Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (2) : 195-203    https://doi.org/10.1007/s11783-012-0391-1
RESEARCH ARTICLE
Characterization of soil low-molecular-weight organic acids in the Karst rocky desertification region of Guizhou Province, China
Xiaoliang LI1,2, Xiaomin CHEN1(), Xia LIU2, Lianchuan ZHOU1, Xinqiang YANG1
1. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; 2. College of Urban Construction and Environmental Sciences, Anhui Science and Technology University, Fengyang 233100, China
 Download: PDF(269 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Soil low-molecular-weight (LMW) organic acids play important roles in the soil-forming process and the cycling of nutrients in Karst regions. In this study, we quantified the contents of LMW organic acids (including lactate, acetate, formate, malate, and oxalate) in soil solution over the Karst region of Guizhou Province, China using ion chromatography. The concentration of total LMW organic acids in topsoil solution ranged from 0.358 to 1.823 μmol·g-1, with an average of 0.912 μmol·g-1. The mean concentrations of lactate, acetate, formate, malate, and oxalate were 0.212±0.089, 0.302±0.228, 0.301±0.214, 0.014±0.018 and 0.086±0.118 μmol·g-1, respectively. There were also significant difference in the contents of these acids among four phases of rocky desertification, and their concentrations decreased with the aggravation of rocky desertification. The concentrations of the LMW organic acids were significantly positive correlated each other. Significant positive correlations were also observed among individual LMW organic acids in soil solution, and between them and soil available P, available K, exchangeable Ca, respectively. Furthermore, the concentrations of LMW organic acids were significantly positively correlated with inorganic anions (chlorides, nitrates, and sulfates) in Karst topsoil solution. Therefore, the concentrations of soil LMW organic acids might be one of driving force in the Karst rock desertification process in Guizhou Province.

Keywords Karst rocky desertification      low-molecular-weight (LMW) organic acids      distribution characteristics      soil     
Corresponding Author(s): CHEN Xiaomin,Email:xmchen@njau.edu.cn   
Issue Date: 01 April 2012
 Cite this article:   
Xiaomin CHEN,Xia LIU,Lianchuan ZHOU, et al. Characterization of soil low-molecular-weight organic acids in the Karst rocky desertification region of Guizhou Province, China[J]. Front Envir Sci Eng, 2012, 6(2): 195-203.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0391-1
https://academic.hep.com.cn/fese/EN/Y2012/V6/I2/195
phases of rocky desertificationbedrock expose rate/%vegetation coverage/%soil coverage/%slope/(°)soil thickness/cmvegetation
non-degraded<40>60>60<15>20forest-scrub
potential rocky desertification>40<60<60>15>20scrub-meadow
light rocky desertification>60<40<30>18>15grassland
moderate rocky desertification>70<30<20>22>5sparse grass
Tab.1  Grading standards of rocky desertification in Karst mountain area
phases of rocky desertificationsoilgeographic locationsampling sitesvegetationvegetation coverage
NEH/m
non-degradedrendzina25o 17'107o 56'755Maolan National Nature Reserveforest (Carpinus pubescens, Photinia davidsoniae, Zelkova serrata, etc.)> 70%
potential rocky desertificationrendzina26o15'105o 46'1457Houzhai subterranean stream basinscrub (Platycarya longipes, Pyracantha fortuneana, etc.)50%-60%
light rocky desertificationrendzina25o18'107o56'753Maolan National Nature Reservegrassland (Miscanthus floridulus, Heteropogon contortus, etc.)30%-40%
moderate rocky desertificationterra rossa25o 18'107o 57'761Maolan National Nature Reservesparse grass (Miscanthus floridulus, Heteropogon contortus, etc.)20%-30%
Tab.2  Phases of rocky desertification for sampling and their biophysical settings
Fig.1  Ion chromatography of organic acid and inorganic anions in soil solution
phases of rocky desertificationnon-degradedpotentiallightmoderate
depth/cm0-120-80-170-15
bulk density/(g·cm-3)0.6280.9401.2471.116
soil particle composition/(g·kg-1)>0.02 mm sand495.7457.8345.3166.3
0.02-0.002 mm silt360.4339.7433.2399.8
<0.002 mm clay143.9202.5221.5433.8
field water capacity/(g·kg-1)587.8371.9296.7289.1
available water capacity/(g·kg-1)435.8206.6199.5185.8
soil saturated hydraulic conducivity/(10-4 cm·s-1)50.841.813.04.8
pH7.527.576.446.34
CaCO3/(g·kg-1)40.225.411.413.4
organic matter/(g·kg-1)136.172.933.124.5
available P/(mg·kg-1)9.34.91.41.1
available K/(mg·kg-1)119.495.536.233.0
exchangeable Ca/(μmol·g-1)182.2128.4102.544.5
exchangeable Mg/(μmol·g-1)30.510.87.97.7
F-/(μmol·g-1)0.0500.0980.0300.007
Cl-/(μmol·g-1)0.7040.4890.4090.096
NO3-/(μmol·g-1)6.0750.7270.3430.172
SO42-/(μmol·g-1)1.9801.4250.7630.191
PO43-/(μmol·g-1)0.0310.01200
Tab.3  Soil samples properties in different phases of Karst rocky desertification
Fig.2  Soil LMW organic acid concentrations in Karst rocky desertification area(A) the concentrations of soil LMW organic acid species in Karst topsoils and (B) the soil LMW organic acid concentrations in different phases of rocky desertification. Different letters indicate significant differences between LMW organic acid species and phases of rocky desertification using Duncan’s test (P<0.05). Each bar indicates one standard deviation (sample number is seven)
Fig.3  Distribution of LMW organic acids in soil profile in Karst region. (A) the phase of non-degraded rocky desertification, and (B) the phase of light rocky desertification (Maolan National Nature Reserve)
lactateacetateformatemalateoxalate
acetate0.8321.0000.8700.8990.920
formate0.7590.8701.0000.9140.866
malate0.7760.8990.9141.0000.944
oxalate0.7310.9200.8660.9441.000
organic matter0.7380.8170.8740.8180.718
available P0.7080.8300.8930.8540.750
available K0.6980.7720.8400.8210.678
exchangeable Ca0.7640.7940.8490.7840.677
Tab.4  Correlation efficient () of the correlations between LMW organic acids, organic carbon, available P, available K, and exchangeable Ca in Karst topsoils
Fig.4  Regression analysis of LMW organic acids with Cl, , and in Karst topsoil solution (=28)
1 Fox T R. The influence of low-molecular-weight organic acids on properties and processes in forest soils. In: McFee W W, Kelly J M, eds. Carbon Forms and Functions in Forest Soils . Madison: Soil Science Society of America, 1995, 43-62
2 Herbert B E, Bertsch P M. Characterization of dissolved and colloidal organic matter in soil solution: a review. In: McFee W W, Kelly J M, eds. Carbon Forms and Functions in Forest Soils . Madison: Soil Science Society of America, 1995, 63-68
3 Jones D L. Organic acids in the rhizosphere—a critical review. Plant and Soil , 1998, 205(1): 25-44
doi: 10.1023/A:1004356007312
4 Millet M, Wortham H, Sanusi A, Mirabel P. Low molecular weight organic acids in fogwater in an urban area: Strasbourg (France). The Science of the Total Environment , 1997, 206(1): 57-65
doi: 10.1016/S0048-9697(97)00216-7
5 Bolan N S, Naidu R, Mahimairaja S, Baskaran S. Influence of low-molecular-weight organic-acids on the solubilization of phosphates. Biology and Fertility of Soils , 1994, 18(4): 311-319
doi: 10.1007/BF00570634
6 Krzyszowska A J, Vance G F, Blaylock M J, David M B. Ion-chromatographic analysis of low molecular weight organic acids in Spodosol forest floor solutions. Soil Science Society of America Journal , 1996, 60(5): 1565-1571
doi: 10.2136/sssaj1996.03615995006000050040x
7 Pohlman A A, McColl J G. Soluble organics from forest litter and their role in metal dissolution. Soil Science Society of America Journal , 1987, 52(1): 265-271
doi: 10.2136/sssaj1988.03615995005200010047x
8 Shen Y, Str?m L, J?nsson J A, Tyler G. Low-molecular-organic-acids in the rhizosphere soil solution of beech forest (Fagus sylvatica L.) cambisols determined by ion chromatography using supported liquid membrane enrichment technique. Soil Biology and Biochemistry , 1996, 28(9): 1163-1169
doi: 10.1016/0038-0717(96)00119-8
9 van Hees P A W, Lundstr?m U S, Giesler R. Low molecular weight acids and their Al-complexes in soil solution—composition, distribution and seasonal variation in three podzolized soils. Geoderma , 2000, 94(2-4): 173-200
doi: 10.1016/S0016-7061(98)00140-2
10 Yuan D X. The Karst Study of China. Beijing: Geology Press, 1993 (in Chinese)
11 Yang H K. Karst rocky desertification and assessment of the disasters. Marine Geology and Quaternary Geology , 1995, 15: 137-147 (in Chinese)
12 Cai Y L. Ecological and socio-economic rehabilitation in the Karst of Southwest China. The Journal of Chinese Geography , 1997, 7(2): 24-32 (in Chinese)
13 Wang S J. The most serious eco-geologically environmental problem in southwestern China Karst rocky desertification. Bulletin of Mineralogy Petrology and Geochemistry , 2003, 22(2): 120-126 (in Chinese)
14 Zhang H Y, Zhao X Y, Cai Y L, Yin J. The driving mechanism of human forces to the land-use change in the Karst mountain area. Geographical Research , 1999, 18(2): 136-142 (in Chinese)
15 Zhang D F, Wang S J, Zhou D Q, Li R L. Intrinsic driving mechanism of land rocky desertification in Karst regions of Guizhou Province. Bulletin of Soil and Water Conservation , 2001, 21(4): 1-5 (in Chinese)
16 Wang S J, Li Y B. Karst rocky desertification: formation background, evolution and comprehensive taming. Quaternary Sciences , 2003, 23(6): 657-666 (in Chinese)
17 Cai Y L. The Study of Alleviating Poor and Sustainable Development in Southwest Karst Area. Beijing: Peking University Press, 1994 (in Chinese)
18 Cai Y L, Meng J J. Ecological reconstruction of degraded land: a social approach. Scientia Geographica Sinica , 1999, 19(3): 198-204 (in Chinese)
19 Wang S J, Liu Q M, Zhang D F. Karst rocky desertification in southwestern China: geomorphology, land use, impact and rehabilitation. Land Degradation and Development , 2004, 15(2): 115-121
doi: 10.1002/ldr.592
20 Huang Q H, Cai Y L. Spatial pattern of Karst rock desertification in the Middle of Guizhou Province, Southwestern China. Environmental Geology , 2007, 52(7): 1325-1330
doi: 10.1007/s00254-006-0572-y
21 Mei Z M, Wang D Y, Xiong K N, Lan A J, Chen Y B, Sun J C, Yu J Y. A preliminary study on the technology of vegetation restoration on the land of different rocky desertification degree—a case study of the Huajiang demonstration area, Guizhou. Carsologica Sinica , 2004, 23(3): 253-258 (in Chinese)
22 Peng Q, Lin C H, He T B. Soil grain features under rocky desertification in the Guizhou Karst mountain area. Bulletin of Soil and Water Conservation , 2007, 27(2), 29-32 (in Chinese)
23 Bachman S R, Peden M E. Determination of organic acid anions in precipitation by ion chromatography exclusion. Water, Air, &amp; Soil Pollution , 1987, 33(1-2): 191-198
doi: 10.1007/BF00191387
24 Lu R K. Methods for Agricultural Soil Chemistry Analysis. Beijing: China Agricultural Science and Technology Press, 2000 (in Chinese)
25 Chen X M, Pan G X, Wang D J, Li B S. A study on saturated hydraulic conductivity of farmland environment soil of Taihu Lake region. Bulletin of Soil and Water Conservation , 2000, 20(5), 11-12, 59 (in Chinese)
26 Mo S X. Sources, transformations of organic acids in soil and some effects on soil fertility. Progress in Soil Science , 1986, 4: 1-10 (in Chinese)
27 Stevenson F J. Organic acids in soil. In: Mclaren A D, Peterson G H, eds. Soil Biochemistry . New York: Marcel Dekker, 1967, 119-146
28 Ryan P R, Delhaize E, Jones D L. Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology , 2001, 52(1): 527-560
doi: 10.1146/annurev.arplant.52.1.527 pmid:11337408
29 Li X L, Chen X M, Zhou L C, Zhou F F. Soil organic carbon and nitrogen variability in the process of rocky desertification in Karst region, Guizhou Province. Journal of Nanjing Agricultural University , 2010, 33(4): 75-80 (in Chinese)
30 Giesler R, H?gberg M N, Strobel B W, Richter A, Nordgren A, H?gberg P. Production of dissolved organic carbon and low-molecular weight organic acids in soil solution driven by recent tree photosynthate. Biogeochemistry , 2007, 84(1): 1-12
doi: 10.1007/s10533-007-9069-3
31 Tyler G. Inability to solubilize phosphate in limestone soils—key factor controlling calcifuge habit of plants. Plant and Soil , 1992, 145(1): 65-70
doi: 10.1007/BF00009542
32 Str?m L, Olsson T, Tyler G. Differences between calcifuge and acidifuge plants in root exudation of low molecular organic-acids. Plant and Soil , 1994, 167(2): 239-245
doi: 10.1007/BF00007950
33 Str?m L. Root exudation of organic acids: importance to nutrient availability and the calcifuge and calcicole behaviour of plants. Oikos , 1997, 80(3): 459-466
doi: 10.2307/3546618
34 Str?m L, Owen A G, Godbold D L, Jones D L. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biology and Biochemistry , 2005, 37(11): 2046-2054
doi: 10.1016/j.soilbio.2005.03.009
35 Fox T R, Comerford N B, McFee W W. Phosphorus and aluminum release from a spodic horizon mediated by organic acids. Soil Science Society of America Journal , 1990, 54(6): 1763-1767
doi: 10.2136/sssaj1990.03615995005400060043x
36 Fox T R, Comerford N B, McFee W W. Kinetics of phosphorus release from spodosol: effects of oxalate and formate. Soil Science Society of America Journal , 1990, 54(5): 1441-1447
doi: 10.2136/sssaj1990.03615995005400050038x
37 Fox T R, Comerford N B. Influence of oxalate loading on phosphorus and aluminum solubility in spodosols. Soil Science Society of America Journal , 1992, 56(1): 290-294
doi: 10.2136/sssaj1992.03615995005600010046x
38 Jones D L, Darrah P R. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil , 1994, 166(2): 247-257
doi: 10.1007/BF00008338
39 Huang W H, Keller W D. Organic acids as agents of chemical weathering of silicate minerals. Nature Physical Science , 1972, 239: 149-151
40 Jones D L, Kochian L V. Aluminum-organic acid interactions in acid soils. 1. Effect of root-derived organic acids on the kinetics of Al dissolution. Plant and Soil , 1996, 182(2): 221-228
41 Pohlman A A, McColl J G. Kinetics of metal dissolution from forest soils by soluble organic acids. Journal of Environmental Quality , 1986, 15(1): 86-92
doi: 10.2134/jeq1986.00472425001500010020x
42 Lundstr?m U S, ?hman L O. Dissolution of feldspars in the presence of natural, organic solutes. Journal of Soil Science , 1990, 41(3): 359-369
doi: 10.1111/j.1365-2389.1990.tb00071.x
[1] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[2] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[3] Junlian Qiao, Yang Liu, Hongyi Yang, Xiaohong Guan, Yuankui Sun. Remediation of arsenic contaminated soil by sulfidated zero-valent iron[J]. Front. Environ. Sci. Eng., 2021, 15(5): 83-.
[4] Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao. Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil[J]. Front. Environ. Sci. Eng., 2021, 15(4): 61-.
[5] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[6] Hanli Wan, Jianmin Bian, Han Zhang, Yihan Li. Assessment of future climate change impacts on water-heat-salt migration in unsaturated frozen soil using CoupModel[J]. Front. Environ. Sci. Eng., 2021, 15(1): 10-.
[7] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[8] Zhengqing Cai, Xiao Zhao, Jun Duan, Dongye Zhao, Zhi Dang, Zhang Lin. Remediation of soil and groundwater contaminated with organic chemicals using stabilized nanoparticles: Lessons from the past two decades[J]. Front. Environ. Sci. Eng., 2020, 14(5): 84-.
[9] Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott. Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy[J]. Front. Environ. Sci. Eng., 2020, 14(4): 58-.
[10] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[11] Jun Yang, Jingyun Wang, Pengwei Qiao, Yuanming Zheng, Junxing Yang, Tongbin Chen, Mei Lei, Xiaoming Wan, Xiaoyong Zhou. Identifying factors that influence soil heavy metals by using categorical regression analysis: A case study in Beijing, China[J]. Front. Environ. Sci. Eng., 2020, 14(3): 37-.
[12] Xiaoming Wan, Mei Lei, Tongbin Chen. Review on remediation technologies for arsenic-contaminated soil[J]. Front. Environ. Sci. Eng., 2020, 14(2): 24-.
[13] Mohsen Jalali, Ziba Hurseresht. Assessment of mobile and potential mobile trace elements extractability in calcareous soils using different extracting agents[J]. Front. Environ. Sci. Eng., 2020, 14(1): 7-.
[14] Baoyuan Guo, Jiao Meng, Xinyu Wang, Chengnan Yin, Weiyu Hao, Baiwen Ma, Zhang Tao. Quantification of pesticide residues on plastic mulching films in typical farmlands of the North China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 2-.
[15] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed