Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2014, Vol. 5 Issue (12) : 899-911    https://doi.org/10.1007/s13238-014-0112-6
REVIEW
Recent advances in the role of toll-like receptors and TLR agonists in immunotherapy for human glioma
Shuanglin Deng1,2,Shan Zhu1,Yuan Qiao1,Yong-Jun Liu3,Wei Chen4,Gang Zhao2,*(),Jingtao Chen1,*()
1. Institute of Translational Medicine, the First Hospital, Jilin University, Changchun 130031, China
2. Department of Neurosurgery, the First Hospital, Jilin University, Changchun 130031, China
3. MedImmune, Gaithersburg, MD 20878, USA
4. Department of Hematology-Oncology and BMT Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
 Download: PDF(361 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Gliomas are extremely aggressive brain tumors with a very poor prognosis. One of the more promising strategies for the treatment of human gliomas is targeted immunotherapy where antigens that are unique to the tumors are exploited to generate vaccines. The approach, however, is complicated by the fact that human gliomas escape immune surveillance by creating an immune suppressed microenvironment. In order to oppose the glioma imposed immune suppression, molecules and pathways involved in immune cell maturation, expansion, and migration are under intensive clinical investigation as adjuvant therapy. Toll-like receptors (TLRs) mediate many of these functions in immune cell types, and TLR agonists, thus, are currently primary candidate molecules to be used as important adjuvants in a variety of cancers. In animal models for glioma, TLR agonists have exhibited antitumor properties by facilitating antigen presentation and stimulating innate and adaptive immunity. In clinical trials, several TLR agonists have achieved survival benefit, and many more trials are recruiting or ongoing. However, a second complicating factor is that TLRs are also expressed on cancer cells where they can participate instead in a variety of tumor promoting activities including cell growth, proliferation, invasion, migration, and even stem cell maintenance. TLR agonists can, therefore, possibly play dual roles in tumor biology. Here, how TLRs and TLR agonists function in glioma biology and in anti-glioma therapies is summarized in an effort to provide a current picture of the sophisticated relationship of glioma with the immune system and the implications for immunotherapy.

Keywords glioma      toll-like receptor      agonist      central nervous system      immunotherapy     
Corresponding Author(s): Gang Zhao   
Issue Date: 30 December 2014
 Cite this article:   
Shuanglin Deng,Shan Zhu,Yuan Qiao, et al. Recent advances in the role of toll-like receptors and TLR agonists in immunotherapy for human glioma[J]. Protein Cell, 2014, 5(12): 899-911.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-014-0112-6
https://academic.hep.com.cn/pac/EN/Y2014/V5/I12/899
1 Adams S, O’Neill DW, Nonaka D, Hardin E, Chiriboga L, Siu K, Cruz CM, Angiulli A, Angiulli F, Ritter E (2008) Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J Immunol181: 776-784
https://doi.org/10.4049/jimmunol.181.1.776
2 Agrawal S, Gupta S (2011) TLR1/2, TLR7, and TLR9 signals directly activate human peripheral blood naive and memory B cell subsets to produce cytokines, chemokines, and hematopoietic growth factors. J Clin Immunol31: 89-98
https://doi.org/10.1007/s10875-010-9456-8
3 Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol4: 499-511
https://doi.org/10.1038/nri1391
4 Ali S, Curtin JF, Zirger JM, Xiong W, King GD, Barcia C, Liu C, Puntel M, Goverdhana S, Lowenstein PR (2004) Inflammatory and anti-glioma effects of an adenovirus expressing human soluble Fms-like tyrosine kinase 3 ligand (hsFlt3L): treatment with hsFlt3L inhibits intracranial glioma progression. Mol Ther10: 1071-1084
https://doi.org/10.1016/j.ymthe.2004.08.025
5 Alizadeh D, Zhang L, Brown CE, Farrukh O, Jensen MC, Badie B(2010) Induction of anti-glioma natural killer cell response following multiple low-dose intracerebral CpG therapy. Clin Cancer Res16: 3399-3408
https://doi.org/10.1158/1078-0432.CCR-09-3087
6 Anandasabapathy N, Victora GD, Meredith M, Feder R, Dong B, Kluger C, Yao K, Dustin ML, Nussenzweig MC, Steinman RM (2011) Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steadystate mouse brain. J Exp Med208: 1695-1705
https://doi.org/10.1084/jem.20102657
7 Anderson KV, Jurgens G, Nusslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell42: 779-789
https://doi.org/10.1016/0092-8674(85)90274-0
8 Arunkumar N, Liu C, Hang H, Song W (2013) Toll-like receptor agonists induce apoptosis in mouse B-cell lymphoma cells by altering NF-kappaB activation. Cell Mol Immunol10: 360-372
https://doi.org/10.1038/cmi.2013.14
9 Asea A, Rehli M, Kabingu E, Boch JA, Baré O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70 role of Toll-like receptor (TLR) 2 and TLR4. J Biol Chem277: 15028-15034
https://doi.org/10.1074/jbc.M200497200
10 Bartus RT, Elliott P, Hayward N, Dean R, McEwen EL, Fisher SK (1996) Permeability of the blood brain barrier by the bradykinin agonist, RMP-7: evidence for a sensitive, auto-regulated, receptor-mediated system. Immunopharmacology33: 270-278
https://doi.org/10.1016/0162-3109(96)00070-7
11 Bernasconi NL, Onai N, Lanzavecchia A (2003) A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood101: 4500-4504
https://doi.org/10.1182/blood-2002-11-3569
12 Boskovitz A, Wikstrand CJ, Kuan CT, Zalutsky MR, Reardon DA, Bigner DD (2004) Monoclonal antibodies for brain tumour treatment. Expert Opin Biol Ther4: 1453-1471
https://doi.org/10.1517/14712598.4.9.1453
13 Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol7: 122-133
https://doi.org/10.1215/S1152851704001061
14 Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH, Kim YH, Hoppe RT, Knox SJ, Shin LK (2010) In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol28: 4324-4332
https://doi.org/10.1200/JCO.2010.28.9793
15 Butowski N, Chang SM, Junck L, DeAngelis LM, Abrey L, Fink K, Cloughesy T, Lamborn KR, Salazar AM, Prados MD (2009) A phase II clinical trial of poly-ICLC with radiation for adult patients with newly diagnosed supratentorial glioblastoma: a North American Brain Tumor Consortium (NABTC01-05). J Neurooncol91: 175-182
https://doi.org/10.1007/s11060-008-9693-3
16 Calzascia T, Masson F, Di Berardino-Besson W, Contassot E, Wilmotte R, Aurrand-Lions M, Rüegg C, Dietrich P-Y, Walker PR (2005) Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs. Immunity22: 175-184
https://doi.org/10.1016/j.immuni.2004.12.008
17 Caron G, Duluc D, Fremaux I, Jeannin P, David C, Gascan H, Delneste Y (2005) Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN-gamma production by memory CD4+ T cells. J Immunol175: 1551-1557
https://doi.org/10.4049/jimmunol.175.3.1551
18 Carpentier A, Metellus P, Ursu R, Zohar S, Lafitte F, Barrié M, Meng Y, Richard M, Parizot C, Laigle-Donadey F (2010) Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro-oncology12: 401-408
https://doi.org/10.1093/neuonc/nop047
19 Chatterjee S, Crozet L, Damotte D, Iribarren K, Schramm C, Alifano M, Lupo A, Cherfils-Vicini J, Goc J, Katsahian S (2014) TLR7 promotes tumor progression, chemotherapy resistance, and poor clinical outcomes in non-small cell lung cancer. Cancer Res74: 5008-5018
https://doi.org/10.1158/0008-5472.CAN-13-2698
20 Cherfils-Vicini J, Platonova S, Gillard M, Laurans L, Validire P, Caliandro R, Magdeleinat P, Mami-Chouaib F, Dieu-Nosjean MC, Fridman WH (2010) Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance. J Clin Invest120: 1285-1297
https://doi.org/10.1172/JCI36551
21 Chicoine MR, Zahner M, Won EK, Kalra RR, Kitamura T, Perry A, Higashikubo R (2007) The in vivo antitumoral effects of lipopolysaccharide against glioblastoma multiforme are mediated in part by Toll-like receptor 4. Neurosurgery60: 372-380 discussion 381
22 Chirasani SR, Leukel P, Gottfried E, Hochrein J, Stadler K, Neumann B, Oefner PJ, Gronwald W, Bogdahn U, Hau P (2013) Diclofenac inhibits lactate formation and efficiently counteracts local immune suppression in a murine glioma model. Int J Cancer132: 843-853
https://doi.org/10.1002/ijc.27712
23 Crellin NK, Garcia RV, Hadisfar O, Allan SE, Steiner TS, Levings MK (2005) Human CD4+ Tcells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+ CD25+ T regulatory cells. J Immunol175: 8051-8059
https://doi.org/10.4049/jimmunol.175.12.8051
24 Curtin JF, Liu N, Candolfi M, Xiong W, Assi H, Yagiz K, Edwards MR, Michelsen KS, Kroeger KM, Liu C (2009) HMGB1 mediates endogenous TLR2 activation and brain tumor regression. PloS Med6: e10
https://doi.org/10.1371/journal.pmed.1000010
25 da Fonseca AC, Badie B (2013) Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies. Clin Dev Immunol2013: 264124
26 Echigo R, Sugimoto N, Yachie A, Ohno-Shosaku T (2012) Cannabinoids inhibit peptidoglycan-induced phosphorylation of NF-kappaB and cell growth in U87MG human malignant glioma cells. Oncol Rep28: 1176-1180
27 Eguchi J, Hatano M, Nishimura F, Zhu X, Dusak JE, Sato H, Pollack IF, Storkus WJ, Okada H (2006) Identification of interleukin-13 receptor α2 peptide analogues capable of inducing improved antiglioma CTL responses. Cancer Res66: 5883-5891
https://doi.org/10.1158/0008-5472.CAN-06-0363
28 Eigenbrod T, Dalpke AH(2013) TLR7 inhibition: a novel strategy for pancreatic cancer treatment? Jak-Stat2: e23011
https://doi.org/10.4161/jkst.23011
29 Eiro N, Altadill A, Juarez LM, Rodriguez M, Gonzalez LO, Atienza S, Bermudez S, Fernandez-Garcia B, Fresno-Forcelledo MF, Rodrigo L (2014) Toll-like receptors 3, 4 and 9 in hepatocellular carcinoma: Relationship with clinicopathological characteristics and prognosis. Hepatol Res: Off J Japan Soc Hepatol44: 769-778
https://doi.org/10.1111/hepr.12180
30 Elliott PJ, Hayward NJ, Dean RL, Bartus RT (1996) Dissociation of blood-brain barrier permeability and the hypotensive effects of the bradykinin B2 agonist, RMP-7. Immunopharmacology33: 205-208
https://doi.org/10.1016/0162-3109(96)00041-0
31 Foldi M (1999) The brain and the lymphatic system revisited. Lymphology32: 40-44
32 Graner MW, Cumming RI, Bigner DD (2007) The heat shock response and chaperones/heat shock proteins in brain tumors: surface expression, release, and possible immune consequences. J Neurosci27: 11214-11227
https://doi.org/10.1523/JNEUROSCI.3588-07.2007
33 Grauer O, Poschl P, Lohmeier A, Adema GJ, Bogdahn U (2007) Tolllike receptor triggered dendritic cell maturation and IL-12 secretion are necessary to overcome T-cell inhibition by gliomaassociated TGF-beta2. J Neurooncol82: 151-161
https://doi.org/10.1007/s11060-006-9274-2
34 Gupta P, Ghosh S, Nagarajan A, Mehta VS, Sen E (2013) beta-defensin-3 negatively regulates TLR4-HMGB1 axis mediated HLA-G expression in IL-1beta treated glioma cells. Cell Signal25: 682-689
https://doi.org/10.1016/j.cellsig.2012.12.001
35 Haghparast, A., Heidari Kharaji, M., and Malvandi, A.M. (2011). Down-regulation of CD14 transcripts in human glioblastoma cell line U87 MG. Iran J Immunol8
36 Hansen J, Lindenstrom T, Lindberg-Levin J, Aagaard C, Andersen P, Agger EM (2012) CAF05: cationic liposomes that incorporate synthetic cord factor and poly(I:C) induce CTL immunity and reduce tumor burden in mice. Cancer Immunol, Immunothers CII61: 893-903
https://doi.org/10.1007/s00262-011-1156-6
37 Herrmann A, Cherryholmes G, Schroeder A, Phallen J, Alizadeh D, Xin H, Wang T, Lee H, Lahtz C, Swiderski P (2014) TLR9 is critical for glioma stem cell maintenance and targeting. Cancer Res
https://doi.org/10.1158/0008-5472.CAN-14-1151
38 Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of tolllike receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol168: 4531-4537
https://doi.org/10.4049/jimmunol.168.9.4531
39 Huang B, Zhao J, Shen S, Li H, He KL, Shen GX, Mayer L, Unkeless J, Li D, Yuan Y (2007) Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Res67: 4346-4352
https://doi.org/10.1158/0008-5472.CAN-06-4067
40 Huang Z, Yang Y, Jiang Y, Shao J, Sun X, Chen J, Dong L, Zhang J (2013) Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers. Biomaterials34: 746-755
https://doi.org/10.1016/j.biomaterials.2012.09.062
41 Hussain SF, Heimberger AB (2005) Immunotherapy for human glioma: innovative approaches and recent results. Expert Rev Anticancer Ther5: 777-790
https://doi.org/10.1586/14737140.5.5.777
42 Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB (2006a) The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol8: 261-279
https://doi.org/10.1215/15228517-2006-008
43 Hussain SF, Yang D, Suki D, Grimm E, Heimberger AB (2006b) Innate immune functions of microglia isolated from human glioma patients. J Transl Med4: 15
https://doi.org/10.1186/1479-5876-4-15
44 Jackson C, Ruzevick J, Brem H, Lim M (2013) Vaccine strategies for glioblastoma: progress and future directions. Immunotherapy5: 155-167
https://doi.org/10.2217/imt.12.155
45 Kabelitz D (2007) Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol19: 39-45
https://doi.org/10.1016/j.coi.2006.11.007
46 Karman J, Ling C, Sandor M, Fabry Z (2004) Initiation of immune responses in brain is promoted by local dendritic cells. J Immunol173: 2353-2361
https://doi.org/10.4049/jimmunol.173.4.2353
47 Kawakami K, Leland P, Puri RK (2000) Structure, function, and targeting of interleukin 4 receptors on human head and neck cancer cells. Cancer Res60: 2981-2987
48 Kawanishi Y, Tominaga A, Okuyama H, Fukuoka S, Taguchi T, Kusumoto Y, Yawata T, Fujimoto Y, Ono S, Shimizu K (2013) Regulatory effects of Spirulina complex polysaccharides on growth of murine RSV-M glioma cells through Toll-like receptor 4. Microbiol Immunol57: 63-73
https://doi.org/10.1111/1348-0421.12001
49 Kees T, Lohr J, Noack J, Mora R, Gdynia G, Todt G, Ernst A, Radlwimmer B, Falk CS, Herold-Mende C (2012) Microglia isolated from patients with glioma gain antitumor activities on poly (I:C) stimulation. Neuro Oncol14: 64-78
https://doi.org/10.1093/neuonc/nor182
50 Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M, Sukkurwala AQ, Menger L, Zitvogel L, Kroemer G (2011) Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev30: 61-69
https://doi.org/10.1007/s10555-011-9273-4
51 Kjellman C, Olofsson SP, Hansson O, Von Schantz T, Lindvall M, Nilsson I, Salford LG, Sjogren HO, Widegren B (2000) Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma. Int J Cancer89: 251-258
https://doi.org/10.1002/1097-0215(20000520)89:3<251::AID-IJC7>3.0.CO;2-5
52 Kostianovsky AM, Maier LM, Anderson RC, Bruce JN, Anderson DE (2008) Astrocytic regulation of human monocytic/microglial activation. J Immunol181: 5425-5432
https://doi.org/10.4049/jimmunol.181.8.5425
53 Krieg AM (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov5: 471-484
https://doi.org/10.1038/nrd2059
54 Kundu SD, Lee C, Billips BK, Habermacher GM, Zhang Q, Liu V, Wong LY, Klumpp DJ, Thumbikat P (2008) The toll-like receptor pathway: a novel mechanism of infection-induced carcinogenesis of prostate epithelial cells. Prostate68: 223-229
https://doi.org/10.1002/pros.20710
55 Leng L, Jiang T, Zhang Y (2012) TLR9 expression is associated with prognosis in patients with glioblastoma multiforme. J Clin Neurosci19: 75-80
https://doi.org/10.1016/j.jocn.2011.03.037
56 Li G, Mitra S, Wong AJ (2010) The epidermal growth factor variant III peptide vaccine for treatment of malignant gliomas. Neurosurg Clin N Am21: 87-93
https://doi.org/10.1016/j.nec.2009.08.004
57 Li X, Liu D, Liu X, Jiang W, Zhou W, Yan W, Cen Y, Li B, Cao G, Ding G (2012) CpG ODN107 potentiates radiosensitivity of human glioma cells via TLR9-mediated NF-kappaB activation and NO production. Tumour Biol33: 1607-1618
https://doi.org/10.1007/s13277-012-0416-1
58 Liu X, Hu J, Cao W, Qu H, Wang Y, Ma Z, Li F (2013) Effects of two different immunotherapies on triple negative breast cancer in animal model. Cell Immunol284: 111-118
https://doi.org/10.1016/j.cellimm.2013.07.018
59 Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol114: 97-109
https://doi.org/10.1007/s00401-007-0243-4
60 Mansson A, Adner M, Hockerfelt U, Cardell LO (2006) A distinct Tolllike receptor repertoire in human tonsillar B cells, directly activated by PamCSK, R-837 and CpG-2006 stimulation. Immunology118: 539-548
61 Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K, McKenna HJ (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med184: 1953-1962
https://doi.org/10.1084/jem.184.5.1953
62 Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature388: 394-397
https://doi.org/10.1038/41131
63 Meng Y, Kujas M, Marie Y, Paris S, Thillet J, Delattre J-Y, Carpentier AF (2008) Expression of TLR9 within human glioblastoma. J Neuro-oncol88: 19-25
https://doi.org/10.1007/s11060-008-9536-2
64 Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, Del Zoppo GJ, Doolittle ND, Engelhardt B, Hallenbeck JM, Lonser RR, Ohlfest JR (2013) Immunologic privilege in the central nervous system and the blood-brain barrier. J Cereb Blood Flow Metab33: 13-21
https://doi.org/10.1038/jcbfm.2012.153
65 Muraoka D, Harada N, Hayashi T, Tahara Y, Momose F, Sawada S, Mukai SA, Akiyoshi K, Shiku H(2014) Nanogel-based immunologically stealth vaccine targets macrophages in the medulla of lymph node and induces potent antitumor immunity. ACS Nano8: 9209-9218
https://doi.org/10.1021/nn502975r
66 Newton MR, Askeland EJ, Andresen ED, Chehval VA, Wang X, Askeland RW, O’Donnell MA, Luo Y (2014) Anti-interleukin-10R1 monoclonal antibody in combination with bacillus Calmette-Guerin is protective against bladder cancer metastasis in a murine orthotopic tumour model and demonstrates systemic specific anti-tumour immunity. Clin Exp Immunol177: 261-268
https://doi.org/10.1111/cei.12315
67 Nomi N, Kodama S, Suzuki M (2010) Toll-like receptor 3 signaling induces apoptosis in human head and neck cancer via survivin associated pathway. Oncol Rep24: 225-231
68 O’Neill LA, Bowie AG (2007) The family of five: TIR-domaincontaining adaptors in Toll-like receptor signalling. Nat Rev Immunol7: 353-364
https://doi.org/10.1038/nri2079
69 Platten M, Kretz A, Naumann U, Aulwurm S, Egashira K, Isenmann S, Weller M (2003) Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol54: 388-392
https://doi.org/10.1002/ana.10679
70 Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science282: 2085-2088
https://doi.org/10.1126/science.282.5396.2085
71 Pradhan P, Qin H, Leleux JA, Gwak D, Sakamaki I, Kwak LW, Roy K (2014) The effect of combined IL10 siRNA and CpG ODN as pathogen-mimicking microparticles on Th1/Th2 cytokine balance in dendritic cells and protective immunity against B cell lymphoma. Biomaterials35: 5491-5504
https://doi.org/10.1016/j.biomaterials.2014.03.039
72 Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, Nelson SF, Liau LM (2011) Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res17: 1603-1615
https://doi.org/10.1158/1078-0432.CCR-10-2563
73 Provencio JJ, Kivisakk P, Tucky BH, Luciano MG, Ransohoff RM (2005) Comparison of ventricular and lumbar cerebrospinal fluid Tcells in non-inflammatory neurological disorder (NIND) patients. J Neuroimmunol163: 179-184
https://doi.org/10.1016/j.jneuroim.2005.03.003
74 Pulendran B, Lingappa J, Kennedy MK, Smith J, Teepe M, Rudensky A, Maliszewski CR, Maraskovsky E (1997) Developmental pathways of dendritic cells in vivo: distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J Immunol159: 2222-2231
75 Rosenfeld MR, Chamberlain MC, Grossman SA, Peereboom DM, Lesser GJ, Batchelor TT, Desideri S, Salazar AM, Ye X (2010) A multi-institution phase II study of poly-ICLC and radiotherapy with concurrent and adjuvant temozolomide in adults with newly diagnosed glioblastoma. Neuro-oncology12: 1071-1077
https://doi.org/10.1093/neuonc/noq071
76 Salaun B, Coste I, Rissoan M-C, Lebecque SJ, Renno T (2006) TLR3 can directly trigger apoptosis in human cancer cells. J Immunol176: 4894-4901
https://doi.org/10.4049/jimmunol.176.8.4894
77 Sarrazy V, Vedrenne N, Billet F, Bordeau N, Lepreux S, Vital A, Jauberteau MO, Desmouliere A (2011) TLR4 signal transduction pathways neutralize the effect of Fas signals on glioblastoma cell proliferation and migration. Cancer Lett311: 195-202
https://doi.org/10.1016/j.canlet.2011.07.018
78 Serot JM, Foliguet B, Bene MC, Faure GC (1997) Ultrastructural and immunohistological evidence for dendritic-like cells within human choroid plexus epithelium. Neuroreport8: 1995-1998
https://doi.org/10.1097/00001756-199705260-00039
79 Sharma P, Bajorin DF, Jungbluth AA, Herr H, Old LJ, Gnjatic S (2008) Immune responses detected in urothelial carcinoma patients after vaccination with NY-ESO-1 protein plus BCG and GM-CSF. J Immunother31: 849-857
https://doi.org/10.1097/CJI.0b013e3181891574
80 Shinohara H, Yagita H, Ikawa Y, Oyaizu N (2000) Fas drives cell cycle progression in glioma cells via extracellular signal-regulated kinase activation. Cancer Res60: 1766-1772
81 Sinha S, Koul N, Dixit D, Sharma V, Sen E (2011) IGF-1 induced HIF-1alpha-TLR9 cross talk regulates inflammatory responses in glioma. Cell Signal23: 1869-1875
https://doi.org/10.1016/j.cellsig.2011.06.024
82 Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr Neuropharmacol6: 179-192
https://doi.org/10.2174/157015908785777210
83 Stathopoulos A, Pretto C, Devillers L, Pierre D, Hofman FM, Kruse C, Jadus M, Chen TC, Schijns VE (2012) Development of immune memory to glial brain tumors after tumor regression induced by immunotherapeutic Toll-like receptor 7/8 activation. Oncoimmunology1: 298-305
https://doi.org/10.4161/onci.19068
84 Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med352: 987-996
https://doi.org/10.1056/NEJMoa043330
85 Tewari R, Sharma V, Koul N, Ghosh A, Joseph C, Hossain Sk U, Sen E (2009) Ebselen abrogates TNFalpha induced pro-inflammatory response in glioblastoma. Mol Oncol3: 77-83
https://doi.org/10.1016/j.molonc.2008.10.004
86 Tewari R, Choudhury SR, Ghosh S, Mehta VS, Sen E (2012) Involvement of TNFalpha-induced TLR4-NF-kappaB and TLR4-HIF-1alpha feed-forward loops in the regulation of inflammatory responses in glioma. J Mol Med (Berl)90: 67-80
https://doi.org/10.1007/s00109-011-0807-6
87 Thuringer D, Hammann A, Benikhlef N, Fourmaux E, Bouchot A, Wettstein G, Solary E, Garrido C (2011) Transactivation of the epidermal growth factor receptor by heat shock protein 90 via Toll-like receptor 4 contributes to the migration of glioblastoma cells. J Biol Chem286: 3418-3428
https://doi.org/10.1074/jbc.M110.154823
88 Vansteenkiste J, Zielinski M, Linder A, Dahabre J, Esteban E, Malinowski W, Jassem J, Passlick B, Lehmann F, Brichard V (2007) Final results of a multi-center, double-blind, randomized, placebo-controlled phase II study to assess the efficacy of MAGE-A3 immunotherapeutic as adjuvant therapy in stage IB/II non-small cell lung cancer (NSCLC). J Clin Oncol25: 7554
89 Vermorken JB, Claessen AM, van Tinteren H, Gall HE, Ezinga R, Meijer S, Scheper RJ, Meijer CJ, Bloemena E, Ransom JH (1999) Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet353: 345-350
https://doi.org/10.1016/S0140-6736(98)07186-4
90 Vinnakota K, Hu F, Ku MC, Georgieva PB, Szulzewsky F, Pohlmann A, Waiczies S, Waiczies H, Niendorf T, Lehnardt S (2013) Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion. Neuro Oncol15: 1457-1468
https://doi.org/10.1093/neuonc/not115
91 Walenta S, Mueller-Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol14: 267-274
https://doi.org/10.1016/j.semradonc.2004.04.004
92 Wang HJ, Casley-Smith JR (1989) Drainage of the prelymphatics of the brain via the adventitia of the vertebral artery. Acta Anat (Basel)134: 67-71
https://doi.org/10.1159/000146736
93 Wang C, Cao S, Yan Y, Ying Q, Jiang T, Xu K, Wu A (2010) TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients. BMC Cancer10: 415
https://doi.org/10.1186/1471-2407-10-415
94 Weller RO, Djuanda E, Yow HY, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol117: 1-14
https://doi.org/10.1007/s00401-008-0457-0
95 Wolburg H, Wolburg-Buchholz K, Engelhardt B (2005) Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol109: 181-190
https://doi.org/10.1007/s00401-004-0928-x
96 Wu A, Oh S, Gharagozlou S, Vedi RN, Ericson K, Low WC, Chen W, Ohlfest JR (2007) In vivo vaccination with tumor cell lysate plus CpG oligodeoxynucleotides eradicates murine glioblastoma. J Immunother30: 789-797
https://doi.org/10.1097/CJI.0b013e318155a0f6
97 Xiong Z, Ohlfest JR (2011) Topical imiquimod has therapeutic and immunomodulatory effects against intracranial tumors. J Immunother (Hagerstown, Md: 1997)34: 264
https://doi.org/10.1097/CJI.0b013e318209eed4
98 Yang I, Han SJ, Kaur G, Crane C, Parsa AT (2010) The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci17: 6-10
https://doi.org/10.1016/j.jocn.2009.05.006
99 Zarember KA, Godowski PJ (2002) Tissue expression of human Tolllike receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol168: 554-561
https://doi.org/10.4049/jimmunol.168.2.554
100 Zhan Z, Xie X, Cao H, Zhou X, Zhang XD, Fan H, Liu Z (2014) Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy10: 257-268
https://doi.org/10.4161/auto.27162
101 Zhang Y, Luo F, Li A, Qian J, Yao Z, Feng X, Chu Y (2014) Systemic injection of TLR1/2 agonist improves adoptive antigen-specific T cell therapy in glioma-bearing mice. Clin Immunol154: 26-36
https://doi.org/10.1016/j.clim.2014.06.004
102 Zhao JX, Yang LP, Wang YF, Qin LP, Liu DQ, Bai CX, Nan X, Shi SS, Pei XJ(2007) Gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9 in rat brain after implantation of 9L rat glioma cells. Eur J Neurol14: 510-516
https://doi.org/10.1111/j.1468-1331.2006.01705.x
103 Zhao D, Alizadeh D, Zhang L, Liu W, Farrukh O, Manuel E, Diamond DJ, Badie B (2011) Carbon nanotubes enhance CpG uptake and potentiate antiglioma immunity. Clin Cancer Res17: 771-782
https://doi.org/10.1158/1078-0432.CCR-10-2444
104 Zhao BG, Vasilakos JP, Tross D, Smirnov D, Klinman DM (2014) Combination therapy targeting toll like receptors 7, 8 and 9 eliminates large established tumors. J Immunother Cancer2: 12
https://doi.org/10.1186/2051-1426-2-12
105 Zhu X, Nishimura F, Sasaki K, Fujita M, Dusak JE, Eguchi J, Fellows-Mayle W, Storkus WJ, Walker PR, Salazar AM (2007) Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med5: 10
https://doi.org/10.1186/1479-5876-5-10
[1] Yelei Guo, Kaichao Feng, Yao Wang, Weidong Han. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment[J]. Protein Cell, 2018, 9(6): 516-526.
[2] Yanjing Song, Chuan Tong, Yao Wang, Yunhe Gao, Hanren Dai, Yelei Guo, Xudong Zhao, Yi Wang, Zizheng Wang, Weidong Han, Lin Chen. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo[J]. Protein Cell, 2018, 9(10): 867-878.
[3] Jiangtao Ren, Yangbing Zhao. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9[J]. Protein Cell, 2017, 8(9): 634-643.
[4] Hua Li, Yangbing Zhao. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy[J]. Protein Cell, 2017, 8(8): 573-589.
[5] Dongfang Liu, Shuo Tian, Kai Zhang, Wei Xiong, Ndongala Michel Lubaki, Zhiying Chen, Weidong Han. Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV[J]. Protein Cell, 2017, 8(12): 861-877.
[6] Nicholas Borcherding,David Kusner,Guang-Hui Liu,Weizhou Zhang. ROR1, an embryonic protein with an emerging role in cancer biology[J]. Protein Cell, 2014, 5(7): 496-502.
[7] Juan Ma,Huamin Han,Li Ma,Changzhen Liu,Xin Xue,Pan Ma,Xiaomei Li,Hua Tao. The immunostimulatory effects of retinoblastoma cell supernatant on dendritic cells[J]. Protein Cell, 2014, 5(4): 307-316.
[8] Shunbin Xiong,Tianyang Mu,Guowen Wang,Xuejun Jiang. Mitochondria-mediated apoptosis in mammals[J]. Protein Cell, 2014, 5(10): 737-749.
[9] Xiao Chen, Roshan D’Souza, Seong-Tshool Hong. The role of gut microbiota in the gut-brain axis: current challenges and perspectives[J]. Prot Cell, 2013, 4(6): 403-414.
[10] Yang Yang, Ling Zhang, Heyuan Geng, Yao Deng, Baoying Huang, Yin Guo, Zhengdong Zhao, Wenjie Tan. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists[J]. Prot Cell, 2013, 4(12): 951-961.
[11] Musheng Bao, Yong-Jun Liu. Regulation of TLR7/9 signaling in plasmacytoid dendritic cells[J]. Prot Cell, 2013, 4(1): 40-52.
[12] Ming-sheng Cai, Mei-li Li, Chun-fu Zheng. Herpesviral infection and Toll-like receptor 2[J]. Prot Cell, 2012, 3(8): 590-601.
[13] Qian Wu, Xiaoqun Wang. Neuronal stem cells in the central nervous system and in human diseases[J]. Prot Cell, 2012, 3(4): 262-270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed