Please wait a minute...
Quantitative Biology

ISSN 2095-4689

ISSN 2095-4697(Online)

CN 10-1028/TM

Postal Subscription Code 80-971

Quant. Biol.    2016, Vol. 4 Issue (2) : 84-91    https://doi.org/10.1007/s40484-016-0071-4
RESEARCH ARTICLE
Exploring the interaction patterns among taxa and environments from marine metagenomic data
Ze-Gang Wei, Shao-Wu Zhang(), Fang Jing
Key Laboratory of Information Fusion Technology of Ministry of Education, College of Automation, Northwestern Polytechnical University, Xi’an 710072, China
 Download: PDF(1621 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The sequencing revolution driven by high-throughput technologies has generated a huge amount of marine microbial sequences which hide the interaction patterns among microbial species and environment factors. Exploring these patterns is helpful for exploiting the marine resources. In this paper, we use the complex network approach to mine and analyze the interaction patterns of marine taxa and environments in spring, summer, fall and winter seasons. With the 16S rRNA pyrosequencing data of 76 time point taken monthly over 6 years, we first use our MtHc clustering algorithm to generate the operational taxonomic units (OTUs). Then, employ the k-means method to divide 76 time point samples into four seasonal groups, and utilize mutual information (MI) to construct the four correlation networks among microbial species and environment factors. Finally, we adopt the symmetrical non-negative matrix factorization method to detect the interaction patterns, and analysis the relationship between marine species and environment factors. The results show that the four seasonal microbial interaction networks have the characters of complex networks, and interaction patterns are related with the seasonal variability; the same environmental factor influences different species in the four seasons; the four environmental factors of day length, photosynthetically active radiation, NO2+NO3 and silicate may have stronger influences on microbes than other environment factors.

Author Summary   

Exploring microbial functions and roles plays a key role in the research of environmental and ecological system biology. High-throughput metagenomic technologies can produce massive sequencing data, which make it possible to analyze the structure of microbial communities and changes across environmental factors. Here we use the complex network approach to mine and analyze the interaction patterns of marine taxa and environments in four seasons at the West English Channel from 16S rRNA data. It is shown that marine microbial interaction patterns changes with the seasons. We also analyze the interactions among different species within a community and their relationship with environment factors.

Keywords marine microbe      operational taxonomic unit      interaction pattern      network      clustering     
Corresponding Author(s): Shao-Wu Zhang   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 05 April 2016   Online First Date: 11 May 2016    Issue Date: 26 May 2016
 Cite this article:   
Ze-Gang Wei,Shao-Wu Zhang,Fang Jing. Exploring the interaction patterns among taxa and environments from marine metagenomic data[J]. Quant. Biol., 2016, 4(2): 84-91.
 URL:  
https://academic.hep.com.cn/qb/EN/10.1007/s40484-016-0071-4
https://academic.hep.com.cn/qb/EN/Y2016/V4/I2/84
Fig.1  Four correlation networks in spring, summer, fall and winter seasons with MI(□—OTU, Δ—environmental factor).
Seasonal networks Random networks
Spring Summer Fall Winter Spring Summer Fall Winter
Node Number 161 175 208 216 161 175 208 216
Edge Number 413 647 572 980 413 647 572 980
Avg. degree 5.367 5.932 5.123 10.752 5.367 5.932 5.123 10.752
Avg. power law degree 1.241 1.267 1.387 0.812 0.643 0.423 0.671 0.016
Avg. clustering coefficient 0.231 0.271 0.228 0.389 0.012 0.021 0.023 0.038
Modularity 0.565 0.553 0.512 0.371 0.381 0.337 0.412 0.221
Tab.1  The topological parameters of four seasonal correlation networks and their corresponding random networks.
Fig.2  The communities (or interaction patterns) among micorbies and environment factors detected by s-NMF in four seasonal networks (□—OTU, Δ—environmental factor).
Fig.3  Evolutionary relationship of microbial communities among four seasons.
1 M. L. Sogin, , H. G. Morrison, , J. A. Huber, , D. Mark Welch, , S. M. Huse, , P. R. Neal, , J. M. Arrieta, and G. J. Herndl, (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA, 103, 12115–12120
https://doi.org/10.1073/pnas.0605127103 pmid: 16880384
2 J. A. Steele, , P. D. Countway, , L. Xia, , P. D. Vigil, , J. M. Beman, , D. Y. Kim, , C. E. T. Chow, , R. Sachdeva, , A. C. Jones, , M. S. Schwalbach, , et al. (2011) Marine bacterial, archaeal and protistan association networks reveal ecological linkages. ISME J., 5, 1414–1425
https://doi.org/10.1038/ismej.2011.24 pmid: 21430787
3 J. A. Gilbert, , D. Field, , P. Swift, , S. Thomas, , D. Cummings, , B. Temperton, , K. Weynberg, , S. Huse, , M. Hughes, , I. Joint, , et al. (2010) The taxonomic and functional diversity of microbes at a temperate coastal site: a “multi-omic” study of seasonal and diel temporal variation. PLoS One, 5, e15545
https://doi.org/10.1371/journal.pone.0015545 pmid: 21124740
4 D. L. Kirchman, , M. T. Cottrell, and C. Lovejoy, (2010) The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ. Microbiol., 12, 1132–1143
https://doi.org/10.1111/j.1462-2920.2010.02154.x pmid: 20132284
5 X. Jiang, , X. Hua, , W. Xu, and E.K. Park, (2015) Predicting microbial interactions using vector autoregressive model with graph regularization. IEEE ACM T COMPUT. BI., 12, 254–261
6 J. Zhou, , Y. Deng, , F. Luo, , Z. He, and Y. Yang, (2011) Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio, 2, e00122–e11
https://doi.org/10.1128/mBio.00122-11 pmid: 21791581
7 J. A. Gilbert, , J. A. Steele, , J. G. Caporaso, , L. Steinbrück, , J. Reeder, , B. Temperton, , S. Huse, , A. C. McHardy, , R. Knight, , I. Joint, , et al.(2012) Defining seasonal marine microbial community dynamics. ISME J., 6, 298–308
https://doi.org/10.1038/ismej.2011.107 pmid: 21850055
8 A. Eiler, , F. Heinrich, and S. Bertilsson, (2012) Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J., 6, 330–342
https://doi.org/10.1038/ismej.2011.113 pmid: 21881616
9 K. Faust, and J. Raes, (2012) Microbial interactions: from networks to models. Nat. Rev. Microbiol., 10, 538–550
https://doi.org/10.1038/nrmicro2832 pmid: 22796884
10 Z. G. Wei, and S. W. Zhang, (2015) MtHc: a motif-based hierarchical method for clustering massive 16S rRNA sequences into OTUs. Mol. Biosyst., 11, 1907–1913
https://doi.org/10.1039/C5MB00089K pmid: 25912934
11 W. Chen, , Y.M. Cheng, , C. Zhang, , S.W. Zhang, , H. Zhao, (2013) MSClust: A multi-seeds based clustering algorithm for microbiome profiling using 16S rRNA sequence. J. Micro. methods, 94, 347–355
12 Y. Cai, and Y. Sun, (2011) ESPRIT-Tree: hierarchical clustering analysis of millions of 16S rRNA pyrosequences in quasilinear computational time. Nucleic Acids Res., 39, e95
https://doi.org/10.1093/nar/gkr349 pmid: 21596775
13 X. Hao, , R. Jiang, and T. Chen, (2011) Clustering 16S rRNA for OTU prediction: a method of unsupervised Bayesian clustering. Bioinformatics, 27, 611–618
https://doi.org/10.1093/bioinformatics/btq725 pmid: 21233169
14 L. Cheng, , A. W. Walker, and J. Corander, (2012) Bayesian estimation of bacterial community composition from 454 sequencing data. Nucleic Acids Res., 40, 5240–5249
https://doi.org/10.1093/nar/gks227 pmid: 22406836
15 J. Wang, , B. Chen, , Y. Wang, , N. Wang, , M. Garbey, , R. Tran-Son-Tay, , S. A. Berceli, and R. Wu, (2013) Reconstructing regulatory networks from the dynamic plasticity of gene expression by mutual information. Nucleic Acids Res., 41, e97
https://doi.org/10.1093/nar/gkt147 pmid: 23470995
16 T. Z. DeSantis, , P. Hugenholtz, , N. Larsen, , M. Rojas, , E. L. Brodie, , K. Keller, , T. Huber, , D. Dalevi, , P. Hu, and G. L. Andersen, (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol., 72, 5069–5072
https://doi.org/10.1128/AEM.03006-05 pmid: 16820507
17 E. Pruesse, , C. Quast, , K. Knittel, , B. M. Fuchs, , W. Ludwig, , J. Peplies, and F. O. Glöckner, (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res., 35, 7188–7196
https://doi.org/10.1093/nar/gkm864 pmid: 17947321
18 J. R. Cole, , B. Chai, , R. J. Farris, , Q. Wang, , S. A. Kulam, , D. M. McGarrell, , G. M. Garrity, and J. M. Tiedje, (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res., 33, D294–D296
https://doi.org/10.1093/nar/gki038 pmid: 15608200
19 V. Saraph, and T. Milenković, (2014) MAGNA, maximizing accuracy in global network alignment. Bioinformatics, 30, 2931–2940
https://doi.org/10.1093/bioinformatics/btu409 pmid: 25015987
20 F. Liu, , S. W. Zhang, , Z. G. Wei, , W. Chen, and C. Zhou, (2014) Mining seasonal marine microbial pattern with greedy heuristic clustering and symmetrical nonnegative matrix factorization. Biomed. Res. Int., 2014, 189590
pmid: 24877065
21 D. D. Lee, and H. S. Seung, (1999) Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788–791
https://doi.org/10.1038/44565 pmid: 10548103
22 T. Nepusz, , A. Petróczi, , L. Négyessy, and F. Bazsó, (2008) Fuzzy communities and the concept of bridgeness in complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 77, 016107
https://doi.org/10.1103/PhysRevE.77.016107 pmid: 18351915
[1] Leshi Chen, Don Kulasiri, Sandhya Samarasinghe. Fundamental Boolean network modelling for childhood acute lymphoblastic leukaemia pathways[J]. Quant. Biol., 2022, 10(1): 94-121.
[2] Ya-Li Zhu, Xiao-Ning Zhang, Chuan-Yuan Wang, Jin-Xing Liu, Xiang-Zhen Kong. Adaptive total variation constraint hypergraph regularized NMF for single-cell RNA-seq data analysis[J]. Quant. Biol., 2021, 9(4): 451-462.
[3] Lei Zhang, Ji Lv, Ming Xiao, Li Yang, Le Zhang. Exploring the underlying mechanism of action of a traditional Chinese medicine formula, Youdujing ointment, for cervical cancer treatment[J]. Quant. Biol., 2021, 9(3): 292-303.
[4] Zongwei Guo, Fangkui Yin, Peiran Wang, Ting Song, Zhichao Zhang. Systems analysis of the “weights” of Bcl-2 and Mcl-1 in mitochondrial apoptosis pathway establishes a predictor for best drug combination ratio[J]. Quant. Biol., 2021, 9(3): 329-340.
[5] Huixia Ren, Mengdi Zhao, Bo Liu, Ruixiao Yao, Qi liu, Zhipeng Ren, Zirui Wu, Zongmao Gao, Xiaojing Yang, Chao Tang. Cellbow: a robust customizable cell segmentation program[J]. Quant. Biol., 2020, 8(3): 245-255.
[6] Jingxue Xin, Junjun Hao, Lang Chen, Tao Zhang, Lei Li, Luonan Chen, Wenmin Zhao, Xuemei Lu, Peng Shi, Yong Wang. ZokorDB: tissue specific regulatory network annotation for non-coding elements of plateau zokor[J]. Quant. Biol., 2020, 8(1): 43-50.
[7] Guojun Liu, Mikhail A. Bolkov, Irina A. Tuzankina, Irina G. Danilova. Identification of candidate disease genes in patients with common variable immunodeficiency[J]. Quant. Biol., 2019, 7(3): 190-201.
[8] Lei Wei, Ye Yuan, Tao Hu, Shuailin Li, Tianrun Cheng, Jinzhi Lei, Zhen Xie, Michael Q. Zhang, Xiaowo Wang. Regulation by competition: a hidden layer of gene regulatory network[J]. Quant. Biol., 2019, 7(2): 110-121.
[9] Chuang Han, Yu Wu. A model of NSCLC microenvironment predicts optimal receptor targets[J]. Quant. Biol., 2019, 7(2): 147-161.
[10] Shashank Singh, Yang Yang, Barnabás Póczos, Jian Ma. Predicting enhancer-promoter interaction from genomic sequence with deep neural networks[J]. Quant. Biol., 2019, 7(2): 122-137.
[11] Jing Zhao, Jian Yang, Saisai Tian, Weidong Zhang. A survey of web resources and tools for the study of TCM network pharmacology[J]. Quant. Biol., 2019, 7(1): 17-29.
[12] Wen Yang, Xia Wang, Kenan Li, Yuanru Liu, Ying Liu, Rui Wang, Honglin Li. Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network[J]. Quant. Biol., 2019, 7(1): 30-41.
[13] Fuda Xie, Jiangyong Gu. Computational methods and applications for quantitative systems pharmacology[J]. Quant. Biol., 2019, 7(1): 3-16.
[14] Hui Wang, Gang Wang, Li-Da Zhu, Xuan Xu, Bo Diao, Hong-Yu Zhang. Subnetwork identification and chemical modulation for neural regeneration: A study combining network guided forest and heat diffusion model[J]. Quant. Biol., 2018, 6(4): 321-333.
[15] Li Li, Huanqian Yan, Yonggang Lu. Selecting near-native protein structures from ab initio models using ensemble clustering[J]. Quant. Biol., 2018, 6(4): 307-312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed