|
|
Spin–orbit coupling in Bose–Einstein condensate and degenerate Fermi gases |
Peng-Jun Wang,Jing Zhang( ) |
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We review our recent experimental realization and investigation of a spin–orbit (SO) coupled Bose–Einstein condensate (BEC) and quantum degenerate Fermi gas. By using two counter-propagating Raman lasers and controlling the different frequency of two Raman lasers to engineer the atom–light interaction, we first study the SO coupling in BEC. Then we study SO coupling in Fermi gas. We observe the spin dephasing in spin dynamics and momentum distribution asymmetry of the equilibrium state as hallmarks of SO coupling in a Fermi gas. To clearly reveal the property of SO coupling Fermi gas, we also study the momentum-resolved radio-frequency spectroscopy which characterizes the energy–momentum dispersion and spin composition of the quantum states. We observe the change of fermion surfaces in different helicity branches with different atomic density, which indicates that a Lifshitz transition of the Fermi surface topology change can be found by further cooling the system. At last, we study the momentum-resolved Raman spectroscopy of an ultracold Fermi gas.
|
Keywords
spin–orbit coupling
Bose–Einstein condensate
Fermi gases
topological change
momentum-resolved radio-frequency spectroscopy
momentum-resolved Raman spectroscopy
|
Corresponding Author(s):
Jing Zhang
|
Issue Date: 15 October 2014
|
|
1 |
W. Ketterle and M. W. Zwierlein, Making, probing and understanding ultracold Fermi gases, Rivista del Nuovo Cimento, 2008, 31: 247; arXiv: 0801.2500
|
2 |
C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach resonances in ultracold gases, Rev. Mod. Phys., 2010, 82(2): 647
https://doi.org/10.1103/RevModPhys.82.1225
|
3 |
I. Bloch, J. Dalibard, and S. Nascimbène, Quantum simulations with ultracold quantum gases, Nat. Phys., 2012, 8(4): 267
https://doi.org/10.1038/nphys2259
|
4 |
M. Greiner, O. Mandel, T. Esslinger, T. W. H?nsch, and I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature, 2002, 415(6867): 39
https://doi.org/10.1038/415039a
|
5 |
F. Jendrzejewski, A. Bernard, K. Müller, P. Cheinet, V. Josse, M. Piraud, L. Pezzé, L. Sanchez-Palencia, A. Aspect, and P. Bouyer, Three-dimensional localization of ultracold atoms in an optical disordered potential, Nat. Phys., 2012, 8: 398
https://doi.org/10.1038/nphys2256
|
6 |
E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Dynamics of collapsing and exploding Bose–Einstein condensates, Nature, 2001, 412(6844): 295
https://doi.org/10.1038/35085500
|
7 |
E. A. Donley, N. R. Claussen, S. T. Thompson, and C. E. Wieman, Atom–molecule coherence in a Bose–Einstein condensate, Nature, 2002, 417(6888): 529
https://doi.org/10.1038/417529a
|
8 |
C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett., 2004, 92(4): 040403
https://doi.org/10.1103/PhysRevLett.92.040403
|
9 |
T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-C. N?gerl, and R. Grimm, Evidence for Efimov quantum states in an ultracold gas of caesium atoms, Nature, 2006, 440(7082): 315
https://doi.org/10.1038/nature04626
|
10 |
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science, 2006, 314(5806): 1757
https://doi.org/10.1126/science.1133734
|
11 |
M. K?nig, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Quantum spin hall insulator state in HgTe quantum wells, Science, 2007, 318(5851): 766
https://doi.org/10.1126/science.1148047
|
12 |
K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Vortex formation in a stirred Bose–Einstein condensate, Phys. Rev. Lett., 2000, 84(5): 806
https://doi.org/10.1103/PhysRevLett.84.806
|
13 |
J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in Bose–Einstein condensates, Science, 2001, 292(5516): 476
https://doi.org/10.1126/science.1060182
|
14 |
E. Hodby, G. Hechenblaikner, S. A. Hopkins, O. M. Maragò, and C. J. Foot, Vortex nucleation in Bose–Einstein condensates in an oblate, purely magnetic potential, Phys. Rev. Lett., 2002, 88(1): 010405
https://doi.org/10.1103/PhysRevLett.88.010405
|
15 |
A. S. Sorensen, E. Demler, and M. D. Lukin, Fractional quantum Hall states of atoms in optical lattices, Phys. Rev. Lett., 2005, 94(8): 086803
https://doi.org/10.1103/PhysRevLett.94.086803
|
16 |
V. Schweikhard, I. Coddington, P. Engels, V. P. Mogendorff, and E. A. Cornell, Rapidly rotating Bose–Einstein condensates in and near the lowest Landau level, Phys. Rev. Lett., 2004, 92(4): 040404
https://doi.org/10.1103/PhysRevLett.92.040404
|
17 |
M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Vortices and superfluidity in a strongly interacting Fermi gas, Nature, 2005, 435(7045): 1047
https://doi.org/10.1038/nature03858
|
18 |
Y. J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto, and I. B. Spielman, Bose–Einstein condensate in a uniform light-induced vector potential, Phys. Rev. Lett., 2009, 102(13): 130401
https://doi.org/10.1103/PhysRevLett.102.130401
|
19 |
Y. J. Lin, R. L. Compton, K. Jiménez-García, J. V. Porto, and I. B. Spielman, Synthetic magnetic fields for ultracold neutral atoms, Nature, 2009, 462(7273): 628
https://doi.org/10.1038/nature08609
|
20 |
Y. J. Lin, R. L. Compton, K. Jimnez-Garca, W. D. Phillips, J. V. Porto, and I. B. Spielman, A synthetic electric force acting on neutral atoms, Nat. Phys., 2011, 7(7): 531
https://doi.org/10.1038/nphys1954
|
21 |
Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled Bose-Einstein condensates, Nature, 2011, 471(7336): 83
https://doi.org/10.1038/nature09887
|
22 |
Z. Fu, P. Wang, S. Chai, L. Huang, and J. Zhang, Bose–Einstein condensate in a light-induced vector gauge potential using 1064-nm optical-dipole-trap lasers, Phys. Rev. A, 2011, 84(4): 043609
https://doi.org/10.1103/PhysRevA.84.043609
|
23 |
J. Y. Zhang, S. C. Ji, Z. Chen, L. Zhang, Z. D. Du, B. Yan, G. S. Pan, B. Zhao, Y. J. Deng, H. Zhai, S. Chen, and J. W. Pan, Collective dipole oscillations of a spin-orbit coupled Bose–Einstein condensate, Phys. Rev. Lett., 2012, 109(11): 115301
https://doi.org/10.1103/PhysRevLett.109.115301
|
24 |
C. Qu, C. Hamner, M. Gong, C. Zhang, and P. Engels, Non-equilibrium spin dynamics and Zitterbewegung in quenched spin-orbit coupled Bose–Einstein condensates, arXiv: 1301.0658, 2013
|
25 |
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
|
26 |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys., 2011, 83(4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
|
27 |
P. Wang, Z. Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett., 2012, 109(9): 095301
https://doi.org/10.1103/PhysRevLett.109.095301
|
28 |
L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Spin-injection spectroscopy of a spin–orbit coupled Fermi gas, Phys. Rev. Lett., 2012, 109(9): 095302
https://doi.org/10.1103/PhysRevLett.109.095302
|
29 |
M. Gong, S. Tewari, and C. W. Zhang, BCS-BEC crossover and topological phase transition in 3D spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett., 2011, 107(19): 195303
https://doi.org/10.1103/PhysRevLett.107.195303
|
30 |
Z. Q. Yu and H. Zhai, Spin–orbit coupled Fermi gases across a Feshbach resonance, Phys. Rev. Lett., 2011, 107(19): 195305
https://doi.org/10.1103/PhysRevLett.107.195305
|
31 |
L. Jiang, X. J. Liu, H. Hu, and H. Pu, Rashba spin–orbitcoupled atomic Fermi gases, Phys. Rev. A, 2011, 84(6): 063618
https://doi.org/10.1103/PhysRevA.84.063618
|
32 |
X. J. Liu, L. Jiang, H. Pu, and H. Hu, Probing Majorana fermions in spin–orbit-coupled atomic Fermi gases, Phys. Rev. A, 2012, 85(2): 021603
https://doi.org/10.1103/PhysRevA.85.021603
|
33 |
R. Liao, Y. X. Yu, and W. M. Liu, Tuning the tricritical point with spin–orbit coupling in polarized fermionic condensates, Phys. Rev. Lett., 2012, 108(8): 080406
https://doi.org/10.1103/PhysRevLett.108.080406
|
34 |
M. Gong, G. Chen, S. T. Jia, and C. W. Zhang, Searching for Majorana fermions in 2D spin–orbit coupled Fermi superfluids at finite temperature, Phys. Rev. Lett., 2012, 109(10): 105302
https://doi.org/10.1103/PhysRevLett.109.105302
|
35 |
H. Hu, H. Pu, J. Zhang, S. G. Peng, and X. J. Liu, Radiofrequency spectroscopy of weakly bound molecules in spin–orbit coupled atomic Fermi gases, arXiv: 1208.5841, 2012
|
36 |
Z. Zheng, M. Gong, Y. C. Zhang, X. B. Zou, C. W. Zhang, and G. Guo, Fulde–Ferrell–Larkin–Ovchinnikov phases in two-dimensional spin–orbit coupled degenerate Fermi gases, arXiv: 1212.6826, 2012
|
37 |
V. Galitski and I. B. Spielman, Spin–orbit coupling in quantum gases, Nature, 2013, 494(7435): 49
https://doi.org/10.1038/nature11841
|
38 |
J. Radi, A. Di Ciolo, K. Sun, and V. Galitski, Exotic quantum spin models in spin–orbit-coupled Mott insulators, Phys. Rev. Lett., 2012, 109(8): 085303
https://doi.org/10.1103/PhysRevLett.109.085303
|
39 |
W. S. Cole, S. Zhang, A. Paramekanti, and N. Trivedi, Bose–Hubbard models with synthetic spin–orbit coupling: Mott insulators, spin textures, and superfluidity, Phys. Rev. Lett., 2012, 109(8): 085302
https://doi.org/10.1103/PhysRevLett.109.085302
|
40 |
Z. Cai, X. Zhou, and C. Wu, Magnetic phases of bosons with synthetic spin–orbit coupling in optical lattices, Phys. Rev. A, 2012, 85(6): 061605
https://doi.org/10.1103/PhysRevA.85.061605
|
41 |
D. Wei, D. Zh. Xiong, H. X. Chen, and J. Zhang, An enriched 40K source for atomic cooling, Chin. Phys. Lett., 2007, 24: 679
https://doi.org/10.1088/0256-307X/24/3/025
|
42 |
D. Xiong, H. Chen, P. Wang, X. Yu, F. Gao, and J. Zhang, Quantum degenerate Fermi–Bose mixtures of 40K and 87Rb atoms in a quadrupole-Ioffe configuration trap, Chin. Phys. Lett., 2008, 25: 843
https://doi.org/10.1088/0256-307X/25/3/011
|
43 |
P. Wang, H. Chen, D. Xiong, X. Yu, F. Gao, and J. Zhang, The design of quadrapole-Ioffe configuration trap for quantum degenerate Fermi–Bose mixtures, Acta. Phys. Sin., 2008, 57(8): 4840 (in Chinese)
|
44 |
D. Xiong, P. Wang, Z. Fu, S. Chai, and J. Zhang, Evaporative cooling of 87Rb atoms into Bose–Einstein condensate in an optical dipole trap, Chin. Opt. Lett., 2010, 8: 627 (in Chinese)
https://doi.org/10.3788/COL20100807.0627
|
45 |
D. Xiong, P. Wang, Z. Fu, and J. Zhang, Transport of Bose–Einstein condensate in QUIC trap and separation of trapping spin states, Opt. Express, 2010, 18(2): 1649
https://doi.org/10.1364/OE.18.001649
|
46 |
I. B. Spielman, Raman processes and effective gauge potentials, Phys. Rev. A, 2009, 79(6): 063613
https://doi.org/10.1103/PhysRevA.79.063613
|
47 |
L. Zhang, J. Y. Zhang, S. C. Ji, Z. D. Du, H. Zhai, Y. J. Deng, S. Chen, P. Zhang, and J. W. Pan, Stability of excited dressed states with spin–orbit coupling, Phys. Rev. A, 2012, 87(1): 011601
https://doi.org/10.1103/PhysRevA.87.011601
|
48 |
X. J. Liu and H. Hu, Topological superfluid in onedimensional spin–orbit-coupled atomic Fermi gases, Phys. Rev. A, 2012, 85(3): 033622
https://doi.org/10.1103/PhysRevA.85.033622
|
49 |
X. J. Liu, L. Jiang, H. Pu, and H. Hu, Probing Majorana fermions in spin–orbit-coupled atomic Fermi gases, Phys. Rev. A, 2012, 85(2): 021603
https://doi.org/10.1103/PhysRevA.85.021603
|
50 |
X. J. Liu, Zh. X. Liu, and M. Cheng, Manipulating topological edge spins in a one-dimensional optical lattice, Phys. Rev. Lett., 2013, 110(7): 076401
https://doi.org/10.1103/PhysRevLett.110.076401
|
51 |
L. Zhou, H. Pu, and W. Zhang, Anderson localization of cold atomic gases with effective spin–orbit interaction in a quasiperiodic optical lattice, Phys. Rev. A, 2013, 87(2): 023625
https://doi.org/10.1103/PhysRevA.87.023625
|
52 |
R. Wei and E. J. Mueller, Majorana fermions in onedimensional spin–orbit-coupled Fermi gases, Phys. Rev. A, 2012, 86(6): 063604
https://doi.org/10.1103/PhysRevA.86.063604
|
53 |
P. Wang, Z. Fu, L. Huang, and J. Zhang, Momentumresolved Raman spectroscopy of a noninteracting ultracold Fermi gas, Phys. Rev. A, 2012, 85(5): 053626
https://doi.org/10.1103/PhysRevA.85.053626
|
54 |
Z. Fu, P. Wang, L. Huang, Z. Meng, and J. Zhang, Momentum-resolved Raman spectroscopy of bound molecules in ultracold Fermi gas, Phys. Rev. A, 2012, 86(3): 033607
https://doi.org/10.1103/PhysRevA.86.033607
|
55 |
C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. H. Denschlag, and R. Grimm, Observation of the pairing gap in a strongly interacting Fermi gas, Science, 2004, 305(5687): 1128
https://doi.org/10.1126/science.1100818
|
56 |
J. T. Stewart, J. P. Gaebler, and D. S. Jin, Using photoemission spectroscopy to probe a strongly interacting Fermi gas, Nature, 2008, 454(7205): 744
https://doi.org/10.1038/nature07172
|
57 |
J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M. Greiner, Quantum simulation of antiferromagnetic spin chains in an optical lattice, Nature, 2011, 472(7343): 307
https://doi.org/10.1038/nature09994
|
58 |
E. Altman, E. Demler, and M. D. Lukin, Probing manybody states of ultracold atoms via noise correlations, Phys. Rev. A, 2004, 70(1): 013603
https://doi.org/10.1103/PhysRevA.70.013603
|
59 |
C. A. Regal and D. S. Jin, Measurement of positive and negative scattering lengths in a Fermi gas of atoms, Phys. Rev. Lett., 2003, 90(23): 230404
https://doi.org/10.1103/PhysRevLett.90.230404
|
60 |
S. Gupta, Z. Hadzibabic, M. W. Zwierlein, C. A. Stan, K. Dieckmann, C. H. Schunck, E. G. M. Van Kempen, B. J. Verhaar, and W. Ketterle, Radio-frequency spectroscopy of ultracold fermions, Science, 2003, 300(5626): 1723
https://doi.org/10.1126/science.1085335
|
61 |
Y. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle, Tomographic rf spectroscopy of a trapped Fermi gas at unitarity, Phys. Rev. Lett., 2007, 99(9): 090403
https://doi.org/10.1103/PhysRevLett.99.090403
|
62 |
Q. Chen and K. Levin, Momentum resolved radio frequency spectroscopy in trapped fermi gases, Phys. Rev. Lett., 2009, 102(19): 190402
https://doi.org/10.1103/PhysRevLett.102.190402
|
63 |
Q. Chen, Y. He, C. C. Chien, and K. Levin, Theory of radio frequency spectroscopy experiments in ultracold Fermi gases and their relation to photoemission in the cuprates, Rep. Prog. Phys., 2009, 72: 12250<?Pub Caret?>1
https://doi.org/10.1088/0034-4885/72/12/122501
|
64 |
T. L. Dao, A. Georges, J. Dalibard, C. Salomon, and I. Carusotto, Measuring the one-particle excitations of ultracold fermionic atoms by stimulated Raman spectroscopy, Phys. Rev. Lett., 2007, 98(24): 240402
https://doi.org/10.1103/PhysRevLett.98.240402
|
65 |
T. L. Dao, I. Carusotto, and A. Georges, Probing quasiparticle states in strongly interacting atomic gases by momentumresolved Raman photoemission spectroscopy, Phys. Rev. A, 2009, 80(2): 023627
https://doi.org/10.1103/PhysRevA.80.023627
|
66 |
G. Veeravalli, E. Kuhnle, P. Dyke, and C. J. Vale, Bragg spectroscopy of a strongly interacting Fermi gas, Phys. Rev. Lett., 2008, 101(25): 250403
https://doi.org/10.1103/PhysRevLett.101.250403
|
67 |
E. D. Kuhnle, S. Hoinka, P. Dyke, H. Hu, P. Hannaford, and C. J. Vale, Temperature dependence of the universal contact parameter in a unitary Fermi gas, Phys. Rev. Lett., 2011, 106(17): 170402
https://doi.org/10.1103/PhysRevLett.106.170402
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|