Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2014, Vol. 5 Issue (7) : 496-502    https://doi.org/10.1007/s13238-014-0059-7
MINI-REVIEW
ROR1, an embryonic protein with an emerging role in cancer biology
Nicholas Borcherding1,David Kusner2,Guang-Hui Liu3,4,Weizhou Zhang1,*()
1. Department of Pathology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
2. Department of Molecular and Cellular Biology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
3. National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
4. Beijing Institute for Brain Disorders Brain Tumor Center, Beijing 100101, China
 Download: PDF(521 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a member of the ROR family consisting of ROR1 and ROR2. RORs contain two distinct extracellular cysteinerich domains and one transmembrane domain. Within the intracellular portion, ROR1 possesses a tyrosine kinase domain, two serine/threonine-rich domains and a proline-rich domain. RORs have been studied in the context of embryonic patterning and neurogenesis through a variety of homologs. These physiologic functions are dichotomous based on the requirement of the kinase domain. A growing literature has established ROR1 as a marker for cancer, such as in CLL and other blood malignancies. In addition, ROR1 is critically involved in progression of a number of blood and solid malignancies. ROR1 has been shown to inhibit apoptosis, potentiate EGFR signaling, and induce epithelial-mesenchymal transition (EMT). Importantly, ROR1 is only detectable in embryonic tissue and generally absent in adult tissue, making the protein an ideal drug target for cancer therapy.

Keywords ROR1      embryogenesis      cancer      immunotherapy     
Corresponding Author(s): Weizhou Zhang   
Issue Date: 31 July 2014
 Cite this article:   
Nicholas Borcherding,David Kusner,Guang-Hui Liu, et al. ROR1, an embryonic protein with an emerging role in cancer biology[J]. Protein Cell, 2014, 5(7): 496-502.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-014-0059-7
https://academic.hep.com.cn/pac/EN/Y2014/V5/I7/496
1 Afzal AR, Rajab A, Fenske CD, Oldridge M, Elanko N, Ternes-Pereira E, Tüysüz B, Murday VA, Patton MA, Wilkie AOM (2000) Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat Genet25: 419-422
doi: 10.1038/78107
2 Al-Shawi R, Ashton SV, Underwood C, Simons JP (2001) Expression of the Ror1 and Ror2 receptor tyrosine kinase genes during mouse development. Dev Genes Evol211: 161-171
doi: 10.1007/s004270100140
3 Barna G, Mihalik R, Timár B, T?mb?l J, Csende Z, Sebestyén A, B?d?r C, Csernus B, Reiniger L, Peták I (2011) ROR1 expression is not a unique marker of CLL. Hematol Oncol29: 17-21
doi: 10.1002/hon.948
4 Baskar S, Kwong KY, Hofer T, Levy JM, Kennedy MG, Lee E, Staudt LM, Wilson WH, Wiestner A, Rader C (2008) unique cell surface expression of receptor tyrosine kinase ROR1 in human B-cell chronic lymphocytic leukemia. Clin Cancer Res14: 396-404
doi: 10.1158/1078-0432.CCR-07-1823
5 Baskar S, Wiestner A, Wilson WH, Pastan I, Rader C (2012) Targeting malignant B cells with an immunotoxin against ROR1. mAbs4: 349-361
doi: 10.4161/mabs.19870
6 Bicocca VT, Chang BH, Masouleh BK, Muschen M, Loriaux MM, Druker BJ, Tyner JW(2012) Crosstalk between ROR1 and the pre-B Cell receptor promotes survival of t(1;19) acute lymphoblastic leukemia. Cancer Cell22: 656-667
doi: 10.1016/j.ccr.2012.08.027
7 Cui B, Zhang S, Chen L, Yu J, Widhopf GF, Fecteau J-F, Rassenti LZ, Kipps TJ (2013) Targeting ROR1 inhibits epithelial-mesenchymal transition and metastasis. Cancer Res73: 3649-3660
doi: 10.1158/0008-5472.CAN-12-3832
8 Daneshmanesh AH, Mikaelsson E, Jeddi-Tehrani M, Bayat AA, Ghods R, Ostadkarampour M, Akhondi M, Lagercrantz S, Larsson C, ?sterborg A (2008) Ror1, a cell surface receptor tyrosine kinase is expressed in chronic lymphocytic leukemia and may serve as a putative target for therapy. Int J Cancer123: 1190-1195
doi: 10.1002/ijc.23587
9 Daneshmanesh AH, Porwit A, Hojjat-Farsangi M, Jeddi-Tehrani M, Tamm KP, Grandér D, Lehmann S, Norin S, Shokri F, Rabbani H (2013) Orphan receptor tyrosine kinases ROR1 and ROR2 in hematological malignancies. Leuk Lymphoma54: 843-850
doi: 10.3109/10428194.2012.731599
10 DeChiara TM, Kimble RB, Poueymirou WT, Rojas J, Masiakowski P, Valenzuela DM, Yancopoulos GD (2000) Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nat Genet24: 271-274
doi: 10.1038/73488
11 Forrester WC, Dell M, Perens E, Garriga G (1999) A C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature400: 881-885
doi: 10.1038/23722
12 Forrester WC, Kim C, Garriga G (2004) The Caenorhabditis elegans Ror RTK CAM-1 inhibits EGL-20/Wnt signaling in cell migration. Genetics168: 1951-1962
doi: 10.1534/genetics.104.031781
13 Frank DA, Mahajan S, Ritz J (1997) B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Investig100: 3140-3148
doi: 10.1172/JCI119869
14 Fukuda T, Chen L, Endo T, Tang L, Lu D, Castro JE, Widhopf GF II, Rassenti LZ, Cantwell MJ, Prussak CE (2008) Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a. Proc Natl Acad Sci USA105: 3047-3052
doi: 10.1073/pnas.0712148105
15 Gentile A, Lazzari L, Benvenuti S, Trusolino L, Comoglio PM (2011) Ror1 is a pseudokinase that is crucial for met-driven tumorigenesis. Cancer Res71: 3132-3141
doi: 10.1158/0008-5472.CAN-10-2662
16 Green JL, Inoue T, Sternberg PW (2007) The C. elegans ROR receptor tyrosine kinase, CAM-1, non-autonomously inhibits the Wnt pathway. Development134: 4053-4062
doi: 10.1242/dev.005363
17 Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, Vijayakumar S, Economides AN, Aaronson SA (2010) Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev24: 2517-2530
doi: 10.1101/gad.1957710
18 Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science241: 42-52
doi: 10.1126/science.3291115
19 Hikasa H, Shibata M, Hiratani I, Taira M (2002) The Xenopus receptor tyrosine kinase Xror2 modulates morphogenetic movements of the axial mesoderm and neuroectoderm via Wnt signaling. Development129: 5227-5239
20 Hojjat-Farsangi M, Ghaemimanesh F, Daneshmanesh AH, Bayat AA, Mahmoudian J, Jeddi-Tehrani M, Rabbani H, Mellstedt H (2013) Inhibition of the receptor tyrosine kinase ROR1 by anti-ROR1 monoclonal antibodies and siRNA induced apoptosis of melanoma cells. PLoS ONE8: e61167
doi: 10.1371/journal.pone.0061167
21 Hudecek M, Schmitt TM, Baskar S, Lupo-Stanghellini MT, Nishida T, Yamamoto TN, Bleakley M, Turtle CJ, Chang W-C, Greisman HA (2010) The B-cell tumor-associated antigen ROR1 can be targeted with T cells modified to express a ROR1-specific chimeric antigen receptor. Blood116: 4532-4541
doi: 10.1182/blood-2010-05-283309
22 Kaucká M, Krej?í P, Plevová K, Pavlová ?, Procházková J, Janovská P, Valnohová J, Kozubík A, Pospí?ilová ?, Bryja V (2011) Post-translational modifications regulate signalling by Ror1. Acta Physiol203: 351-362
doi: 10.1111/j.1748-1716.2011.02306.x
23 Li P, Harris D, Liu Z, Liu J, Keating M, Estrov Z (2010) Stat3 activates the receptor tyrosine kinase like orphan receptor-1 gene in chronic lymphocytic leukemia cells. PLoS ONE5: e11859
doi: 10.1371/journal.pone.0011859
24 MacKeigan JP, Murphy LO, Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol7: 591-600
doi: 10.1038/ncb1258
25 Masiakowski P, Carroll RD (1992) A novel family of cell surface receptors with tyrosine kinase-like domain. J Biol Chem267: 26181-26190
26 Mathews II, Vanderhoff-Hanaver P, Castellino FJ, Tulinsky A (1996) Crystal structures of the recombinant kringle 1 domain of human plasminogen in complexes with the ligands ?-aminocaproic acid and trans-4-(aminomethyl)cyclohexane-1-carboxylic acid?. Biochemistry35: 2567-2576
doi: 10.1021/bi9521351
27 Matsuda T, Nomi M, Ikeya M, Kani S, Oishi I, Terashima T, Takada S, Minami Y (2001) Expression of the receptor tyrosine kinase genes, Ror1 and Ror2, during mouse development. Mech Dev105: 153-156
doi: 10.1016/S0925-4773(01)00383-5
28 McKay SE, Hislop J, Scott D, Bulloch AGM, Kaczmarek LK, Carew TJ, Sossin WS (2001) Aplysia Ror forms clusters on the surface of identified neuroendocrine cells. Mol Cell Neurosci17: 821-841
doi: 10.1006/mcne.2001.0977
29 Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits β-catenin-TCF signaling depending on receptor context. PLoS Biol4: e115
doi: 10.1371/journal.pbio.0040115
30 Mizuno K, Inoue H, Hagiya M, Shimizu S, Nose T, Shimohigashi Y, Nakamura T (1994) Hairpin loop and second kringle domain are essential sites for heparin binding and biological activity of hepatocyte growth factor. J Biol Chem269: 1131-1136
31 Nomi M, Oishi I, Kani S, Suzuki H, Matsuda T, Yoda A, Kitamura M, Itoh K, Takeuchi S, Takeda K (2001) Loss of mRor1 enhances the heart and skeletal abnormalities in mRor2-deficient mice: redundant and pleiotropic functions of mRor1 and mRor2 receptor tyrosine kinases. Mol Cell Biol21: 8329-8335
doi: 10.1128/MCB.21.24.8329-8335.2001
32 O’Connell MP, Marchbank K, Webster MR, Valiga AA, Kaur A, Vultur A, Li L, Herlyn M, Villanueva J, Liu Q (2013) Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov3: 1378-1393
doi: 10.1158/2159-8290.CD-13-0005
33 Oishi I, Sugiyama S, Liu Z-J, Yamamura H, Nishida Y, Minami Y (1997) A novel drosophila receptor tyrosine kinase expressed specifically in the nervous system unique structural features and implication in developmental signaling. J Biol Chem272: 11916-11923
doi: 10.1074/jbc.272.18.11916
34 Oishi I, Takeuchi S, Hashimoto R, Nagabukuro A, Ueda T, Liu Z-J, Hatta T, Akira S, Matsuda Y, Yamamura H (1999) Spatiotemporally regulated expression of receptor tyrosine kinases, mRor1, mRor2, during mouse development: implications in development and function of the nervous system. Genes Cells4: 41-56
doi: 10.1046/j.1365-2443.1999.00234.x
35 Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, Yamada G, Schwabe GC (2003) The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells8: 645-654
doi: 10.1046/j.1365-2443.2003.00662.x
36 Oldridge MMA, Maringa M, Propping P, Mansour S, Pollitt C, DeChiara TM, Kimble RB, Valenzuela DM, Yancopoulos GD (2000) Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B. Nat Genet24: 275-278
doi: 10.1038/73495
37 Paganoni S, Bernstein J, Ferreira A (2010) Ror1-Ror2 complexes modulate synapse formation in hippocampal neurons. Neuroscience165: 1261-1274
doi: 10.1016/j.neuroscience.2009.11.056
38 Rabbani H, Ostadkarampour M, Danesh Manesh AH, Basiri A, Jeddi-Tehrani M, Forouzesh F (2010) Expression of ROR1 in patients with renal cancer—a potential diagnostic marker. Iran Biomed J14: 77-82
39 Roszmusz E, Patthy A, Trexler M, Patthy L (2001) Localization of disulfide bonds in the frizzled module of Ror1 receptor tyrosine kinase. J Biol Chem276: 18485-18490
doi: 10.1074/jbc.M100100200
40 Stephens RW, Bokman AM, Myohanen HT, Reisberg T, Tapiovaara H, Pedersen N, Groendahl-Hansen J, Llinas M, Vaheri A (1992) Heparin binding to the urokinase kringle domain. Biochemistry31: 7572-7579
doi: 10.1021/bi00148a019
41 Stricker S, Verhey Van Wijk N, Witte F, Brieske N, Seidel K, Mundlos S (2006) Cloning and expression pattern of chicken Ror2 and functional characterization of truncating mutations in Brachydactyly type B and Robinow syndrome. Dev Dyn235: 3456-3465
doi: 10.1002/dvdy.20993
42 Takeuchi S, Takeda K, Oishi I, Nomi M, Ikeya M, Itoh K, Tamura S, Ueda T, Hatta T, Otani H (2000) Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells5: 71-78
doi: 10.1046/j.1365-2443.2000.00300.x
43 van Bokhoven H, Celli J, Kayserili H, van Beusekom E, Balci S, Brussel W, Skovby F, Kerr B, Percin EF, Akarsu N (2000) Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat Genet25: 423-426
doi: 10.1038/78113
44 Wilson C, Goberdhan DC, Steller H (1993) Dror, a potential neurotrophic receptor gene, encodes a Drosophila homolog of the vertebrate Ror family of Trk-related receptor tyrosine kinases. Proc Natl Acad Sci USA90: 7109-7113
doi: 10.1073/pnas.90.15.7109
45 Yamaguchi T, Yanagisawa K, Sugiyama R, Hosono Y, Shimada Y, Arima C, Kato S, Tomida S, Suzuki M, Osada H (2012) NKX2-1/ TITF1/TTF-1-induced ROR1 Is required to sustain EGFR survival signaling in lung adenocarcinoma. Cancer Cell21: 348-361
doi: 10.1016/j.ccr.2012.02.008
46 Yang J, Baskar S, Kwong KY, Kennedy MG, Wiestner A, Rader C (2011) Therapeutic potential and challenges of targeting receptor tyrosine kinase ROR1 with monoclonal antibodies in B-cell malignancies. PLoS ONE6: e21018
doi: 10.1371/journal.pone.0021018
47 Zhang S, Chen L, Cui B, Chuang H-Y, Yu J, Wang-Rodriguez J, Tang L, Chen G, Basak GW, Kipps TJ (2012a) ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PLoS ONE7: e31127
doi: 10.1371/journal.pone.0031127
48 Zhang S, Chen L, Wang-Rodriguez J, Zhang L, Cui B, Frankel W, Wu R, Kipps TJ (2012b) The onco-embryonic antigen ROR1 is expressed by a variety of human cancers. Am J Pathol181: 1903-1910
doi: 10.1016/j.ajpath.2012.08.024
[1] Mona Teng, Stanley Zhou, Changmeng Cai, Mathieu Lupien, Housheng Hansen He. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12(1): 29-38.
[2] Henry Y. Jiang, Sara Najmeh, Guy Martel, Elyse MacFadden-Murphy, Raquel Farias, Paul Savage, Arielle Leone, Lucie Roussel, Jonathan Cools-Lartigue, Stephen Gowing, Julie Berube, Betty Giannias, France Bourdeau, Carlos H. F. Chan, Jonathan D. Spicer, Rebecca McClure, Morag Park, Simon Rousseau, Lorenzo E. Ferri. Activation of the pattern recognition receptor NOD1 augments colon cancer metastasis[J]. Protein Cell, 2020, 11(3): 187-201.
[3] Ruyi Xu, Yi Li, Yang Liu, Jianwei Qu, Wen Cao, Enfan Zhang, Jingsong He, Zhen Cai. How are MCPIP1 and cytokines mutually regulated in cancer-related immunity?[J]. Protein Cell, 2020, 11(12): 881-893.
[4] Weiwei Jiang, Fangfang Cai, Huangru Xu, Yanyan Lu, Jia Chen, Jia Liu, Nini Cao, Xiangyu Zhang, Xiao Chen, Qilai Huang, Hongqin Zhuang, Zi-Chun Hua. Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner[J]. Protein Cell, 2020, 11(11): 825-845.
[5] Fenjie Li, Junjun Ding. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression[J]. Protein Cell, 2019, 10(8): 550-565.
[6] Wei Shao, Shasha Li, Lu Li, Kequan Lin, Xinhong Liu, Haiyan Wang, Huili Wang, Dong Wang. Chemical genomics reveals inhibition of breast cancer lung metastasis by Ponatinib via c-Jun[J]. Protein Cell, 2019, 10(3): 161-177.
[7] Boyi Zhang, Fei Chen, Qixia Xu, Liu Han, Jiaqian Xu, Libin Gao, Xiaochen Sun, Yiwen Li, Yan Li, Min Qian, Yu Sun. Revisiting ovarian cancer microenvironment: a friend or a foe?[J]. Protein Cell, 2018, 9(8): 674-692.
[8] Yelei Guo, Kaichao Feng, Yao Wang, Weidong Han. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment[J]. Protein Cell, 2018, 9(6): 516-526.
[9] Jia Yang, Jun Yu. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get[J]. Protein Cell, 2018, 9(5): 474-487.
[10] Xiao-xiao Xu, Han Wan, Li Nie, Tong Shao, Li-xin Xiang, Jian-zhong Shao. RIG-I: a multifunctional protein beyond a pattern recognition receptor[J]. Protein Cell, 2018, 9(3): 246-253.
[11] Nicole M. Anderson, Patrick Mucka, Joseph G. Kern, Hui Feng. The emerging role and targetability of the TCA cycle in cancer metabolism[J]. Protein Cell, 2018, 9(2): 216-237.
[12] John M. Dean, Irfan J. Lodhi. Structural and functional roles of ether lipids[J]. Protein Cell, 2018, 9(2): 196-206.
[13] Yanjing Song, Chuan Tong, Yao Wang, Yunhe Gao, Hanren Dai, Yelei Guo, Xudong Zhao, Yi Wang, Zizheng Wang, Weidong Han, Lin Chen. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo[J]. Protein Cell, 2018, 9(10): 867-878.
[14] Xiaowei Chen, Zhen Fan, Warren McGee, Mengmeng Chen, Ruirui Kong, Pushuai Wen, Tengfei Xiao, Xiaomin Chen, Jianghong Liu, Li Zhu, Runsheng Chen, Jane Y. Wu. TDP-43 regulates cancer-associated microRNAs[J]. Protein Cell, 2018, 9(10): 848-866.
[15] Kaichao Feng, Yang Liu, Yelei Guo, Jingdan Qiu, Zhiqiang Wu, Hanren Dai, Qingming Yang, Yao Wang, Weidong Han. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers[J]. Protein Cell, 2018, 9(10): 838-847.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed