Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (5) : 598-612    https://doi.org/10.1007/s11467-013-0377-x
REVIEW ARTICLE
Spin–orbit coupling in Bose–Einstein condensate and degenerate Fermi gases
Peng-Jun Wang,Jing Zhang()
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
 Download: PDF(1264 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We review our recent experimental realization and investigation of a spin–orbit (SO) coupled Bose–Einstein condensate (BEC) and quantum degenerate Fermi gas. By using two counter-propagating Raman lasers and controlling the different frequency of two Raman lasers to engineer the atom–light interaction, we first study the SO coupling in BEC. Then we study SO coupling in Fermi gas. We observe the spin dephasing in spin dynamics and momentum distribution asymmetry of the equilibrium state as hallmarks of SO coupling in a Fermi gas. To clearly reveal the property of SO coupling Fermi gas, we also study the momentum-resolved radio-frequency spectroscopy which characterizes the energy–momentum dispersion and spin composition of the quantum states. We observe the change of fermion surfaces in different helicity branches with different atomic density, which indicates that a Lifshitz transition of the Fermi surface topology change can be found by further cooling the system. At last, we study the momentum-resolved Raman spectroscopy of an ultracold Fermi gas.

Keywords spin–orbit coupling      Bose–Einstein condensate      Fermi gases      topological change      momentum-resolved radio-frequency spectroscopy      momentum-resolved Raman spectroscopy     
Corresponding Author(s): Jing Zhang   
Issue Date: 15 October 2014
 Cite this article:   
Peng-Jun Wang,Jing Zhang. Spin–orbit coupling in Bose–Einstein condensate and degenerate Fermi gases[J]. Front. Phys. , 2014, 9(5): 598-612.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0377-x
https://academic.hep.com.cn/fop/EN/Y2014/V9/I5/598
1 W. Ketterle and M. W. Zwierlein, Making, probing and understanding ultracold Fermi gases, Rivista del Nuovo Cimento, 2008, 31: 247; arXiv: 0801.2500
2 C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys., 2010, 82(2): 647
https://doi.org/10.1103/RevModPhys.82.1225
3 I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simulations with ultracold quantum gases, Nat. Phys., 2012, 8(4): 267
https://doi.org/10.1038/nphys2259
4 M. Greiner, O. Mandel, T. Esslinger, T. W. H?nsch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature, 2002, 415(6867): 39
https://doi.org/10.1038/415039a
5 F. Jendrzejewski, A. Bernard, K. Müller, P. Cheinet, V. Josse, M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect, and P. Bouyer, Three-dimensional localization of ultracold atoms in an optical disordered potential, Nat. Phys., 2012, 8: 398
https://doi.org/10.1038/nphys2256
6 E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Dynamics of collapsing and exploding Bose–Einstein condensates, Nature, 2001, 412(6844): 295
https://doi.org/10.1038/35085500
7 E. A. Donley, N. R. Claussen, S. T. Thompson, and C. E. Wieman, Atom–molecule coherence in a Bose–Einstein condensate, Nature, 2002, 417(6888): 529
https://doi.org/10.1038/417529a
8 C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett., 2004, 92(4): 040403
https://doi.org/10.1103/PhysRevLett.92.040403
9 T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-C. N?gerl, and R. Grimm, Evidence for Efimov quantum states in an ultracold gas of caesium atoms, Nature, 2006, 440(7082): 315
https://doi.org/10.1038/nature04626
10 B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science, 2006, 314(5806): 1757
https://doi.org/10.1126/science.1133734
11 M. K?nig, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin hall insulator state in HgTe quantum wells, Science, 2007, 318(5851): 766
https://doi.org/10.1126/science.1148047
12 K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., 2000, 84(5): 806
https://doi.org/10.1103/PhysRevLett.84.806
13 J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose–Einstein condensates, Science, 2001, 292(5516): 476
https://doi.org/10.1126/science.1060182
14 E. Hodby, G. Hechenblaikner, S. A. Hopkins, O. M. Maragò, and C. J. Foot, Vortex nucleation in Bose–Einstein condensates in an oblate, purely magnetic potential, Phys. Rev. Lett., 2002, 88(1): 010405
https://doi.org/10.1103/PhysRevLett.88.010405
15 A. S. Sorensen, E. Demler, and M. D. Lukin, Fractional quantum Hall states of atoms in optical lattices, Phys. Rev. Lett., 2005, 94(8): 086803
https://doi.org/10.1103/PhysRevLett.94.086803
16 V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A. Cornell, Rapidly rotating Bose–Einstein condensates in and near the lowest Landau level, Phys. Rev. Lett., 2004, 92(4): 040404
https://doi.org/10.1103/PhysRevLett.92.040404
17 M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Vortices and superfluidity in a strongly interacting Fermi gas, Nature, 2005, 435(7045): 1047
https://doi.org/10.1038/nature03858
18 Y. J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman, Bose–Einstein condensate in a uniform light-induced vector potential, Phys. Rev. Lett., 2009, 102(13): 130401
https://doi.org/10.1103/PhysRevLett.102.130401
19 Y. J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and I. B. Spielman, Synthetic magnetic fields for ultracold neutral atoms, Nature, 2009, 462(7273): 628
https://doi.org/10.1038/nature08609
20 Y. J. Lin, R. L. Compton, K. Jimnez-Garca, W. D. Phillips, J. V. Porto, and I. B. Spielman, A synthetic electric force acting on neutral atoms, Nat. Phys., 2011, 7(7): 531
https://doi.org/10.1038/nphys1954
21 Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled Bose-Einstein condensates, Nature, 2011, 471(7336): 83
https://doi.org/10.1038/nature09887
22 Z. Fu, P. Wang, S. Chai, L. Huang, and J. Zhang, Bose–Einstein condensate in a light-induced vector gauge potential using 1064-nm optical-dipole-trap lasers, Phys. Rev. A, 2011, 84(4): 043609
https://doi.org/10.1103/PhysRevA.84.043609
23 J. Y. Zhang, S. C. Ji, Z. Chen, L. Zhang, Z. D. Du, B. Yan, G. S. Pan, B. Zhao, Y. J. Deng, H. Zhai, S. Chen, and J. W. Pan, Collective dipole oscillations of a spin-orbit coupled Bose–Einstein condensate, Phys. Rev. Lett., 2012, 109(11): 115301
https://doi.org/10.1103/PhysRevLett.109.115301
24 C. Qu, C. Hamner, M. Gong, C. Zhang, and P. Engels, Non-equilibrium spin dynamics and Zitterbewegung in quenched spin-orbit coupled Bose–Einstein condensates, arXiv: 1301.0658, 2013
25 M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
26 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys., 2011, 83(4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
27 P. Wang, Z. Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett., 2012, 109(9): 095301
https://doi.org/10.1103/PhysRevLett.109.095301
28 L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Spin-injection spectroscopy of a spin–orbit coupled Fermi gas, Phys. Rev. Lett., 2012, 109(9): 095302
https://doi.org/10.1103/PhysRevLett.109.095302
29 M. Gong, S. Tewari, and C. W. Zhang, BCS-BEC crossover and topological phase transition in 3D spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett., 2011, 107(19): 195303
https://doi.org/10.1103/PhysRevLett.107.195303
30 Z. Q. Yu and H. Zhai, Spin–orbit coupled Fermi gases across a Feshbach resonance, Phys. Rev. Lett., 2011, 107(19): 195305
https://doi.org/10.1103/PhysRevLett.107.195305
31 L. Jiang, X. J. Liu, H. Hu, and H. Pu, Rashba spin–orbitcoupled atomic Fermi gases, Phys. Rev. A, 2011, 84(6): 063618
https://doi.org/10.1103/PhysRevA.84.063618
32 X. J. Liu, L. Jiang, H. Pu, and H. Hu, Probing Majorana fermions in spin–orbit-coupled atomic Fermi gases, Phys. Rev. A, 2012, 85(2): 021603
https://doi.org/10.1103/PhysRevA.85.021603
33 R. Liao, Y. X. Yu, and W. M. Liu, Tuning the tricritical point with spin–orbit coupling in polarized fermionic condensates, Phys. Rev. Lett., 2012, 108(8): 080406
https://doi.org/10.1103/PhysRevLett.108.080406
34 M. Gong, G. Chen, S. T. Jia, and C. W. Zhang, Searching for Majorana fermions in 2D spin–orbit coupled Fermi superfluids at finite temperature, Phys. Rev. Lett., 2012, 109(10): 105302
https://doi.org/10.1103/PhysRevLett.109.105302
35 H. Hu, H. Pu, J. Zhang, S. G. Peng, and X. J. Liu, Radiofrequency spectroscopy of weakly bound molecules in spin–orbit coupled atomic Fermi gases, arXiv: 1208.5841, 2012
36 Z. Zheng, M. Gong, Y. C. Zhang, X. B. Zou, C. W. Zhang, and G. Guo, Fulde–Ferrell–Larkin–Ovchinnikov phases in two-dimensional spin–orbit coupled degenerate Fermi gases, arXiv: 1212.6826, 2012
37 V. Galitski and I. B. Spielman, Spin–orbit coupling in quantum gases, Nature, 2013, 494(7435): 49
https://doi.org/10.1038/nature11841
38 J. Radi, A. Di Ciolo, K. Sun, and V. Galitski, Exotic quantum spin models in spin–orbit-coupled Mott insulators, Phys. Rev. Lett., 2012, 109(8): 085303
https://doi.org/10.1103/PhysRevLett.109.085303
39 W. S. Cole, S. Zhang, A. Paramekanti, and N. Trivedi, Bose–Hubbard models with synthetic spin–orbit coupling: Mott insulators, spin textures, and superfluidity, Phys. Rev. Lett., 2012, 109(8): 085302
https://doi.org/10.1103/PhysRevLett.109.085302
40 Z. Cai, X. Zhou, and C. Wu, Magnetic phases of bosons with synthetic spin–orbit coupling in optical lattices, Phys. Rev. A, 2012, 85(6): 061605
https://doi.org/10.1103/PhysRevA.85.061605
41 D. Wei, D. Zh. Xiong, H. X. Chen, and J. Zhang, An enriched 40K source for atomic cooling, Chin. Phys. Lett., 2007, 24: 679
https://doi.org/10.1088/0256-307X/24/3/025
42 D. Xiong, H. Chen, P. Wang, X. Yu, F. Gao, and J. Zhang, Quantum degenerate Fermi–Bose mixtures of 40K and 87Rb atoms in a quadrupole-Ioffe configuration trap, Chin. Phys. Lett., 2008, 25: 843
https://doi.org/10.1088/0256-307X/25/3/011
43 P. Wang, H. Chen, D. Xiong, X. Yu, F. Gao, and J. Zhang, The design of quadrapole-Ioffe configuration trap for quantum degenerate Fermi–Bose mixtures, Acta. Phys. Sin., 2008, 57(8): 4840 (in Chinese)
44 D. Xiong, P. Wang, Z. Fu, S. Chai, and J. Zhang, Evaporative cooling of 87Rb atoms into Bose–Einstein condensate in an optical dipole trap, Chin. Opt. Lett., 2010, 8: 627 (in Chinese)
https://doi.org/10.3788/COL20100807.0627
45 D. Xiong, P. Wang, Z. Fu, and J. Zhang, Transport of Bose–Einstein condensate in QUIC trap and separation of trapping spin states, Opt. Express, 2010, 18(2): 1649
https://doi.org/10.1364/OE.18.001649
46 I. B. Spielman, Raman processes and effective gauge potentials, Phys. Rev. A, 2009, 79(6): 063613
https://doi.org/10.1103/PhysRevA.79.063613
47 L. Zhang, J. Y. Zhang, S. C. Ji, Z. D. Du, H. Zhai, Y. J. Deng, S. Chen, P. Zhang, and J. W. Pan, Stability of excited dressed states with spin–orbit coupling, Phys. Rev. A, 2012, 87(1): 011601
https://doi.org/10.1103/PhysRevA.87.011601
48 X. J. Liu and H. Hu, Topological superfluid in onedimensional spin–orbit-coupled atomic Fermi gases, Phys. Rev. A, 2012, 85(3): 033622
https://doi.org/10.1103/PhysRevA.85.033622
49 X. J. Liu, L. Jiang, H. Pu, and H. Hu, Probing Majorana fermions in spin–orbit-coupled atomic Fermi gases, Phys. Rev. A, 2012, 85(2): 021603
https://doi.org/10.1103/PhysRevA.85.021603
50 X. J. Liu, Zh. X. Liu, and M. Cheng, Manipulating topological edge spins in a one-dimensional optical lattice, Phys. Rev. Lett., 2013, 110(7): 076401
https://doi.org/10.1103/PhysRevLett.110.076401
51 L. Zhou, H. Pu, and W. Zhang, Anderson localization of cold atomic gases with effective spin–orbit interaction in a quasiperiodic optical lattice, Phys. Rev. A, 2013, 87(2): 023625
https://doi.org/10.1103/PhysRevA.87.023625
52 R. Wei and E. J. Mueller, Majorana fermions in onedimensional spin–orbit-coupled Fermi gases, Phys. Rev. A, 2012, 86(6): 063604
https://doi.org/10.1103/PhysRevA.86.063604
53 P. Wang, Z. Fu, L. Huang, and J. Zhang, Momentumresolved Raman spectroscopy of a noninteracting ultracold Fermi gas, Phys. Rev. A, 2012, 85(5): 053626
https://doi.org/10.1103/PhysRevA.85.053626
54 Z. Fu, P. Wang, L. Huang, Z. Meng, and J. Zhang, Momentum-resolved Raman spectroscopy of bound molecules in ultracold Fermi gas, Phys. Rev. A, 2012, 86(3): 033607
https://doi.org/10.1103/PhysRevA.86.033607
55 C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. H. Denschlag, and R. Grimm, Observation of the pairing gap in a strongly interacting Fermi gas, Science, 2004, 305(5687): 1128
https://doi.org/10.1126/science.1100818
56 J. T. Stewart, J. P. Gaebler, and D. S. Jin, Using photoemission spectroscopy to probe a strongly interacting Fermi gas, Nature, 2008, 454(7205): 744
https://doi.org/10.1038/nature07172
57 J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, Quantum simulation of antiferromagnetic spin chains in an optical lattice, Nature, 2011, 472(7343): 307
https://doi.org/10.1038/nature09994
58 E. Altman, E. Demler, and M. D. Lukin, Probing manybody states of ultracold atoms via noise correlations, Phys. Rev. A, 2004, 70(1): 013603
https://doi.org/10.1103/PhysRevA.70.013603
59 C. A. Regal and D. S. Jin, Measurement of positive and negative scattering lengths in a Fermi gas of atoms, Phys. Rev. Lett., 2003, 90(23): 230404
https://doi.org/10.1103/PhysRevLett.90.230404
60 S. Gupta, Z. Hadzibabic, M. W. Zwierlein, C. A. Stan, K. Dieckmann, C. H. Schunck, E. G. M. Van Kempen, B. J. Verhaar, and W. Ketterle, Radio-frequency spectroscopy of ultracold fermions, Science, 2003, 300(5626): 1723
https://doi.org/10.1126/science.1085335
61 Y. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle, Tomographic rf spectroscopy of a trapped Fermi gas at unitarity, Phys. Rev. Lett., 2007, 99(9): 090403
https://doi.org/10.1103/PhysRevLett.99.090403
62 Q. Chen and K. Levin, Momentum resolved radio frequency spectroscopy in trapped fermi gases, Phys. Rev. Lett., 2009, 102(19): 190402
https://doi.org/10.1103/PhysRevLett.102.190402
63 Q. Chen, Y. He, C. C. Chien, and K. Levin, Theory of radio frequency spectroscopy experiments in ultracold Fermi gases and their relation to photoemission in the cuprates, Rep. Prog. Phys., 2009, 72: 12250<?Pub Caret?>1
https://doi.org/10.1088/0034-4885/72/12/122501
64 T. L. Dao, A. Georges, J. Dalibard, C. Salomon, and I. Carusotto, Measuring the one-particle excitations of ultracold fermionic atoms by stimulated Raman spectroscopy, Phys. Rev. Lett., 2007, 98(24): 240402
https://doi.org/10.1103/PhysRevLett.98.240402
65 T. L. Dao, I. Carusotto, and A. Georges, Probing quasiparticle states in strongly interacting atomic gases by momentumresolved Raman photoemission spectroscopy, Phys. Rev. A, 2009, 80(2): 023627
https://doi.org/10.1103/PhysRevA.80.023627
66 G. Veeravalli, E. Kuhnle, P. Dyke, and C. J. Vale, Bragg spectroscopy of a strongly interacting Fermi gas, Phys. Rev. Lett., 2008, 101(25): 250403
https://doi.org/10.1103/PhysRevLett.101.250403
67 E. D. Kuhnle, S. Hoinka, P. Dyke, H. Hu, P. Hannaford, and C. J. Vale, Temperature dependence of the universal contact parameter in a unitary Fermi gas, Phys. Rev. Lett., 2011, 106(17): 170402
https://doi.org/10.1103/PhysRevLett.106.170402
[1] Qian Chen,Xiaohui Yang,Xiaojun Yang,Jian Chen,Chenyi Shen,Pan Zhang,Yupeng Li,Qian Tao,Zhu-An Xu. Enhanced superconductivity in hole-doped Nb2PdS5[J]. Front. Phys. , 2017, 12(5): 127402-.
[2] Jian-Lei Ge,Tian-Ru Wu,Ming Gao,Zhan-Bin Bai,Lu Cao,Xue-Feng Wang,Yu-Yuan Qin,Feng-Qi Song. Weak localization of bismuth cluster-decorated graphene and its spin–orbit interaction[J]. Front. Phys. , 2017, 12(4): 127210-.
[3] Cong Xiao,Dingping Li,Zhongshui Ma. Thermoelectric response of spin polarization in Rashba spintronic systems[J]. Front. Phys. , 2016, 11(3): 117201-.
[4] Yongping Zhang,Maren Elizabeth Mossman,Thomas Busch,Peter Engels,Chuanwei Zhang. Properties of spin–orbit-coupled Bose–Einstein condensates[J]. Front. Phys. , 2016, 11(3): 118103-.
[5] Jing-Kun Wang,Wei Yi,Wei Zhang. Two-body physics in quasi-low-dimensional atomic gases under spin–orbit coupling[J]. Front. Phys. , 2016, 11(3): 118102-.
[6] Yi-Bin Hu, Yong-Hong Zhao, Xue-Feng Wang. A computational investigation of topological insulator Bi2Se3 film[J]. Front. Phys. , 2014, 9(6): 760-767.
[7] Qijin Chen, Jibiao Wang. Pseudogap phenomena in ultracold atomic Fermi gases[J]. Front. Phys. , 2014, 9(5): 539-570.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed