|
|
Tripyrrylmethane based 2D porous structure for hydrogen storage |
Xiao ZHOU (周啸)1, Jian ZHOU (周健)1, Kun Lü (吕坤)2, Qiang SUN (孙强)1,2( ) |
1. Department of Advanced Materials and Nanotechnology, Peking University, Beijing 100871, China; 2. Center for Applied Physics and Technology, Peking University, Beijing 100871, China |
|
|
Abstract The key to hydrogen storage is to design new materials with light mass, large surface and rich adsorption sites. Based on the recent experimental success in synthesizing tripyrrylmethane, we have explored Ti-tripyrrylmethane based 2D porous structure for hydrogen storage using density functional theory. We have found that the structure is stable, and the exposed Ti sites can bind three hydrogen molecules with an average binding energy of 0.175 eV/H2, which lies in the energy window for storage and release of hydrogen in room temperature and at the ambient pressure.
|
Keywords
tripyrrylmethane
hydrogen storage
|
Corresponding Author(s):
Qiang SUN (孙强),Email:sunqiang@pku.edu.cn
|
Issue Date: 05 June 2011
|
|
1 |
L. Schlapbach and A. Züttel, Nature , 2001, 414(6861): 353 doi: 10.1038/35104634
|
2 |
R. D. Cortright, R. R. Davda, and J. A. Dumesic, Nature , 2002, 418(6901): 964 doi: 10.1038/nature01009
|
3 |
J. Alper, Science , 2003, 299(5613): 1686 doi: 10.1126/science.299.5613.1686
|
4 |
N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, and O. M. Yaghi, Science , 2003, 300(5622): 1127 doi: 10.1126/science.1083440
|
5 |
J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed. , 2005, 44(30): 4670 doi: 10.1002/anie.200462786
|
6 |
S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, and C. M. Jensen, Chem. Rev. , 2007, 107(10): 4111 doi: 10.1021/cr0501846
|
7 |
M. Fichtner, Adv. Eng. Mater. , 2005, 7(6): 443 doi: 10.1002/adem.200500022
|
8 |
Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc. , 2005, 127(42): 14582 doi: 10.1021/ja0550125
|
9 |
Y. Wang and J. P. Perdew, Phys. Rev. B , 1991, 44(24): 13298 doi: 10.1103/PhysRevB.44.13298
|
10 |
B. Delley, J. Chem. Phys. , 1990, 92(1): 508 doi: 10.1063/1.458452
|
11 |
B. Delley, J. Chem. Phys. , 2000, 113(18): 7756 doi: 10.1063/1.1316015
|
12 |
H. J. Monkhorst and J. D. Pack, Phys. Rev. B , 1976, 13(12): 5188 doi: 10.1103/PhysRevB.13.5188
|
13 |
D. R. Lide, CRC Handbook of Chemistry and Physics, New York: CRC, 2000
|
14 |
S. J. Hong, S. D. Jeong, J. Yoo, J. S. Kim, J. Yoon, and C. H. Lee, Tetrahedron Lett. , 2008, 49(26): 4138 doi: 10.1016/j.tetlet.2008.04.119
|
15 |
G. J. Kubas, Acc. Chem. Res. , 1988, 21: 120 doi: 10.1021/ar00147a005
|
16 |
J. Niu, B. K. Rao, and P. Jena, Phys. Rev. Lett. , 1998, 68(15): 2277 doi: 10.1103/PhysRevLett.68.2277
|
17 |
S. K. Bhatia and A. L. Myers, Langmuir , 2006, 22(4): 1688 doi: 10.1021/la0523816
|
18 |
H. S. Gill, I. Finger, I. Bozidarevic, F. Szydlo Szydlo, and M. J. Scott, New J. Chem. , 2005, 29: 68 doi: 10.1039/b412620c
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|