Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2017, Vol. 8 Issue (3) : 202-218    https://doi.org/10.1007/s13238-016-0324-z
RESEARCH ARTICLE
E3 ligase UHRF2 stabilizes the acetyltransferase TIP60 and regulates H3K9ac and H3K14ac via RING finger domain
Shengyuan Zeng1,Yangyang Wang1,Ting Zhang2,Lu Bai3,Yalan Wang4,Changzhu Duan1()
1. Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
2. Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
3. Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
4. Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
 Download: PDF(4099 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

UHRF2 is a ubiquitin-protein ligase E3 that regulates cell cycle, genomic stability and epigenetics. We conducted a co-immunoprecipitation assay and found that TIP60 and HDAC1 interact with UHRF2. We previously demonstrated that UHRF2 regulated H3K9ac and H3K14ac differentially in normal and cancer cells. However, the accurate signal transduction mechanisms were not clear. In this study, we found that TIP60 acted downstream of UHRF2 to regulate H3K9ac and H3K14ac expression. TIP60 is stabilized in normal cells by UHRF2 ubiquitination. However, TIP60 is destabilized in cancer cells. Depletion or inhibition of TIP60 disrupts the regulatory relationship between UHRF2, H3K9ac and H3K14ac. In summary, the findings suggest that UHRF2 mediated the post-translational modification of histones and the initiation and progression of cancer.

Keywords UHRF2      TIP60      ubiquitination      acetylation      hepatocellular carcinoma     
Corresponding Author(s): Changzhu Duan   
Issue Date: 21 March 2017
 Cite this article:   
Shengyuan Zeng,Yangyang Wang,Ting Zhang, et al. E3 ligase UHRF2 stabilizes the acetyltransferase TIP60 and regulates H3K9ac and H3K14ac via RING finger domain[J]. Protein Cell, 2017, 8(3): 202-218.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-016-0324-z
https://academic.hep.com.cn/pac/EN/Y2017/V8/I3/202
1 Achour M, Fuhrmann G, Alhosin M, Ronde P, Chataigneau T, Mousli M, Schini-Kerth VB, Bronner C (2009) UHRF1 recruits the histone acetyltransferase Tip60 and controls its expression and activity. Biochem Biophys Res Commun 390:523–528
https://doi.org/10.1016/j.bbrc.2009.09.131
2 Arnaudo AM, Garcia BA (2013) Proteomic characterization of novel histonepost-translational modifications. Epigenetics Chromatin 6:24
https://doi.org/10.1186/1756-8935-6-24
3 Bassi C, Li YT, Khu K, Mateo F, Baniasadi PS, Elia A, Mason J, Stambolic V, Pujana MA, Mak TW, Gorrini C (2016) The acetyltransferase Tip60 contributes to mammary tumorigenesis by modulating DNA repair. Cell Death Differ 23:1198–1208
https://doi.org/10.1038/cdd.2015.173
4 Basu A, Rose KL, Zhang J, Beavis RC, Ueberheide B, Garcia BA, Chait B, Zhao Y, Hunt DF, Segal E, Allis CD, Hake SB (2009) Proteome-wide prediction of acetylation substrates. Proc Natl Acad Sci USA 106:13785–13790
https://doi.org/10.1073/pnas.0906801106
5 Bhaumik SR, Smith E, Shilatifard A (2007) Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 14:1008–1016
https://doi.org/10.1038/nsmb1337
6 Bronner C, Achour M, Arima Y, Chataigneau T, Saya H, Schini-Kerth VB (2007) The UHRF family: oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther 115:419–434
https://doi.org/10.1016/j.pharmthera.2007.06.003
7 Dai C, Shi D, Gu W (2013) Negative regulation of the acetyltransferase TIP60-p53 interplay by UHRF1 (ubiquitin-like with PHD and RING finger domains 1). J Biol Chem 288:19581–19592
https://doi.org/10.1074/jbc.M113.476606
8 Das TP, Suman S, Papu John AM, Pal D, Edwards A, Alatassi H, Ankem MK, Damodaran C (2016) Activation of AKT negatively regulates the pro-apoptotic function of death-associated protein kinase 3 (DAPK3) in prostate cancer. Cancer Lett 377:134–139
https://doi.org/10.1016/j.canlet.2016.04.028
9 Feng YL, Xiang JF, Kong N, Cai XJ, Xie AY (2016) Buried territories: heterochromatic response to DNA double-strand breaks. Acta Biochim Biophys Sin 48:594–602
https://doi.org/10.1093/abbs/gmw033
10 Grezy A, Chevillard-Briet M, Trouche D, Escaffit F (2016) Control of genetic stability by a new heterochromatin compaction pathway involving the Tip60 histone acetyltransferase. Mol Biol Cell 27:599–607
https://doi.org/10.1091/mbc.E15-05-0316
11 Harrison JS, Jacobs TM, Houlihan K, Van Doorslaer K, Kuhlman B (2016) UbSRD: the ubiquitin structural relational database. J Mol Biol 428:679–687
https://doi.org/10.1016/j.jmb.2015.09.011
12 Hershko A, Ciechanover A, Varshavsky A (2000) The ubiquitin system. Nat Am 10:1073–1081
13 Holt MT, David Y, Pollock S, Tang Z, Jeon J, Kim J, Roeder RG, Muir TW (2015) Identification of a functional hotspot on ubiquitin required for stimulation of methyltransferase activity on chromatin. Proc Natl Acad Sci USA 112:10365–10370
https://doi.org/10.1073/pnas.1504483112
14 Ikura M, Furuya K, Matsuda S, Matsuda R, Shima H, Adachi J, Matsuda T, Shiraki T, Ikura T (2015) Acetylation of histone H2AX at Lys 5 by the TIP60 histone acetyltransferase complex is essential for the dynamic binding of NBS1 to damaged chromatin. Mol Cell Biol 35:4147–4157
https://doi.org/10.1128/MCB.00757-15
15 Jacquet K, Fradet-Turcotte A, Avvakumov N, Lambert JP, Roques C, Pandita RK, Paquet E, Herst P, Gingras AC, Pandita TK, Legube G, Doyon Y, Durocher D, Cote J (2016) The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation. Mol Cell 62:409–421
https://doi.org/10.1016/j.molcel.2016.03.031
16 Jang SM, Kim JW, Kim CH, An JH, Johnson A, Song PI, Rhee S, Choi KH (2015) KAT5-mediated SOX4 acetylation orchestrates chromatin remodeling during myoblast differentiation. Cell Death Dis 6:e1857
https://doi.org/10.1038/cddis.2015.190
17 Karmodiya K, Krebs A, Mustapha OS, Kimura H, Tora L (2012) H3K9 and H3K14 acetylation co-occur atmany gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stemcells. BMC Genom 424:1471–2164
18 Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705
https://doi.org/10.1016/j.cell.2007.02.005
19 Lechtenberg BC, Rajput A, Sanishvili R, Dobaczewska MK, Ware CF, Mace PD, Riedl SJ (2016) Structure of a HOIP/E2∼ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529:546–550
https://doi.org/10.1038/nature16511
20 Leithe E (2016) Regulation of connexins by the ubiquitin system: implications for intercellular communication and cancer. Biochim Biophys Acta 1865:133–146
https://doi.org/10.1016/j.bbcan.2016.02.001
21 Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genetics 3:662–673
https://doi.org/10.1038/nrg887
22 Li Y, Mori T, Hata H, Homma Y, Kochi H (2004) NIRF induces G1 arrest and associates with Cdk2. Biochem Biophys Res Commun 319:464–468
https://doi.org/10.1016/j.bbrc.2004.04.190
23 Liang BQ, Li DH, Hui HL, Hai YL, Xiao YL, Yong BY (2016) Cataractcausing mutation S228P promotes βB1-crystallin aggregation and degradation by separating two interacting loops in C-terminal domain. Protein Cell 7:501–515
https://doi.org/10.1007/s13238-016-0284-3
24 Mo F, Zhuang X, Liu X, Yao PY, Qin B, Su Z, Zang J, Wang Z, Zhang J, Dou Z, Tian C, Teng M, Niu L, Hill DL, Fang G, Ding X, Fu C, Yao X (2016) Acetylation of Aurora B by TIP60 ensures accurate chromosomal segregation. Nat Chem Biol 12:226–232
https://doi.org/10.1038/nchembio.2017
25 Mori T, Li Y, Hata H, Kochi H (2004) NIRF is a ubiquitin ligase that is capable of ubiquitinating PCNP, a PEST-containing nuclear protein. FEBS Lett 557:209–214
https://doi.org/10.1016/S0014-5793(03)01495-9
26 Mori T, Ikeda DD, Fukushima T, Takenoshita S, Kochi H (2011) NIRF constitutes a nodal point in the cell cycle network and is a candidate tumor suppressor. Cell Cycle 10:3284–3299
https://doi.org/10.4161/cc.10.19.17176
27 Pichler G, Wolf P, Schmidt CS, Meilinger D, Schneider K, Frauer C, Fellinger K, Rottach A, Leonhardt H (2011) Cooperative DNA and histone binding by Uhrf2 links the two major repressive epigenetic pathways. J Cell Biochem 112:2585–2593
https://doi.org/10.1002/jcb.23185
28 Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527
https://doi.org/10.1016/j.cell.2005.06.026
29 Qian G, Jin F, Chang L, Yang Y, Peng H, Duan C (2012) NIRF, a novel ubiquitin ligase, interacts with hepatitis B virus core protein and promotes its degradation. Biotechnol Lett 34:29–36
https://doi.org/10.1007/s10529-011-0751-0
30 Renaud E, Barascu A, Rosselli F (2016) Impaired TIP60-mediated H4K16 acetylation accounts for the aberrant chromatin accumulation of 53BP1 and RAP80 in Fanconi anemia pathway-deficient cells. Nucl Acids Res 44:648–656
https://doi.org/10.1093/nar/gkv1019
31 Su J, Wang F, Cai Y, Jin J (2016) The functional analysis of histone acetyltransferase MOF in tumorigenesis. Int J Mol Sci. doi:10. 3390/ijms17010099
https://doi.org/10.3390/ijms17010099
32 Sun Y, Sun J, Lungchukiet P, Quarni W, Yang S, Zhang X, Bai W (2015) Fe65 suppresses breast cancer cell migration and invasion through Tip60 mediated cortactin acetylation. Sci Rep 5:11529
https://doi.org/10.1038/srep11529
33 Takase N, Koma YI, Urakawa N, Nishio M, Arai N, Akiyama H, Shigeoka M, Kakeji Y, Yokozaki H (2016) NCAM- and FGF-2-mediated FGFR1 signaling in the tumor microenvironment of esophageal cancer regulates the survival and migration of tumorassociated macrophages and cancer cells. Cancer Lett 380:47–58
https://doi.org/10.1016/j.canlet.2016.06.009
34 Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028
https://doi.org/10.1016/j.cell.2011.08.008
35 Vinther-Jensen T, Simonsen AH, Budtz-Jorgensen E, Hjermind LE, Nielsen JE (2015) Ubiquitin: a potential cerebrospinal fluid progression marker in Huntington’s disease. Eur J Neurol 22:1378–1384
https://doi.org/10.1111/ene.12750
36 Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genetics 40:897–903
https://doi.org/10.1038/ng.154
37 Wang F, Zhang P, Ma Y, Yang J, Moyer MP, Shi C, Peng J, Qin H (2012) NIRF is frequently upregulated in colorectal cancer and its oncogenicity can be suppressed by let-7a microRNA. Cancer Lett 314:223–231
https://doi.org/10.1016/j.canlet.2011.09.033
38 Yamada S, Ohta K, Yamada T (2013) Acetylated histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast. Nucl Acids Res 41:3504–3517
https://doi.org/10.1093/nar/gkt049
39 Yamano K, Queliconi BB, Koyano F, Saeki Y, Hirokawa T, Tanaka K, Matsuda N (2015) Site-specific interaction mapping of phosphorylated ubiquitin to uncover parkin activation. J Biol Chem 290:25199–25211
https://doi.org/10.1074/jbc.M115.671446
[1] PAC-0202-16178-DCZ_suppl_1 Download
[1] Nan Sun, Li Jiang, Miaomiao Ye, Yihan Wang, Guangwen Wang, Xiaopeng Wan, Yuhui Zhao, Xia Wen, Libin Liang, Shujie Ma, Liling Liu, Zhigao Bu, Hualan Chen, Chengjun Li. TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2[J]. Protein Cell, 2020, 11(12): 894-914.
[2] Youqin Xu, Kaiyuan Ji, Meng Wu, Bingtao Hao, Kai-tai Yao, Yang Xu. A miRNA-HERC4 pathway promotes breast tumorigenesis by inactivating tumor suppressor LATS1[J]. Protein Cell, 2019, 10(8): 595-605.
[3] Junting Cai, Miranda K. Culley, Yutong Zhao, Jing Zhao. The role of ubiquitination and deubiquitination in the regulation of cell junctions[J]. Protein Cell, 2018, 9(9): 754-769.
[4] Junhong Guan, Shuyu Yu, Xiaofeng Zheng. NEDDylation antagonizes ubiquitination of proliferating cell nuclear antigen and regulates the recruitment of polymerase η in response to oxidative DNA damage[J]. Protein Cell, 2018, 9(4): 365-379.
[5] Yanpeng Ci, Xiaoning Li, Maorong Chen, Jiateng Zhong, Brian J. North, Hiroyuki Inuzuka, Xi He, Yu Li, Jianping Guo, Xiangpeng Dai. SCFβ-TRCP E3 ubiquitin ligase targets the tumor suppressor ZNRF3 for ubiquitination and degradation[J]. Protein Cell, 2018, 9(10): 879-889.
[6] Jintao Bao,Liangjun Zheng,Qi Zhang,Xinya Li,Xuefei Zhang,Zeyang Li,Xue Bai,Zhong Zhang,Wei Huo,Xuyang Zhao,Shujiang Shang,Qingsong Wang,Chen Zhang,Jianguo Ji. Deacetylation of TFEB promotes fibrillar Aβ degradation by upregulating lysosomal biogenesis in microglia[J]. Protein Cell, 2016, 7(6): 417-433.
[7] Ming Wang,Jing Sang,Yanhua Ren,Kejia Liu,Xinyi Liu,Jian Zhang,Haolu Wang,Jian Wang,Amir Orian,Jie Yang,Jing Yi. SENP3 regulates the global protein turnover and the Sp1 level via antagonizing SUMO2/ 3-targeted ubiquitination and degradation[J]. Protein Cell, 2016, 07(1): 63-77.
[8] Xiaoying Chen,Kunshan Zhang,Liqiang Zhou,Xinpei Gao,Junbang Wang,Yinan Yao,Fei He,Yuping Luo,Yongchun Yu,Siguang Li,Liming Cheng,Yi E. Sun. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation[J]. Protein Cell, 2016, 07(03): 175-186.
[9] Linlin Zhang,Shanshan Liu,Ningning Liu,Yong Zhang,Min Liu,Dengwen Li,Edward Seto,Tso-Pang Yao,Wenqing Shui,Jun Zhou. Proteomic identification and functional characterization of MYH9, Hsc70, and DNAJA1 as novel substrates of HDAC6 deacetylase activity[J]. Protein Cell, 2015, 6(1): 42-54.
[10] Ming Liu,Lingxi Jiang,Xin-Yuan Guan. The genetic and epigenetic alterations in human hepatocellular carcinoma: a recent update[J]. Protein Cell, 2014, 5(9): 673-691.
[11] Lianying Jiao,Songying Ouyang,Neil Shaw,Gaojie Song,Yingang Feng,Fengfeng Niu,Weicheng Qiu,Hongtao Zhu,Li-Wei Hung,Xiaobing Zuo,V. Eleonora Shtykova,Ping Zhu,Yu-Hui Dong,Ruxiang Xu,Zhi-Jie Liu. Mechanism of the Rpn13-induced activation of Uch37[J]. Protein Cell, 2014, 5(8): 616-630.
[12] Juan Zhang,Xiaofei Zhang,Feng Xie,Zhengkui Zhang,Hans van Dam,Long Zhang,Fangfang Zhou. The regulation of TGF-β/SMAD signaling by protein deubiquitination[J]. Protein Cell, 2014, 5(7): 503-517.
[13] Qian Gao,Xiongfei Chen,Hongxia Duan,Zhaoqing Wang,Jing Feng,Dongling Yang,Lina Song,Ningxin Zhou,Xiyun Yan. FXYD6: a novel therapeutic target toward hepatocellular carcinoma[J]. Protein Cell, 2014, 5(7): 532-543.
[14] Sun-Ku Chung,Shengyun Zhu,Yang Xu,Xuemei Fu. Functional analysis of the acetylation of human p53 in DNA damage responses[J]. Protein Cell, 2014, 5(7): 544-551.
[15] Limin Han, Pan Wang, Ganye Zhao, Hui Wang, Meng Wang, Jun Chen, Tanjun Tong. Upregulation of SIRT1 by 17β-estradiol depends on ubiquitin-proteasome degradation of PPAR-γ mediated by NEDD4-1[J]. Prot Cell, 2013, 4(4): 310-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed