Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell
High-throughput single-microbe RNA sequencing reveals adaptive state heterogeneity and host-phage activity associations in human gut microbiome
Yifei Shen1,2, Qinghong Qian3, Liguo Ding1, Wenxin Qu1,2, Tianyu Zhang4, Mengdi Song4, Yingjuan Huang4, Mengting Wang4, Ziye Xu1, Jiaye Chen1, Ling Dong4, Hongyu Chen3, Enhui Shen3, Shufa Zheng1,2, Yu Chen1,2, Jiong Liu4, Longjiang Fan3(), Yongcheng Wang1()
. Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
. Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou 310058, China
. Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
. M20 Genomics, Hangzhou 310058, China
 Download: PDF(6133 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microbial communities such as those residing in the human gut are highly diverse and complex, and many with important implications for health and diseases. The effects and functions of these microbial communities are determined not only by their species compositions and diversities but also by the dynamic intra- and inter-cellular states at the transcriptional level. Powerful and scalable technologies capable of acquiring single- microbe-resolution RNA sequencing information in order to achieve a comprehensive understanding of complex microbial communities together with their hosts are therefore utterly needed. Here we report the development and utilization of a droplet- based smRNA-seq (single-microbe RNA sequencing) method capable of identifying large species varieties in human samples, which we name smRandom-seq2. Together with a triple-module computational pipeline designed for the bacteria and bacteriophage sequencing data by smRandom-seq2 in four human gut samples, we established a single-cell level bacterial transcriptional landscape of human gut microbiome, which included 29,742 single microbes and 329 unique species. Distinct adaptive response states among species in Prevotella and Roseburia genera and intrinsic adaptive strategy heterogeneity in Phascolarctobacterium succinatutens were uncovered. Additionally, we identified hundreds of novel host-phage transcriptional activity associations in the human gut microbiome. Our results indicated that smRandom-seq2 is a high-throughput and high-resolution smRNA-seq technique that is highly adaptable to complex microbial communities in real-world situations and promises new perspectives in the understanding of human microbiomes.

Keywords single-microbe RNA sequencing (smRNA-seq)      droplet microfluidics      microbiome      host-phage association      smRandom-seq2     
Corresponding Author(s): Longjiang Fan,Yongcheng Wang   
Online First Date: 13 November 2024   
 Cite this article:   
Yifei Shen,Qinghong Qian,Liguo Ding, et al. High-throughput single-microbe RNA sequencing reveals adaptive state heterogeneity and host-phage activity associations in human gut microbiome[J]. Protein Cell, 13 November 2024. [Epub ahead of print] doi: 10.1093/procel/pwae027.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1093/procel/pwae027
https://academic.hep.com.cn/pac/EN/Y/V/I/1
1 A Almeida, S Nayfach, M Boland et al. A unified catalog of 204, 938 reference genomes from the human gut microbiome. Nat Biotechnol 2021;39:105–114.
https://doi.org/10.1038/S41587-020-0603-3
2 SB Blattman, W Jiang, P Oikonomou et al. Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing. Nat Microbiol 2020;5:1192–1201.
https://doi.org/10.1038/S41564-020-0729-6
3 LF Camarillo-Guerrero, A Almeida, G Rangel-Pineros et al. Massive expansion of human gut bacteriophage diversity. Cell 2021;184:1098–1109.e9.
https://doi.org/10.1016/j.cell.2021.01.029
4 S Chong, C Chen, H Ge et al. Mechanism of transcriptional bursting in bacteria. Cell 2014;158:314–326.
https://doi.org/10.1016/j.cell.2014.05.038
5 D Dar, N Dar, L Cai et al. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science 2021;373:eabi4882.
https://doi.org/10.1126/science.abi4882
6 A Dobin, CA Davis, F Schlesinger et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.
https://doi.org/10.1093/bioinformatics/btS635
7 K Fujimoto, Y Kimura, JR Allegretti et al. Functional restoration of bacteriomes and viromes by fecal microbiota transplantation. Gastroenterology 2021;160:2089–2102.e12.
https://doi.org/10.1053/j.gastro.2021.02.013
8 J Han, RA Depinho, A Maitra. Single-cell RNA sequencing in pancreatic cancer. Nat Rev Gastroenterol Hepatol 2021;18:451–452.
https://doi.org/10.1038/S41575-021-00471-z
9 Y Hao, S Hao, E Andersen-Nissen et al. Integrated analysis of multimodal single-cell data. Cell 2021;184:3573–3587. e29.
https://doi.org/10.1016/j.cell.2021.04.048
10 N Ikeyama, T Murakami, A Toyoda et al. Microbial interaction between the succinate-utilizing bacterium Phascolarctobacterium faecium and the gut commensal Bacteroides thetaiotaomicron. Microbiologyopen 2020;9:e1111.
https://doi.org/10.1002/mbO3.1111
11 F Imdahl, E Vafadarnejad, C Homberger et al. Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria. Nat Microbiol 2020;5:1202–1206.
https://doi.org/10.1038/S41564-020-0774-1
12 AM Klein, L Mazutis, I Akartuna et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015;161:1187–1201.
https://doi.org/10.1016/j.cell.2015.04.044
13 J Ko, Y Wang, K Sheng et al. Sequencing-based protein analysis of single extracellular vesicles. ACS Nano 2021;15:5631–5638.
https://doi.org/10.1021/acsnano.1C00782
14 E Kopylova, L Noé, H Touzet. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 2012;28:3211–3217.
https://doi.org/10.1093/bioinformatics/btS611
15 A Kuchina, LM Brettner, L Paleologu et al. Microbial single-cell RNA sequencing by split-pool barcoding. Science 2021;371:eaba5257.
https://doi.org/10.1126/science.aba5257
16 Y Liao, GK Smyth, W Shi. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30:923–930.
https://doi.org/10.1093/bioinformatics/btt656
17 J Lu, N Rincon, DE Wood et al. Metagenome analysis using the Kraken software suite. Nat Protoc 2022;17:2815–2839.
https://doi.org/10.1038/S41596-022-00738-y
18 P Ma, HM Amemiya, LL He et al. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell 2023;186:877–891.e14.
https://doi.org/10.1016/j.cell.2023.01.002
19 P Manrique, B Bolduc, S T Walk et al. Healthy human gut phageome. Proc Natl Acad Sci U S A 2016;113:10400–10405.
https://doi.org/10.1073/pnas.1601060113
20 J Mayneris-Perxachs, A Castells-Nobau, M Arnoriaga-Rodríguez et al. Microbiota alterations in proline metabolism impact depression. Cell Metab 2022;34:681–701.e10.
https://doi.org/10.1016/j.cmet.2022.04.001
21 R Mcnulty, D Sritharan, SH Pahng et al. Probe-based bacterial single-cell RNA sequencing predicts toxin regulation. Nat Microbiol 2023;8:934–945.
https://doi.org/10.1038/S41564-023-01348-4
22 A Natarajan, AS Bhatt. Microbes and microbiomes in 2020 and beyond. Nat Commun 2020;11:4988.
https://doi.org/10.1038/S41467-020-18850-6
23 DT Paik, S Cho, L Tian et al. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol 2020;17:457–473.
https://doi.org/10.1038/S41569-020-0359-y
24 E Papalexi, R Satija. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 2018;18:35–45.
https://doi.org/10.1038/nri.2017.76
25 AM Patterson, IE Mulder, AJ Travis et al. Human gut symbiont roseburia hominis promotes and regulates innate immunity. Front Immunol 2017;8:1166.
https://doi.org/10.3389/fimmu.2017.01166
26 PKV Prasoodanan, AK Sharma, S Mahajan et al. Western and non-western gut microbiomes reveal new roles of Prevotella in carbohydrate metabolism and mouth-gut axis. npj Biofilms Microbiomes 2021;7:77.
https://doi.org/10.1038/S41522-021-00248-x
27 R Roemhild, T Bollenbach, DI Andersson. The physiology and genetics of bacterial responses to antibiotic combinations. Nat Rev Microbiol 2022;20:478–490.
https://doi.org/10.1038/S41579-022-00700-5
28 A Sharma, JA Gilbert. Microbial exposure and human health. Curr Opin Microbiol 2018;44:79–87.
https://doi.org/10.1016/j.mib.2018.08.003
29 K Sheng, W Cao, Y Niu et al. Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat Methods 2017;14:267–270.
https://doi.org/10.1038/nmeth.4145
30 AN Shkoporov, CJ Turkington, C Hill. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol 2022;20:737–749.
https://doi.org/10.1038/S41579-022-00755-4
31 T Smith, A Heger, I Sudbery. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res 2017;27:491–499.
https://doi.org/10.1101/gr.209601.116
32 WPJ Smith,, BR Wucher, CD Nadell et al. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023;21:519–534.
https://doi.org/10.1038/S41579-023-00877-3
33 B Van De Sande, JS Lee, E Mutasa-Gottgens et al. applications of single-cell RNA sequencing in drug discovery and development. Nat Rev Drug Discov 2023;22:496–520.
https://doi.org/10.1038/S41573-023-00688-4
34 AM Van Der Leun, DS Thommen, TN Schumacher. CD8(+) T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer 2020;20:218–232.
https://doi.org/10.1038/S41568-019-0235-4
35 Y Wang, T Cao, J Ko et al. Dissolvable polyacrylamide beads for high-throughput droplet DNA barcoding. Adv Sci (Weinh) 2020;7:1903463.
https://doi.org/10.1002/advs.201903463
36 Z Xu, Y Wang, K Sheng et al. Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq. Nat Commun 2023a;14:5130.
https://doi.org/10.1038/S41467-023-40137-9
37 Z Xu, T Zhang, H Chen et al. High-throughput single nucleus total RNA sequencing of formalin-fixed paraffin-embedded tissues by snRandom-seq. Nat Commun 2023b;14:2734.
https://doi.org/10.1038/S41467-023-38409-5
[1] Jia-Hao Dai, Xi-Rong Tan, Han Qiao, Na Liu. Emerging clinical relevance of microbiome in cancer: promising biomarkers and therapeutic targets[J]. Protein Cell, 2024, 15(4): 239-260.
[2] Weihong Wang, Bota Cui, Yongzhan Nie, Lijuan Sun, Faming Zhang. Radiation injury and gut microbiota-based treatment[J]. Protein Cell, 2024, 15(2): 83-97.
[3] Wanglong Gou, Zelei Miao, Kui Deng, Ju-Sheng Zheng. Nutri-microbiome epidemiology, an emerging field to disentangle the interplay between nutrition and microbiome for human health[J]. Protein Cell, 2023, 14(11): 787-806.
[4] Shengtao Gao, Jinfeng Wang. Maternal and infant microbiome: next-generation indicators and targets for intergenerational health and nutrition care[J]. Protein Cell, 2023, 14(11): 807-823.
[5] Qinwen Wang, Qianyue Yang, Xingyin Liu. The microbiota–gut–brain axis and neurodevelopmental disorders[J]. Protein Cell, 2023, 14(10): 762-775.
[6] Tao Wen, Guoqing Niu, Tong Chen, Qirong Shen, Jun Yuan, Yong-Xin Liu. The best practice for microbiome analysis using R[J]. Protein Cell, 2023, 14(10): 713-725.
[7] Huicheng Shi, Xi Yu, Gong Cheng. Impact of the microbiome on mosquito-borne diseases[J]. Protein Cell, 2023, 14(10): 743-761.
[8] Abigail Wong-Rolle, Haohan Karen Wei, Chen Zhao, Chengcheng Jin. Unexpected guests in the tumor microenvironment: microbiome in cancer[J]. Protein Cell, 2021, 12(5): 426-435.
[9] Jiayu Wu, Kai Wang, Xuemei Wang, Yanli Pang, Changtao Jiang. The role of the gut microbiome and its metabolites in metabolic diseases[J]. Protein Cell, 2021, 12(5): 360-373.
[10] Sheng Liu, Wenjing Zhao, Ping Lan, Xiangyu Mou. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy[J]. Protein Cell, 2021, 12(5): 331-345.
[11] Marwah Doestzada, Arnau Vich Vila, Alexandra Zhernakova, Debby P. Y. Koonen, Rinse K. Weersma, Daan J. Touw, Folkert Kuipers, Cisca Wijmenga, Jingyuan Fu. Pharmacomicrobiomics: a novel route towards personalized medicine?[J]. Protein Cell, 2018, 9(5): 432-445.
[12] Jun Wang, Liang Chen, Na Zhao, Xizhan Xu, Yakun Xu, Baoli Zhu. Of genes and microbes: solving the intricacies in host genomes[J]. Protein Cell, 2018, 9(5): 446-461.
[13] Faming Zhang, Bota Cui, Xingxiang He, Yuqiang Nie, Kaichun Wu, Daiming Fan, FMT-standardization Study Group. Microbiota transplantation: concept, methodology and strategy for its modernization[J]. Protein Cell, 2018, 9(5): 462-473.
[14] Lu Gao, Tiansong Xu, Gang Huang, Song Jiang, Yan Gu, Feng Chen. Oral microbiomes: more and more importance in oral cavity and whole body[J]. Protein Cell, 2018, 9(5): 488-500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed