Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2010, Vol. 5 Issue (1) : 107-122    https://doi.org/10.1007/s11467-009-0080-0
Research articles
A quantitative assessment of stochastic electrodynamics with spin (SEDS): Physical principles and novel applications
Giancarlo CAVALLERI1,Francesco BARBERO1,Gianfranco BERTAZZI1,Eros CESARONI1,Ernesto TONNI1,Leonardo BOSI2,Gianfranco SPAVIERI3,George T. GILLIES4,
1.Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, via Musei 41, 25121 Brescia, Italy; 2.Politecnico di Milano (Polo Regionale di Lecco), Dipartimento di Fisica, piazza L. da Vinci 32, 20133 Milano, Italy; 3.Centro de Física Fundamental, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101 Venezuela; 4.School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904-4746, USA;
 Download: PDF(409 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Stochastic electrodynamics (SED) without spin, denoted as pure SED, has been discussed and seriously considered in the literature for several decades because it accounts for important aspects of quantum mechanics (QM). SED is based on the introduction of the nonrenormalized, electromagnetic stochastic zero-point field (ZPF), but neglects the Lorentz force due to the radiation random magnetic field Br. In addition to that rather basic limitation, other drawbacks remain, as well: i) SED fails when there are nonlinear forces; ii) it is not possible to derive the Schrödinger equation in general; iii) it predicts broad spectra for rarefied gases instead of the observed narrow spectral lines; iv) it does not explain double-slit electron diffraction patterns. We show in this short review that all of those drawbacks, and mainly the first most basic one, can be overcome in principle by introducing spin into stochastic electrodynamics (SEDS). Moreover, this modification of the theory also explains four observed effects that are otherwise so far unexplainable by QED, i.e., 1) the physical origin of the ZPF, and its natural upper cutoff; 2) an anomaly in experimental studies of the neutrino rest mass; 3) the origin and quantitative treatment of 1/f noise; and 4) the high-energy tail (~ 1021 eV) of cosmic rays. We review the theoretical and experimental situation regarding these things and go on to propose a double-slit electron diffraction experiment that is aimed at discriminating between QM and SEDS. We show that, in the context of this experiment, for the case of an electron beam focused on just one of the slits, no interference pattern due to the other slit is predicted by QM, while this is not the case for SEDS. A second experiment that could discriminate between QED and SEDS regards a transversely large electron beam including both slits obtained in an insulating wall, where the ZPF is reduced but not vanished. The interference pattern according to SEDS should be somewhat modified with respect to QED’s.
Keywords quantum mechanics      Aharonov–Bohm effect      spin      electrodynamics      
Issue Date: 05 March 2010
 Cite this article:   
Giancarlo CAVALLERI,Gianfranco BERTAZZI,Ernesto TONNI, et al. A quantitative assessment of stochastic electrodynamics with spin (SEDS): Physical principles and novel applications[J]. Front. Phys. , 2010, 5(1): 107-122.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-009-0080-0
https://academic.hep.com.cn/fop/EN/Y2010/V5/I1/107
R. P. Feynman, QED: The Strange Theory of Light and Matter, 7th Ed., Princeton: Princeton UniversityPress, 1988: 9
L. Bosi and G. Cavalleri, Nuovo Cimento B, 2002, 117: 243
G. Cavalleri and L. Bosi, Phys. Stat. Sol. (c), 2007, 4: 1230

doi: 10.1002/pssc.200673705
G. Cavalleri, E. Tonni, L. Bosi, and G. Spavieri, Fluct. Noise Lett., 2007, 7: L193
E. Nelson, Phys. Rev., 1966, 150(4): 1079

doi: 10.1103/PhysRev.150.1079
J. G. Gilson, Proc. Cambridge Philos. Soc., 1968, 74(4): 1061

doi: 10.1017/S0305004100043826
A. F. Kracklauer, Phys. Rev. D, 1974, 10(4): 1358

doi: 10.1103/PhysRevD.10.1358
G. Cavalleri, Phys. Rev. D, 1981, 23(2): 363

doi: 10.1103/PhysRevD.23.363
L. De la Pe?a-Auerbach and A. M. Cetto, Found. Phys., 1975, 5 (2): 355
A. Carati and L. Galgani, Phys. Rev. E, 2000, 61(5): 4791

doi: 10.1103/PhysRevE.61.4791
G. Cavalleri and E. Cesaroni, Phys. Rev. E, 2003, 68: 028101

doi: 10.1103/PhysRevE.68.028101
A. Carati and L. Galgani, Phys. Rev. E, 2003, 68: 028102

doi: 10.1103/PhysRevE.68.028102
A. Carati, L. Galgani, and B. Pozzi, Phys. Rev. Lett., 2003, 90: 010601

doi: 10.1103/PhysRevLett.90.010601
For a more readable derivation, see: T. H. Boyer, Phys. Rev., 1969, 182: 1374

doi: 10.1103/PhysRev.182.1374
T. H. Boyer, Phys. Rev. D, 1975, 11: 790

doi: 10.1103/PhysRevD.11.790
G. Cavalleri, E. Tonni, C. Bernasconi, and P. Di Sia, Nuovo Cimento B, 2001, 116: 1353
G. Cavalleri, F. Barbero, E. Tonni, D. Molteni, G. Bottoni, and S. Lacchin, in: Proc. of X Int. Conf., Physical Interpretations of Relativity Theory, London, September, 8―112006, edited by M. C. Duffy, University of Sunderland,PD Publications, Liverpool, Great Britain, 2008, Vol. I (in press)
T. W. Marshall and P. Claverie, J. Math. Phys., 1980, 21: 1819

doi: 10.1063/1.524635
A. Rueda and G. Cavalleri, Nuovo Cimento C, 1983, 6: 239
H. E. Puthoff, Phys. Rev. D, 1987, 35: 3266

doi: 10.1103/PhysRevD.35.3266
M. Surdin, P. Braffort, and A. Taroni, Nature, 1966, 210(5034): 405

doi: 10.1038/210405a0
E. Santos, Nuovo Cimento B, 1974, 19(1): 57

doi: 10.1007/BF02749757
L. De la Pe?a-Auerbach and A. M. Cetto, J. Math. Phys., 1979, 20(3): 469
T. H. Boyer, Phys. Rev. A, 1980, 21: 66

doi: 10.1103/PhysRevA.21.66
T. H. Boyer, Phys. Rev. D, 1984, 29: 1089

doi: 10.1103/PhysRevD.29.1089
A. Rueda, Nuovo Cimento A, 1978, 48: 155

doi: 10.1007/BF02799672
A. Rueda, Phys. Rev. A, 1981, 23: 2020

doi: 10.1103/PhysRevA.23.2020
L. De la Pe?a-Auerbach, Stochastic Electrodynamics: its development, presentsituation, and perspectives, in: Stochastic Processes Applied to Physicsand other Related Fields, edited by G. Gomez, S. M. Moore, A. M. Rodriguez-Vargas, and A. Rueda, World Scientific, 1983: 428―649. The criticism to Boyer's 1969 paper [14], is found in: L.De la Pe?a-Auerbach and A. M. Cetto, The Quantum Dice, Kluwer,1996, Chap. 5, Sec. 5.2: 1476
B. Haisch, A. Rueda, and H. E. Puthoff, Phys. Rev. A, 1994, 49: 678

doi: 10.1103/PhysRevA.49.678
A. Rueda, B. Haisch, and D. C. Cole, Astrophys. J., 1995, 445: 7

doi: 10.1086/175667
D. C. Cole, A. Rueda, and K. Danley, Phys. Rev. A, 2001, 63: 054101

doi: 10.1103/PhysRevA.63.054101
A. Rueda and B. Haisch, Ann. Phys. (Leipzig), 2005, 14: 479

doi: 10.1002/andp.200510147
Y. S. Levin, Phys. Rev. A, 2009, 79: 012114

doi: 10.1103/PhysRevA.79.012114
L. Pesquera and P. Claverie, J. Math. Phys., 1982, 23: 1315

doi: 10.1063/1.525516
A. O. Barut and N. Zanghi, Phys. Rev. Lett., 1984, 52: 2009

doi: 10.1103/PhysRevLett.52.2009
G. Cavalleri, Nuovo Cimento B, 1997, 112: 1193
I. Pitowsky, Phys. Rev Lett., 1982, 48: 1299

doi: 10.1103/PhysRevLett.48.1299
D. Z. Albert and R. Galchen, Was Einstein Wrong?: A QuantumThreat to Special Relativity, in: ScientificAmerican Magazine, March2009
A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett., 1982, 49: 1804

doi: 10.1103/PhysRevLett.49.1804
G. Cavalleri, E. Cesaroni, and E. Tonni, in: Recent advances in Relativity Theory2: material interpretations, edited by M. C. Duffy and M. Wegener, Palm Harbor, Florida(USA): Hadronic Press, 2001, Vol. 2: 19
G. Cavalleri, Lett. Nuovo Cimento, 1985, 43: 285

doi: 10.1007/BF02751922
G. Cavalleri and G. Spavieri, Nuovo Cimento B, 1986, 95: 194

doi: 10.1007/BF02749010
J. Maddox, Nature (London), 1987, 325: 385

doi: 10.1038/325385a0
G. Cavalleri and G. Mauri, Phys. Rev. B, 1990, 41: 6751

doi: 10.1103/PhysRevB.41.6751
G. Cavalleri and A. Zecca, Phys. Rev. B, 1991, 43: 3223

doi: 10.1103/PhysRevB.43.3223
A. Zecca and G. Cavalleri, Nuovo Cimento B, 1997, 112: 1
G. Cavalleri and E. Tonni, in: The Foundation of QuantumMechanics – Historical Analysis and Open Questions –Lecce 1998, edited by C. Garola and A. Rossi, World Scientific Publ., 2000: 111
A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, and J. Endo, Phys. Rev. Lett., 1986, 56: 792

doi: 10.1103/PhysRevLett.56.792
N. Osakabe, et al, Phys. Rev. A, 1986, 34: 815

doi: 10.1103/PhysRevA.34.815
A. Tonomura, et al., Am. J. Phys., 1989, 57: 117

doi: 10.1119/1.16104
Y. Aharonov and D. Bohm, Phys. Rev., 1959, 115: 48

doi: 10.1103/PhysRev.115.485
Y. Aharonov and A. Casher, Phys. Rev. Lett., 1984, 53: 319

doi: 10.1103/PhysRevLett.53.319
G. Spavieri, Phys. Rev. Lett., 1998, 81: 1533

doi: 10.1103/PhysRevLett.81.1533
G. Spavieri, Phys. Rev. A, 1999, 59: 3194

doi: 10.1103/PhysRevA.59.3194
X. G. He and B. H. J. McKellar, Phys. Rev. A, 1993, 47: 3424

doi: 10.1103/PhysRevA.47.3424
M. Wilkens, Phys. Rev. A, 1994, 49: 570

doi: 10.1103/PhysRevA.49.570
M. Wilkens, Phys. Rev. Lett., 1994, 72: 5

doi: 10.1103/PhysRevLett.72.5
J. Anandan, Phys. Rev. Lett., 2000, 85: 1354

doi: 10.1103/PhysRevLett.85.1354
V. M. Tkachuk, Phys. Rev. A, 2000, 62: 052112―1

doi: 10.1103/PhysRevA.62.052112
G. Spavieri, Phys. Rev. Lett., 1999, 82: 3932

doi: 10.1103/PhysRevLett.82.3932
G. Spavieri, Phys. Lett. A, 2003, 310: 13

doi: 10.1016/S0375-9601(03)00203-2
G. Spavieri, Eur. Phys. J. D, 2006, 39: 157

doi: 10.1140/epjd/e2006-00089-y
T. H. Boyer, Phys. Rev. A, 1987, 36: 5083

doi: 10.1103/PhysRevA.36.5083
T. H. Boyer, Nuovo Cimento B, 1987, 100: 685
G. Spavieri and G. Cavalleri, Europhys. Lett., 1992, 18: 301

doi: 10.1209/0295-5075/18/4/004
G. Spavieri, Eur. J. Phys. D, 2006, 37: 327

doi: 10.1140/epjd/e2005-00328-9
[1] Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li. Progress of quantum molecular dynamics model and its applications in heavy ion collisions[J]. Front. Phys. , 2020, 15(5): 54301-.
[2] Yi-Wen Zhang, Shi-Long Su, Shu-Bin Xie, Wei-Min Zhou, Hao Liu. Investigation into the improved axial compressibility of a spinning non-ideal gas[J]. Front. Phys. , 2020, 15(4): 42501-.
[3] X.-J. Hao, R.-Y. Yuan, J.-J. Jin, Y. Guo. Influence of the velocity barrier on the massive Dirac electron transport in a monolayer MoS2 quantum structure[J]. Front. Phys. , 2020, 15(3): 33603-.
[4] Yang-Yang Fu, Yue Fei, Da-Xing Dong, You-Wen Liu. Photonic spin Hall effect in PT symmetric metamaterials[J]. Front. Phys. , 2019, 14(6): 62601-.
[5] Mengyun He, Huimin Sun, Qing Lin He. Topological insulator: Spintronics and quantum computations[J]. Front. Phys. , 2019, 14(4): 43401-.
[6] Jing-Hua Feng (冯景华), Geng Li (李庚), Xiang-Fei Meng (孟祥飞), Xiao-Dong Jian (菅晓东), Zhen-Hong Dai (戴振宏), Yin-Chang Zhao (赵银昌), Zhen Zhou (周震). Computationally predicting spin semiconductors and half metals from doped phosphorene monolayers[J]. Front. Phys. , 2019, 14(4): 43604-.
[7] Ai-Yuan Hu, Huai-Yu Wang. Phase transition of the frustrated antiferromagntic J1-J2-J3 spin-1/2 Heisenberg model on a simple cubic lattice[J]. Front. Phys. , 2019, 14(1): 13605-.
[8] Xinzhou Deng, Hualing Yang, Shifei Qi, Xiaohong Xu, Zhenhua Qiao. Quantum anomalous Hall effect and giant Rashba spin-orbit splitting in graphene system co-doped with boron and 5d transition-metal atoms[J]. Front. Phys. , 2018, 13(5): 137308-.
[9] Yong-Kai Liu, Hong-Xia Yue, Liang-Liang Xu, Shi-Jie Yang. Vortex-pair states in spin-orbit-coupled Bose–Einstein condensates with coherent coupling[J]. Front. Phys. , 2018, 13(5): 130316-.
[10] Rong-Xuan Zhong, Zhao-Pin Chen, Chun-Qing Huang, Zhi-Huan Luo, Hai-Shu Tan, Boris A. Malomed, Yong-Yao Li. Self-trapping under two-dimensional spin-orbit coupling and spatially growing repulsive nonlinearity[J]. Front. Phys. , 2018, 13(4): 130311-.
[11] Ben-Hu Zhou, Ben-Liang Zhou, Yang-Su Zeng, Man-Yi Duan, Guang-Hui Zhou. Spin-dependent transport properties and Seebeck effects for a crossed graphene superlattice p-n junction with armchair edge[J]. Front. Phys. , 2018, 13(4): 137304-.
[12] Cong Xiao. Semiclassical Boltzmann theory of spin Hall effects in giant Rashba systems[J]. Front. Phys. , 2018, 13(2): 137202-.
[13] Yu-E Li, Ju-Kui Xue. Stationary and moving solitons in spin–orbit-coupled spin-1 Bose–Einstein condensates[J]. Front. Phys. , 2018, 13(2): 130307-.
[14] Salvatore Spadaro, Marco Santoro, Francesco Barreca, Angela Scala, Simona Grimato, Fortunato Neri, Enza Fazio. PEG-PLGA electrospun nanofibrous membranes loaded with Au@Fe2O3 nanoparticles for drug delivery applications[J]. Front. Phys. , 2018, 13(1): 136201-.
[15] J. Batle, A. Farouk, O. Tarawneh, S. Abdalla. Multipartite quantum correlations among atoms in QED cavities[J]. Front. Phys. , 2018, 13(1): 130305-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed