detection across the visible spectrum[J]. Front. Mater. Sci., 2020, 14(3): 323-331.
[3] Rui ZHAO, Weikai LI, Tian WANG, Ke ZHAN, Zheng YANG, Ya YAN, Bin ZHAO, Junhe YANG. Fabrication of Cu/graphite film/Cu sandwich composites with ultrahigh thermal conductivity for thermal management applications[J]. Front. Mater. Sci., 2020, 14(2): 188-197.
[4] Meenaketan SETHI, U. Sandhya SHENOY, Selvakumar MUTHU, D. Krishna BHAT. Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications[J]. Front. Mater. Sci., 2020, 14(2): 120-132.
[5] Pengfei ZHU, Zhihao REN, Ruoxu WANG, Ming DUAN, Lisi XIE, Jing XU, Yujing TIAN. Preparation and visible photocatalytic dye degradation of Mn-TiO2/sepiolite photocatalysts[J]. Front. Mater. Sci., 2020, 14(1): 33-42.
[6] Xiangyu YAN, Da DAI, Kun MA, Shixiang ZUO, Wenjie LIU, Xiazhang LI, Chao YAO. Microwave hydrothermal synthesis of lanthanum oxyfluoride nanorods for photocatalytic nitrogen fixation: Effect of Pr doping[J]. Front. Mater. Sci., 2020, 14(1): 43-51.
[7] Timur Sh. ATABAEV, Anara MOLKENOVA. Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives[J]. Front. Mater. Sci., 2019, 13(4): 335-341.
[8] Chuan DENG, Xianxian WEI, Ruixiang LIU, Yajie DU, Lei PAN, Xiang ZHONG, Jianhua SONG. Synthesis of sillenite-type Bi36Fe2O57 and elemental bismuth with visible-light photocatalytic activity for water treatment[J]. Front. Mater. Sci., 2018, 12(4): 415-425.
[9] Palepu Teja RAVINDAR, Vidya Sagar CHOPPELLA, Anil Kumar MOKSHAGUNDAM, M. KIRUBA, Sunil G. BABU, Korupolu Raghu BABU, L. John BERCHMANS, Gosipathala SREEDHAR. Enhanced visible-light-driven photocatalysis of Bi2YO4Cl heterostructures functionallized by bimetallic RhNi nanoparticles[J]. Front. Mater. Sci., 2018, 12(4): 405-414.
[10] Zhongchi WANG, Gongsheng SONG, Jianle XU, Qiang FU, Chunxu PAN. Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis[J]. Front. Mater. Sci., 2018, 12(4): 379-391.
[11] Haiyan LI, Yucheng ZHAO, Chang-An WANG. MoS2/CoS2 composites composed of CoS2 octahedrons and MoS2 nano-flowers for supercapacitor electrode materials[J]. Front. Mater. Sci., 2018, 12(4): 354-360.
[12] M. Mohamed Jaffer SADIQ, U. Sandhya SHENOY, D. Krishna BHAT. Synthesis of BaWO4/NRGO‒g-C3N4 nanocomposites with excellent multifunctional catalytic performance via microwave approach[J]. Front. Mater. Sci., 2018, 12(3): 247-263.
[13] Mengna CHEN, Peiyuan ZENG, Yueying ZHAO, Zhen FANG. CoP nanoparticles enwrapped in N-doped carbon nanotubes for high performance lithium-ion battery anodes[J]. Front. Mater. Sci., 2018, 12(3): 214-224.
[14] Madhulika SHARMA, Pranab Kishore MOHAPATRA, Dhirendra BAHADUR. Improved photocatalytic degradation of organic dye using Ag3PO4/MoS2 nanocomposite[J]. Front. Mater. Sci., 2017, 11(4): 366-374.
[15] Alberto ESTRELLA GONZÁLEZ, Maximiliano ASOMOZA, Ulises ARELLANO, Sandra CIPAGAUTA DíAZ, Silvia SOLÍS. Preparation and characterization of phosphate-modified mesoporous TiO2 incorporated in a silica matrix and their photocatalytic properties in the photodegradation of Congo red[J]. Front. Mater. Sci., 2017, 11(3): 250-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed