Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2014, Vol. 8 Issue (4) : 354-361    https://doi.org/10.1007/s11709-014-0082-z
RESEARCH ARTICLE
Shear assessment of compression flanges of structural concrete T-beams
Bj?rn SCHüTTE(),Viktor SIGRIST
Institute of Concrete Structures, Hamburg University of Technology, Hamburg 21073, Germany
 Download: PDF(416 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In T-beams the force transfer from the web into the flange has to be studied. The general design procedure is based on a strut-and-tie (or a stress field) model which comprises spreading compressive and transverse tensile forces. As is known, strut-and-tie models represent the force flow within a structural member at ultimate. This procedure is sufficient for design purposes and in general, leads to safe results. For the assessment of a structure it may be worthwhile to improve the accuracy. For this purpose both web and flange have to be looked at more in detail. An advanced method for the analysis of webs in shear is the Generalized Stress Field Approach [1]. This approach can be utilized for treating flanges, where the classical assumptions have to be adapted; in particular by considering the strain dependence of the concrete compressive strength and thus, defining a representative strain value. In the present contribution background and details of these aspects are given, and the corresponding calculation procedure is described. Theoretical results are compared with experimental data and show a reasonably good agreement. However, as the number of sufficiently documented tests is very limited no concluding findings are attained.

Keywords concrete structures      structural assessment      stress field analysis      shear     
Corresponding Author(s): Bj?rn SCHüTTE   
Issue Date: 12 January 2015
 Cite this article:   
Bj?rn SCHüTTE,Viktor SIGRIST. Shear assessment of compression flanges of structural concrete T-beams[J]. Front. Struct. Civ. Eng., 2014, 8(4): 354-361.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-014-0082-z
https://academic.hep.com.cn/fsce/EN/Y2014/V8/I4/354
Fig.1  Free body diagram of a stress field (centered fan) and distribution of longitudinal strains according to fib Model Code 2010 [4]]
Fig.2  Comparison of different strength predictions and test results
Fig.3  Linear distribution of longitudinal strains and equilibrium of internal forces
Fig.4  Centred fan in D-region
Fig.5  Stress field (centered fan) in B-region
Fig.6  Stress distribution and force resultants in the compression chord
Fig.7  Representative longitudinal strain in flange
Fig.8  Stress field for web and flange
Fig.9  Cross-section, static system, and transverse flange reinforcement of Beam Q1 [3]
Fig.10  Provided and required shear reinforcement ratios, Beam Q1 [3]
series/test ωy,av fc(N/mm2) EC2Fexp/Fcalc new modelFexp/Fcalc failure modein test
Bachmann/Q1 0.041...0.119 26.1 1.57 1.11 FCF
Bachmann/Q2 0.083 29,8 1.03a) 0.85a) B
Tizatto/MT2 0.016 41.6 3.28 2.44 FCF
Tizatto/MT3 0.036 31.3 2.40 1.82 FCF
Tizatto/MT4 0.045 36.8 1.71 1.28 FCF
Tizatto/MT5 0.059 30.8 1.63 1.27 FCF
Tab.1  Comparison with test results

Comparison with test results

1 Sigrist V. Generalized stress field approach for analysis of beams in shear. ACI Structural Journal, 2011, 108(4): 479–487
2 DIN EN 1992–1-1:2011–01: Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken- Teil 1–1: Allgemeine Bemessungsregeln und Regeln für den Hochbau, CEN, European Standard, 2011
3 Bachmann H. L?ngsschub und Querbiegung in Druckplatten von Betontr?gern, Beton- und Stahlbetonbau. 1978, 73(3), March
4 fib Model Code 2010 – Final draft, Volume 2, fib Bulletin No. 66, 2012
5 Marti P, Alvarez M, Kaufmann W, Sigrist V. Tension chord model for structural concrete. Structural Engineering International, 1998, 8(4): 287–298
6 Kaufmann W, Marti P. Structural concrete: Cracked membrane model. Journal of Structural Engineering, 1998, 124(12): 1467–1475
7 Kaufmann W. Strength and deformations of structural concrete subjected to in-plane shear and normal forces. Dissertation for the Doctoral Degree. Report No. 234, Institute of Structural Engineering, Zurich: ETH Zurich, 1998, 147
8 Vecchio F J, Collins M P. The Response of Reinforced Concrete to In-Plane Shear and Normal Stresses. Publication No. 82–03, Department of Civil Engineering, University of Toronto, Toronto, <month>March</month>1982, 332
9 Vecchio F J, Collins M P, Aspiotis J. High-strength concrete elements subjected to shear. ACI Structural Journal, 1994, 91(4): 423–433
10 André H M O. Toronto/Jajima study on scale effects in reinforced concrete element. Dissertation for the Doctoral Degree. Toronto: University of Toronto, Toronto, 1987, 267
11 Khalifa J. Limit analysis and design of reinforced concrete shell elements. Dissertation for the Doctoral Degree. Toronto: University of Toronto, 1986, 314
12 Kirschner U, Collins M P. Investigating the Behaviour of Reinforced Concrete Shell Elements. Publication No. 86–09, Department of Civil Engineering, University of Toronto, Toronto, 1986, 210
13 Marti P, Meyboom J. Response of prestressed concrete elements to in-plane-shear forces. ACI Structural Journal, 1992, 89(5): 503–514
14 Ohmori N, Takahashi T, Tsubota H, Inoue N, Kurihara K, Watanabe S. Experimental studies on non-linear behaviours of reinforced concrete panels subjected to in-plane shear. Journal of Structural and Construction Engineering, 1989, 403: 105–118 (in Japanese)
15 Pang X, Hsu T T C. Constitutive Laws of Reinforced Concrete in Shear. Department of Civil and Environmental Engineering, University of Houston, Research Report UHCEE 92–1, Houston, 1992, 180
16 Collins M P, Porasz A. Shear design for high-strength concrete. Comité Euro-International du Béton, CEB Bulletin d’Information,1989, 193: 77–83
17 Zhang L, Hsu T T C. Behaviour and analysis of 100MPa concrete membrane elements. Journal of Structural Engineering, 1998, 124(1): 24–34
18 Belarbi A, Hsu T T C. Constitutive laws of softened concrete in biaxial tension-compression. ACI Structural Journal, 1995, 92(5): 562–573
19 Bentz E C, Vecchio F J, Collins M P. Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Structural Journal, 2006, 103(4): 614–624
20 Marti P. Basic tools of reinforced concrete beam design. ACI Structural Journal, 1985, 82(1): 46–56
21 Schlaich J, Sch?fer K. Towards a consistent design of structural concrete. PCI Journal, 1987, 32(3): 75–150
22 Muttoni A, Schwartz J, Thürlimann B. Design of Concrete Structures with Stress Fields. Basel: Birkh?user Verlag, 1997
23 DIN EN 1992–1-1/NA:2013–04: Nationaler Anhang – National festgelegte Parameter - Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken- Teil 1–1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. DIN, European Standard, 2013
24 Tizatto V, Shehata L C D. Longitudinal shear strength of wide compression flanges. Materials and Structures, 1990, 23(1): 26–34
25 Sigrist V, Bentz E, Fernández Ruiz, M, Foster S, Muttoni A. Background to the Model Code 2010 Shear Provision – Part I: Beams and Slabs. Structural Concrete, 2013 14(3): 195–203
[1] Luisa PANI, Flavio STOCHINO. Punching of reinforced concrete slab without shear reinforcement: Standard models and new proposal[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1196-1214.
[2] Siamak TALATAHARI, Mahdi RABIEI. Shear wall layout optimization of tall buildings using Quantum Charged System Search[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1131-1151.
[3] Zohreh SHEIKH KHOZANI, Khabat KHOSRAVI, Mohammadamin TORABI, Amir MOSAVI, Bahram REZAEI, Timon RABCZUK. Shear stress distribution prediction in symmetric compound channels using data mining and machine learning models[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1097-1109.
[4] Rwayda Kh. S. AL-HAMD, Martin GILLIE, Safaa Adnan MOHAMAD, Lee S. CUNNINGHAM. Influence of loading ratio on flat slab connections at elevated temperature: A numerical study[J]. Front. Struct. Civ. Eng., 2020, 14(3): 664-674.
[5] André FURTADO, Hugo RODRIGUES, António ARÊDE, Humberto VARUM. Mechanical properties characterization of different types of masonry infill walls[J]. Front. Struct. Civ. Eng., 2020, 14(2): 411-434.
[6] Dan V. BOMPA, Ahmed Y. ELGHAZOULI. Nonlinear numerical simulation of punching shear behavior of reinforced concrete flat slabs with shear-heads[J]. Front. Struct. Civ. Eng., 2020, 14(2): 331-356.
[7] Walid Khalid MBARAK, Esma Nur CINICIOGLU, Ozer CINICIOGLU. SPT based determination of undrained shear strength: Regression models and machine learning[J]. Front. Struct. Civ. Eng., 2020, 14(1): 185-198.
[8] Sheng PENG, Chengxiang XU, Xiaoqiang LIU. Truss-arch model for shear strength of seismic-damaged SRC frame columns strengthened with CFRP sheets[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1324-1337.
[9] Nazim Abdul NARIMAN, Raja Rizwan HUSSAIN, Ilham Ibrahim MOHAMMAD, Peyman KARAMPOUR. Global sensitivity analysis of certain and uncertain factors for a circular tunnel under seismic action[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1289-1300.
[10] Mohammad Reza AZADI KAKAVAND, Reza ALLAHVIRDIZADEH. Enhanced empirical models for predicting the drift capacity of less ductile RC columns with flexural, shear, or axial failure modes[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1251-1270.
[11] Jianan QI, Yuqing HU, Jingquan WANG, Wenchao LI. Behavior and strength of headed stud shear connectors in ultra-high performance concrete of composite bridges[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1138-1149.
[12] Parham SHOAEI, Houtan Tahmasebi ORIMI. A combined control strategy using tuned liquid dampers to reduce displacement demands of base-isolated structures: a probabilistic approach[J]. Front. Struct. Civ. Eng., 2019, 13(4): 890-903.
[13] Jianzhuang XIAO, Wan WANG, Zhengjiu ZHOU, Mathews M. TAWANA. Punching shear behavior of recycled aggregate concrete slabs with and without steel fibres[J]. Front. Struct. Civ. Eng., 2019, 13(3): 725-740.
[14] Abeer A. AL-MUSAWI. Determination of shear strength of steel fiber RC beams: application of data-intelligence models[J]. Front. Struct. Civ. Eng., 2019, 13(3): 667-673.
[15] Hui ZHENG, Zhi FANG, Bin CHEN. Experimental study on shear behavior of prestressed reactive powder concrete I-girders[J]. Front. Struct. Civ. Eng., 2019, 13(3): 618-627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed