Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2011, Vol. 6 Issue (2) : 220-223    https://doi.org/10.1007/s11467-011-0176-1
RESEARCH ARTICLE
Tripyrrylmethane based 2D porous structure for hydrogen storage
Xiao ZHOU (周啸)1, Jian ZHOU (周健)1, Kun Lü (吕坤)2, Qiang SUN (孙强)1,2()
1. Department of Advanced Materials and Nanotechnology, Peking University, Beijing 100871, China; 2. Center for Applied Physics and Technology, Peking University, Beijing 100871, China
 Download: PDF(252 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The key to hydrogen storage is to design new materials with light mass, large surface and rich adsorption sites. Based on the recent experimental success in synthesizing tripyrrylmethane, we have explored Ti-tripyrrylmethane based 2D porous structure for hydrogen storage using density functional theory. We have found that the structure is stable, and the exposed Ti sites can bind three hydrogen molecules with an average binding energy of 0.175 eV/H2, which lies in the energy window for storage and release of hydrogen in room temperature and at the ambient pressure.

Keywords tripyrrylmethane      hydrogen storage     
Corresponding Author(s): Qiang SUN (孙强),Email:sunqiang@pku.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Xiao ZHOU (周啸),Jian ZHOU (周健),Kun Lü (吕坤), et al. Tripyrrylmethane based 2D porous structure for hydrogen storage[J]. Front. Phys. , 2011, 6(2): 220-223.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-011-0176-1
https://academic.hep.com.cn/fop/EN/Y2011/V6/I2/220
1 L. Schlapbach and A. Züttel, Nature , 2001, 414(6861): 353
doi: 10.1038/35104634
2 R. D. Cortright, R. R. Davda, and J. A. Dumesic, Nature , 2002, 418(6901): 964
doi: 10.1038/nature01009
3 J. Alper, Science , 2003, 299(5613): 1686
doi: 10.1126/science.299.5613.1686
4 N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, and O. M. Yaghi, Science , 2003, 300(5622): 1127
doi: 10.1126/science.1083440
5 J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed. , 2005, 44(30): 4670
doi: 10.1002/anie.200462786
6 S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, and C. M. Jensen, Chem. Rev. , 2007, 107(10): 4111
doi: 10.1021/cr0501846
7 M. Fichtner, Adv. Eng. Mater. , 2005, 7(6): 443
doi: 10.1002/adem.200500022
8 Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc. , 2005, 127(42): 14582
doi: 10.1021/ja0550125
9 Y. Wang and J. P. Perdew, Phys. Rev. B , 1991, 44(24): 13298
doi: 10.1103/PhysRevB.44.13298
10 B. Delley, J. Chem. Phys. , 1990, 92(1): 508
doi: 10.1063/1.458452
11 B. Delley, J. Chem. Phys. , 2000, 113(18): 7756
doi: 10.1063/1.1316015
12 H. J. Monkhorst and J. D. Pack, Phys. Rev. B , 1976, 13(12): 5188
doi: 10.1103/PhysRevB.13.5188
13 D. R. Lide, CRC Handbook of Chemistry and Physics, New York: CRC, 2000
14 S. J. Hong, S. D. Jeong, J. Yoo, J. S. Kim, J. Yoon, and C. H. Lee, Tetrahedron Lett. , 2008, 49(26): 4138
doi: 10.1016/j.tetlet.2008.04.119
15 G. J. Kubas, Acc. Chem. Res. , 1988, 21: 120
doi: 10.1021/ar00147a005
16 J. Niu, B. K. Rao, and P. Jena, Phys. Rev. Lett. , 1998, 68(15): 2277
doi: 10.1103/PhysRevLett.68.2277
17 S. K. Bhatia and A. L. Myers, Langmuir , 2006, 22(4): 1688
doi: 10.1021/la0523816
18 H. S. Gill, I. Finger, I. Bozidarevic, F. Szydlo Szydlo, and M. J. Scott, New J. Chem. , 2005, 29: 68
doi: 10.1039/b412620c
[1] Yi-Han Cheng,Chuan-Yu Zhang,Juan Ren,Kai-Yu Tong. Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers[J]. Front. Phys. , 2016, 11(5): 113101-.
[2] Hong ZHANG, Xiao-dong LI, Yong-jian TANG. DFT study of dihydrogen interactions with lithium containing organic complexes C4H4-mLim and C5H5-mLim (m = 1, 2)[J]. Front. Phys. , 2011, 6(2): 231-235.
[3] Ming LI (李明), Ya-fei LI (李亚飞), Zhen ZHOU (周震), Pan-wen SHEN (申泮文). Metal-decorated defective BN nanosheets as hydrogen storage materials[J]. Front. Phys. , 2011, 6(2): 224-230.
[4] Fen LI, Ji-jun ZHAO, Li-xian SUN. Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles[J]. Front. Phys. , 2011, 6(2): 214-219.
[5] Jian WANG, Guang-bo CHE, Qing-wei WANG, Wan-xi ZHANG, Li-min WANG. Electrochemical hydrogen storage properties of melt-spun Ti0.9Zr0.1V0.2Ni1.5La0.5 alloy[J]. Front. Phys. , 2011, 6(2): 209-213.
[6] Sa LI, Hong-min ZHAO, Puru JENA. Ti-doped nano-porous graphene: A material for hydrogen storage and sensor[J]. Front. Phys. , 2011, 6(2): 204-208.
[7] Zhi-wei ZHANG (张志伟), Jian-chen LI (李建忱), Qing JIANG (蒋青). Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review[J]. Front. Phys. , 2011, 6(2): 162-176.
[8] Li-fang SONG (宋莉芳), Chun-hong JIANG (姜春红), Shu-sheng LIU (刘淑生), Cheng-li JIAO (焦成丽), Xiao-liang SI (司晓亮), Shuang WANG (王爽), Fen LI (李芬), Jian ZHANG (张箭), Li-xian SUN (孙立贤), Fen XU (徐芬), Feng-lei HUANG (黄风雷). Progress in improving thermodynamics and kinetics of new hydrogen storage materials[J]. Front. Phys. , 2011, 6(2): 151-161.
[9] Feng DING, Boris I. YAKOBSON. Challenges in hydrogen adsorptions: from physisorption to chemisorption[J]. Front. Phys. , 2011, 6(2): 142-150.
[10] Qiang FU (付强), Lan-feng YUAN (袁岚峰), Yi LUO (罗毅), Jin-long YANG (杨金龙). Exploring at nanoscale from first principles[J]. Front Phys Chin, 2009, 4(3): 256-268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed