Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2015, Vol. 10 Issue (5) : 106102    https://doi.org/10.1007/s11467-015-0511-z
RESEARCH ARTICLE
Unprecedentedly rapid transport of single-file rolling water molecules
Qiu Tong(邱桐)(),Huang Ji-Ping(黄吉平)()
Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China
 Download: PDF(374 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The realization of rapid and unidirectional single-file water-molecule flow in nanochannels has posed a challenge to date. Here, we report unprecedentedly rapid unidirectional single-file water-molecule flow under a translational terahertz electric field, which is obtained by developing a Debye doublerelaxation theory. In addition, we demonstrate that all the single-file molecules undergo both stable translation and rotation, behaving like high-speed train wheels moving along a railway track. Independent molecular dynamics simulations help to confirm these theoretical results. The mechanism involves the resonant relaxation dynamics of H and O atoms. Further, an experimental demonstration is suggested and discussed. This work has implications for the design of high-efficiency nanochannels or smaller nanomachines in the field of nanotechnology, and the findings also aid in the understanding and control of water flow across biological nanochannels in biology-related research.

Keywords water molecules      carbon nanotubes      molecular dynamics      terahertz electric field      electrohydrodynamics      Debye double-relaxation theory     
Corresponding Author(s): Qiu Tong(邱桐),Huang Ji-Ping(黄吉平)   
Issue Date: 26 October 2015
 Cite this article:   
Qiu Tong(邱桐),Huang Ji-Ping(黄吉平). Unprecedentedly rapid transport of single-file rolling water molecules[J]. Front. Phys. , 2015, 10(5): 106102.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0511-z
https://academic.hep.com.cn/fop/EN/Y2015/V10/I5/106102
1 T. B. Sisan and S. Lichter, Solitons transport water through narrow carbon nanotubes, Phys. Rev. Lett. 112(4), 044501 (2014)
2 C. B. Picallo, S. Gravelle, L. Joly, E. Charlaix, and L. Bocquet, Nanofluidic osmotic diodes: Theory and molecular dynamics simulations, Phys. Rev. Lett. 111(24), 244501 (2013)
3 K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes, Science 306(5700), 1362 (2004)
4 M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, and A. M. Mayes, Science and technology for water purification in the coming decades, Nature 452(7185), 301 (2008)
5 A. Srivastava, O. N. Srivastava, S. Talapatra, R. Vajtai, and P. M. Ajayan, Carbon nanotube filters, Nat. Mater. 3(9), 610 (2004)
6 Y. B. Chen, Y. H. Liu, Y. Zeng, W. Mao, L. Hu, Z. L. Mao, and H. Q. Xu, Optimal aspect ratio of endocytosed spherocylindrical nanoparticle, Front. Phys. 10(1), 116 (2015)
7 C. Lee, C. Cottin-Bizonne, A. L. Biance, P. Joseph, L. Bocquet, and C. Ybert, Osmotic flow through fully permeable nanochannels, Phys. Rev. Lett. 112(24), 244501 (2014)
8 G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414(6860), 188 (2001)
9 X. J. Gong, J. Y. Li, H. Zhang, R. Z. Wan, H. J. Lu, S. Wang, and H. P. Fang, Enhancement of water permeation across a nanochannel by the structure outside the channel, Phys. Rev. Lett. 101(25), 257801 (2008)
10 X. J. Gong, J. Y. Li, H. J. Lu, R. Z. Wan, J. C. Li, J. Hu, and H. P. Fang, A charge-driven molecular water pump, Nat. Nanotechnol. 2(11), 709 (2007)
11 M. Ma, F. Grey, L. M. Shen, M. Urbakh, S. Wu, J. Z. Liu, Y. L. Liu, and Q. S. Zheng, Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction, Nat. Nanotechnol. 10(8), 692 (2015)
12 Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X. H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)
13 G. X. Guo, L. Zhang, and Y. Zhang, Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers, Front. Phys. 10(2), 177 (2015)
14 M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nanoscale hydrodynamics- enhanced flow in carbon nanotubes, Nature 438(7064), 44 (2005)
15 J. K. Holt, H. G. Park, Y. M. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312(5776), 1034 (2006)
16 J. A. Thomas and A. J. H. McGaughey, Water flow in carbon nanotubes: Transition to subcontinuum transport, Phys. Rev. Lett. 102(18), 184502 (2009)
17 C. Lee, C. Cottin-Bizonne, A. L. Biance, P. Joseph, L. Bocquet, and C. Ybert, Osmotic flow through fully permeable nanochannels, Phys. Rev. Lett. 112(24), 244501 (2014)
18 A. Kalra, S. Garde, and G. Hummer, Osmotic water transport through carbon nanotube membranes, Proc. Natl. Acad. Sci. USA 100(18), 10175 (2003)
19 A. Ajdari and L. Bocquet, Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusioosmosis and beyond, Phys. Rev. Lett. 96(18), 186102 (2006)
20 M. J. Longhurst and N. Quirke, Temperature-driven pumping of fluid through single-walled carbon nanotubes, Nano Lett. 7(11), 3324 (2007)
21 Q. L. Zhang, W. Z. Jiang, J. Liu, R. D. Miao, and N. Sheng, Water transport through carbon nanotubes with the radial breathing mode, Phys. Rev. Lett. 110(25), 254501 (2013)
22 Y. Wang, Y. J. Zhao, and J. P. Huang, Giant pumping of single-file water molecules in a carbon nanotube, J. Phys. Chem. B 115(45), 13275 (2011)
23 X. W. Meng, Y. Wang, Y. J. Zhao, and J. P. Huang, Gating of a water nanochannel driven by dipolar molecules, J. Phys. Chem. B 115(16), 4768 (2011)
24 Z. Chi, C. Luo, and Y. Dai, Comment on “Electrical-driven transport of endohedral fullerene encapsulating a single water molecule, Phys. Rev. Lett. 113(11), 119601 (2014)
25 K. F. Rinne, S. Gekle, D. J. Bonthuis, and R. R. Netz, Nanoscale pumping of water by AC electric fields, Nano Lett. 12(4), 1780 (2012)
26 S. de Luca, B. D. Todd, J. S. Hansen, and P. J. Daivis, Electropumping of water with rotating electric fields, J. Chem. Phys. 138(15), 154712 (2013)
27 X. P. Li, G. P. Kong, X. Zhang, and G. W. He, Pumping of water through carbon nanotubes by rotating electric field and rotating magnetic field, Appl. Phys. Lett. 103(14), 143117 (2013)
28 J. Wong-ekkabut, M. S. Miettinen, C. Dias, and M. Karttunen, Static charges cannot drive a continuous flow of water molecules through a carbon nanotube, Nat. Nanotechnol. 5(8), 555 (2010)
29 J. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5(1), 351 (2011)
30 M. O. Jensen, E. Tajkhorshid, and K. Schulten, Electrostatic tuning of permeation and selectivity in aquaporin water channels, Biophys. J. 85(5), 2884 (2003)
31 E. Tajkhorshid, P. Nollert, M. O. Jensen, L. J. W. Miercke, J. O’Connell, R. M. Stroud, and K. Schulten, Control of the selectivity of the aquaporin water channel family by global orientational tuning, Science 296(5567), 525 (2002)
32 B. L. de Groot, T. Frigato, V. Helms, and H. Grubmuller, The mechanism of proton exclusion in the aquaporin-1 water channel, J. Mol. Biol. 333(2), 279 (2003)
33 J. S. Hub and B. L. de Groot, Mechanism of selectivity in aquaporins and aquaglyceroporins, Proc. Natl. Acad. Sci. USA 105(4), 1198 (2008)
34 B. L. de Groot and H. Grubmuller, Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF, Science 294(5550), 2353 (2001)
35 J. P. Huang, K. W. Yu, and G. Q. Gu, Electrorotation of a pair of spherical particles, Phys. Rev. E 65(2), 021401 (2002)
36 J. P. Huang, M. Karttunen, K. W. Yu, and L. Dong, Dielectrophoresis of charged colloidal suspensions, Phys. Rev. E 67(2), 021403 (2003)
37 T. Meissner and F. J. Wentz, IEEE transactions on geoscience and remote sensing, Complex Dielectric Constant of Pure and Sea Water from Microwave Satellite Observations 42(9), 1836 (2004)
38 J. P. Huang and K. W. Yu, Enhanced nonlinear optical responses of materials: Composite effects, Phys. Rep. 431(3), 87 (2006)
39 G. Chen, P. Tan, S. Chen, J. P. Huang, W. Wen, and L. Xu, Coalescence of pickering emulsion droplets induced by an electric field, Phys. Rev. Lett. 110(6), 064502 (2013)
40 P. Debye, PolarMolecules, Chemical Catalog Company, New York, 1929
41 J. T. Kindt and C. A. Schmuttenmaer, Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy, J. Phys. Chem. 100(24), 10373 (1996)
42 C. Ro?nne, L. Thrane, P.O. Åstrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation, J. Phys. Chem. 107(14), 5319 (1997)
43 H. J. Liebe, G. A. Hufford, and T. Manabe, A model for the complex permittivity of water at frequencies below 1 THz, J. Infrared Millim. Terahertz Waves 12(7), 659 (1991)
44 R. Buchner, J. Barthel, and J. Stauber, The dielectric relaxation of water between 0 °C and 35 °C, Chem. Phys. Lett. 306(1−2), 57 (1999)
45 Y. Huang, X. B. Wang, J. A. Tame, and R. Pethig, Electrokinetic behaviour of colloidal particles in travelling electric fields: Studies using yeast cells, J. Phys. D Appl. Phys. 26(9), 1528 (1993)
46 S. Fiedler, S. G. Shirley, T. Schnelle, and G. Fuhr, G, Dielectrophoretic sorting of particles and cells in a microsystem, Anal. Chem. 70(9), 1909 (1998)
47 M. S. Talary, J. P. H. Burt, J. A. Tame, and R. Pethig, Electromanipulation and separation of cells using travelling electric fields, J. Phys. D Appl. Phys. 29(8), 2198 (1996)
48 U. Zimmermann, Electric field-mediated fusion and related electrical phenomena, Biochim. Biophys. Acta 694(3), 227 (1982)
49 K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet, Molecular origin of fast water transport in carbon nanotube membranes: Superlubricity versus curvature dependent friction, Nano Lett. 10(10), 4067 (2010)
50 B. Hess, , Gromacs-3.3, Department of Biophysical Chemistry, University of Groningen, Groningen, 2005
51 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79(2), 926 (1983)
52 B. Mukherjee, P. K. Maiti, C. Dasgupta, and A. K. Sood, Strongly anisotropic orientational relaxation of water molecules in narrow carbon nanotubes and nanorings, ACS Nano 2(6), 1189 (2008)
53 A. B. Farimani, Y. Wu, and N. R. Aluru, Rotational motion of a singlewater molecule in a buckyball, Phys. Chem. Chem. Phys. 15(41), 17993 (2013)
54 J. Su and H. X. Guo, Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field, ACS Nano 5(1), 351 (2011)
55 H. P. Fang, R. Z. Wan, X. J. Gong, H. J. Lu, and S. Y. Li, Dynamics of single-file water chains inside nanoscale channels: physics, biological significance and applications, J. Phys. D 41(10), 103002 (2008)
56 M. D. Ma, L. M. Shen, J. Sheridan, J. Z. Liu, C. Chen, and Q. S. Zheng, Friction of water slipping in carbon nanotubes, Phys. Rev. E 83(3), 036316 (2011)
57 T. Kudernac, N. Ruangsupapichat, M. Parschau, B. Macia, N. Katsonis, S. R. Harutyunyan, K. H. Ernst, and B. L. Feringa, Electrically driven directional motion of a fourwheeled molecule on a metal surface, Nature 479(7372), 208 (2011)
58 E.W. Frey, A. A. Gooding, S. Wijeratne, and C. H. Kiang, Understanding the physics of DNA using nanoscale singlemolecule manipulation, Front. Phys. 7(5), 576 (2012)
[1] Supplementary Material 1 Download
[2] Supplementary Material 2 Download
[3] Supplementary Material 3 Download
[1] Jorge A. López, Claudio O. Dorso, Guillermo Frank. Properties of nuclear pastas[J]. Front. Phys. , 2021, 16(2): 24301-.
[2] Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li. Progress of quantum molecular dynamics model and its applications in heavy ion collisions[J]. Front. Phys. , 2020, 15(5): 54301-.
[3] Jin-Bo Wang, Rao Huang, Yu-Hua Wen. Thermally activated phase transitions in Fe-Ni core-shell nanoparticles[J]. Front. Phys. , 2019, 14(6): 63604-.
[4] T. Chatterji, S. Rols, U. D. Wdowik. Dynamics of the phase-change material GeTe across the structural phase transition[J]. Front. Phys. , 2019, 14(2): 23601-.
[5] Hui-Li Wang (王会丽), Zhen-Peng Hu (胡振芃), Hui Li (李晖). Dissociation of liquid water on defective rutile TiO2 (110) surfaces using ab initio molecular dynamics simulations[J]. Front. Phys. , 2018, 13(3): 138107-.
[6] Ze-Zhou He, Yin-Bo Zhu, Heng-An Wu. Self-folding mechanics of graphene tearing and peeling from a substrate[J]. Front. Phys. , 2018, 13(3): 138111-.
[7] Huaze Shen, Mohan Chen, Zhaoru Sun, Limei Xu, Enge Wang, Xifan Wu. Signature of the hydrogen-bonded environment of liquid water in X-ray emission spectra from first-principles calculations[J]. Front. Phys. , 2018, 13(1): 138204-.
[8] Andrea Gabrieli, Marco Sant, Saeed Izadi, Parviz Seifpanahi Shabane, Alexey V. Onufriev, Giuseppe B. Suffritti. High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials[J]. Front. Phys. , 2018, 13(1): 138203-.
[9] Margherita De Marzio, Gaia Camisasca, Mauro Rovere, Paola Gallo. Fragile to strong crossover and Widom line in supercooled water: A comparative study[J]. Front. Phys. , 2018, 13(1): 136103-.
[10] Shu-Xia Liu,Yi-Zhao Geng,Shi-Wei Yan. Structural effects and competition mechanisms targeting the interactions between p53 and MDM2 for cancer therapy[J]. Front. Phys. , 2017, 12(3): 128908-.
[11] Yunfeng Hua,Zhenyu Deng,Yangwei Jiang,Linxi Zhang. Ordered quasi-two-dimensional structure of nanoparticles in semiflexible ring polymer brushes under compression[J]. Front. Phys. , 2017, 12(3): 128701-.
[12] Guo-Xi Nie,Yu Wang,Ji-Ping Huang. Shape effect of nanochannels on water mobility[J]. Front. Phys. , 2016, 11(6): 114702-.
[13] Guo-Xi Nie,Yu Wang,Ji-Ping Huang. Role of confinement in water solidification under electric fields[J]. Front. Phys. , 2015, 10(5): 106101-.
[14] Cheng Tang,Xin Jin,Nan Wang,En-Guang Zhao. Nuclear dynamical octupole deformation in heavy-ion reactions[J]. Front. Phys. , 2015, 10(5): 102401-.
[15] Guan-Xing Guo, Lei Zhang, Yong Zhang. Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers[J]. Front. Phys. , 2015, 10(2): 108601-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed