Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2022, Vol. 9 Issue (3) : 490-510    https://doi.org/10.15302/J-FASE-2022453
RIVIEW
A NEW APPROACH TO HOLISTIC NITROGEN MANAGEMENT IN CHINA
Xuejun LIU1(), Zhenling CUI1, Tianxiang HAO2, Lixing YUAN1, Ying ZHANG1, Baojing GU3, Wen XU1, Hao YING1, Weifeng ZHANG1, Tingyu LI4, Xiaoyuan YAN5, Keith GOULDING6, David KANTER7, Robert HOWARTH8, Carly STEVENS9, Jagdish LADHA10, Qianqian LI11, Lei LIU12, Wim DE VRIES13, Fusuo ZHANG1
1. Key Laboratory of Plant-Soil Interactions of Ministry of Education, National Academy of Agriculture Green Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
2. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
3. College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
4. College of Tropical Crops, Hainan University, Haikou 570228, China
5. State Key Laboratory of Soil and Sustainable Agriculture, Nanjing Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
6. Department of Sustainable Agriculture Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK
7. Department of Environmental Studies, New York University, New York, NY 10003, USA
8. Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
9. Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
10. Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
11. School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
12. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
13. Environmental Systems Analysis Group, Wageningen University & Research, PO Box 47, 6700 AA Wageningen, the Netherlands
 Download: PDF(7273 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Progress on nitrogen management in agriculture is overviewed in China.

● 4R principles are key to high N use efficiency and low N losses in soil-crop systems.

● A new framework of food-chain-N-management is proposed.

● China’s success in N management provides models for other countries.

Since the 1980s, the widespread use of N fertilizer has not only resulted in a strong increase in agricultural productivity but also caused a number of environmental problems, induced by excess reactive N emissions. A range of approaches to improve N management for increased agricultural production together with reduced environmental impacts has been proposed. The 4R principles (right product, right amount, right time and right place) for N fertilizer application have been essential for improving crop productivity and N use efficiency while reducing N losses. For example, site-specific N management (as part of 4R practice) reduced N fertilizer use by 32% and increased yield by 5% in China. However, it has not been enough to overcome the challenge of producing more food with reduced impact on the environment and health. This paper proposes a new framework of food-chain-nitrogen-management (FCNM). This involves good N management including the recycling of organic manures, optimized crop and animal production and improved human diets, with the aim of maximizing resource use efficiency and minimizing environmental emissions. FCNM could meet future challenges for food demand, resource sustainability and environmental safety, key issues for green agricultural transformation in China and other countries.

Keywords 4R technology      food chain N management      N use efficiency      soil-crop system      sustainable management     
Corresponding Author(s): Xuejun LIU   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 20 June 2022   Online First Date: 20 July 2022    Issue Date: 09 September 2022
 Cite this article:   
Xuejun LIU,Zhenling CUI,Tianxiang HAO, et al. A NEW APPROACH TO HOLISTIC NITROGEN MANAGEMENT IN CHINA[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 490-510.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2022453
https://academic.hep.com.cn/fase/EN/Y2022/V9/I3/490
Fig.1  Nitrogen cascade within agricultural and non-agricultural ecosystems (a) and the simplified impacts of reactive N (Nr) on air pollution and greenhouse gas emission, water pollution (including eutrophication), soil acidification, and biodiversity declines (b).
Fig.2  Overview of optimized N management including the 4Rs (right rate, right source, right time and right place) for high-quality sustainably produced grain (a) and integrated soil-crop system management (b) (modified from Chen et al.[27]).
Fig.3  Historical changes of synthetic N fertilizer use in agriculture, partial fertilizer productivity (PFP), total N use efficiency (NUEtotal) and crop production in China during 1961–2018 (a); trends in yield for different crop categories in China during 1961–2018 (b). Data source: Food and Agricultural Organization of the United Nations. NUEtotal = Noutput/Ninput × 100, the ratio of N in harvested crops to the total N inputs, considering all N sources (i.e., N fertilizer, manure N, biological N fixation and deposition) in the soil-crop system.
Region Total N input (kg·ha−1 N) N management strategies Global common
Africa 29 (10–60) (1) Improved management of synthetic N  ◇ 4R  ◇ SSNM  ◇ LCC/SPAD  ◇ Inhibitors  ◇ Controlled release sources(2) Improved management of other N sources  ◇ FYM, crop residue, compost  ◇ Biofertilizer and green manure(3) System management  ◇ Conservation agriculture  ◇ Best management (1) N acquisition and N utilization(2) Rhizospheric N2 fixation(3) N metabolism(4) Cereals fixing their own N
Australia 33 (20–80)
South America 55 (30–80)
North America 91 (40–160)
Central Europe 113 (60–180)
South Asia 136 (60–300)
East & South-east Asia 180 (80–400)
Tab.1  Summarized N management strategies for global and selected geographic regions showing hotspots of total N inputs to cropland
Fig.4  An integrated framework for food-chain-N-management (FCNM) at regional and temporal scales, based on environmental thresholds (a) (data from Ma et al.[143]); and a conceptual model for optimal soil-crop management to achieve synchronous crop productivity, resource use efficiency and environmental protection (b).
1 N, Alexandratos J Bruinsma. World agriculture towards 2030/2050: the 2012 revision. Rome: FAO , 2012
2 and Agriculture Organization of the United Nations (FAO) Food. The Future of Food and Agriculture-Alternative Pathways to 2050. FAO, 2018. Available at FAO website on May 29, 2022
3 T E, Crews M B Peoples. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agriculture, Ecosystems & Environment , 2004, 102( 3): 279–297
https://doi.org/10.1016/j.agee.2003.09.018
4 J W, Erisman M A, Sutton J, Galloway Z, Klimont W Winiwarter. How a century of ammonia synthesis changed the world. Nature Geoscience , 2008, 1( 10): 636–639
https://doi.org/10.1038/ngeo325
5 C, Celestina J R, Hunt P W G, Sale A E Franks. Attribution of crop yield responses to application of organic amendments: a critical review. Soil & Tillage Research , 2019, 186 : 135–145
https://doi.org/10.1016/j.still.2018.10.002
6 M, Diacono F Montemurro. Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable Development , 2010, 30( 2): 401–422
https://doi.org/10.1051/agro/2009040
7 and Agriculture Organization of the United Nations (FAO) Food. FAOSTAT Statistical Database. Rome: FAO , 2022. Available at FAO website on May 29, 2022
8 M Qaim. Globalisation of agrifood systems and sustainable nutrition. Proceedings of the Nutrition Society , 2017, 76( 1): 12–21
https://doi.org/10.1017/S0029665116000598 pmid: 27301655
9 X, Jiao Y, Lyu X, Wu H, Li L, Cheng C, Zhang L, Yuan R, Jiang B, Jiang Z, Rengel F, Zhang W J, Davies J Shen. Grain production versus resource and environmental costs: towards increasing sustainability of nutrient use in China. Journal of Experimental Botany , 2016, 67( 17): 4935–4949
https://doi.org/10.1093/jxb/erw282 pmid: 27489235
10 L, Liu X, Zhang W, Xu X, Liu Y, Li J, Wei M, Gao J, Bi X, Lu Z, Wang X Wu. Challenges for global sustainable nitrogen management in agricultural systems. Journal of Agricultural and Food Chemistry , 2020, 68( 11): 3354–3361
https://doi.org/10.1021/acs.jafc.0c00273 pmid: 32129989
11 J N, Galloway A R, Townsend J W, Erisman M, Bekunda Z, Cai J R, Freney L A, Martinelli S P, Seitzinger M A Sutton. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science , 2008, 320( 5878): 889–892
https://doi.org/10.1126/science.1136674 pmid: 18487183
12 J W, Erisman J N, Galloway N B, Dise M A, Sutton A, Bleeker B, Grizzetti A M, Leach Vries W de. Nitrogen: Too Much of a Vital Resource: Science Brief. Zeist: WWF Netherlands , 2015
13 Nations (UN) United. Sustainable Development Goals. New York: UN , 2015. Available at UN website on May 29, 2022
14 X, Liu Y, Zhang W, Han A, Tang J, Shen Z, Cui P, Vitousek J W, Erisman K, Goulding P, Christie A, Fangmeier F Zhang. Enhanced nitrogen deposition over China. Nature , 2013, 494( 7438): 459–462
https://doi.org/10.1038/nature11917 pmid: 23426264
15 C, Yu X, Huang H, Chen H C J, Godfray J S, Wright J W, Hall P, Gong S, Ni S, Qiao G, Huang Y, Xiao J, Zhang Z, Feng X, Ju P, Ciais N C, Stenseth D O, Hessen Z, Sun L, Yu W, Cai H, Fu X, Huang C, Zhang H, Liu J Taylor. Managing nitrogen to restore water quality in China. Nature , 2019, 567( 7749): 516–520
https://doi.org/10.1038/s41586-019-1001-1 pmid: 30818324
16 D, Kanter D L, Mauzerall A R, Ravishankara J S, Daniel R W, Portmann P M, Grabiel W R, Moomaw J N Galloway. A post-Kyoto partner: considering the stratospheric ozone regime as a tool to manage nitrous oxide. Proceedings of the National Academy of Sciences of the United States of America , 2013, 110( 12): 4451–4457
https://doi.org/10.1073/pnas.1222231110 pmid: 23440192
17 J H, Guo X J, Liu Y, Zhang J L, Shen W X, Han W F, Zhang P, Christie K W T, Goulding P M, Vitousek F S Zhang. Significant acidification in major Chinese croplands. Science , 2010, 327( 5968): 1008–1010
https://doi.org/10.1126/science.1182570 pmid: 20150447
18 Q, Zhu X, Liu T, Hao M, Zeng J, Shen F, Zhang Vries W de. Cropland acidification increases risk of yield losses and food insecurity in China. Environmental Pollution , 2020, 256 : 113145
https://doi.org/10.1016/j.envpol.2019.113145 pmid: 31662249
19 D, Norse X T Ju. Environmental costs of China’s food security. Agriculture, Ecosystems & Environment , 2015, 209 : 5–14
https://doi.org/10.1016/j.agee.2015.02.014
20 J, Rockström W, Steffen K, Noone A, Persson F S 3rd, Chapin E F, Lambin T M, Lenton M, Scheffer C, Folke H J, Schellnhuber B, Nykvist Wit C A, de T, Hughes der Leeuw S, van H, Rodhe S, Sörlin P K, Snyder R, Costanza U, Svedin M, Falkenmark L, Karlberg R W, Corell V J, Fabry J, Hansen B, Walker D, Liverman K, Richardson P, Crutzen J A Foley. A safe operating space for humanity. Nature , 2009, 461( 7263): 472–475
https://doi.org/10.1038/461472a pmid: 19779433
21 Vries W, De J, Kros C, Kroeze S P Seitzinger. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Current Opinion in Environmental Sustainability , 2013, 5( 3−4): 392–402
https://doi.org/10.1016/j.cosust.2013.07.004
22 W, Steffen K, Richardson J, Rockström S E, Cornell I, Fetzer E M, Bennett R, Biggs S R, Carpenter Vries W, de Wit C A, de C, Folke D, Gerten J, Heinke G M, Mace L M, Persson V, Ramanathan B, Reyers S Sörlin. Sustainability. Planetary boundaries: guiding human development on a changing planet. Science , 2015, 347( 6223): 1259855
https://doi.org/10.1126/science.1259855 pmid: 25592418
23 H, Hillebrand I, Donohue W S, Harpole D, Hodapp M, Kucera A M, Lewandowska J, Merder J M, Montoya J A Freund. Thresholds for ecological responses to global change do not emerge from empirical data. Nature Ecology & Evolution , 2020, 4( 11): 1502–1509
https://doi.org/10.1038/s41559-020-1256-9 pmid: 32807945
24 X, Chen Z, Cui M, Fan P, Vitousek M, Zhao W, Ma Z, Wang W, Zhang X, Yan J, Yang X, Deng Q, Gao Q, Zhang S, Guo J, Ren S, Li Y, Ye Z, Wang J, Huang Q, Tang Y, Sun X, Peng J, Zhang M, He Y, Zhu J, Xue G, Wang L, Wu N, An L, Wu L, Ma W, Zhang F Zhang. Producing more grain with lower environmental costs. Nature , 2014, 514( 7523): 486–489
https://doi.org/10.1038/nature13609 pmid: 25186728
25 X, Zhang E A, Davidson D L, Mauzerall T D, Searchinger P, Dumas Y Shen. Managing nitrogen for sustainable development. Nature , 2015, 528( 7580): 51–59
https://doi.org/10.1038/nature15743 pmid: 26595273
26 A M, Johnston T W Bruulsema. 4R nutrient stewardship for improved nutrient use efficiency. Procedia Engineering , 2014, 83 : 365–370
https://doi.org/10.1016/j.proeng.2014.09.029
27 X P, Chen Z L, Cui P M, Vitousek K G, Cassman P A, Matson J S, Bai Q F, Meng P, Hou S C, Yue V, Römheld F S Zhang. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America , 2011, 108( 16): 6399–6404
https://doi.org/10.1073/pnas.1101419108 pmid: 21444818
28 M A, Sutton A, Bleeker C M, Howard M, Bekunda B, Grizzetti Vries W, de Grinsven H J M, van Y P, Abrol T K, Adhya G, Billen E A, Davidson A, Datta R, Diaz J W, Erisman X J, Liu O, Oenema C, Palm N, Raghuram S, Reis R W, Scholz T, Sims H, Westhoek F S Zhang. Our Nutrient World: The challenge to produce more food and energy with less pollution. Edinburgh: Centre for Ecology and Hydrology , 2013
29 D R, Kanter O, Chodos O, Nordland M, Rutigliano W Winiwarter. Gaps and opportunities in nitrogen pollution policies around the world. Nature Sustainability , 2020, 3( 11): 956–963
https://doi.org/10.1038/s41893-020-0577-7
30 X, Liu P, Vitousek Y, Chang W, Zhang P, Matson F Zhang. Evidence for a historic change occurring in China. Environmental Science & Technology , 2016, 50( 2): 505–506
https://doi.org/10.1021/acs.est.5b05972 pmid: 26709065
31 D P, Swaney R W, Howarth B Hong. Nitrogen use efficiency and crop production: patterns of regional variation in the United States, 1987−2012. Science of the Total Environment , 2018, 635 : 498–511
https://doi.org/10.1016/j.scitotenv.2018.04.027 pmid: 29677675
32 N D, Mueller J S, Gerber M, Johnston D K, Ray N, Ramankutty J A Foley. Closing yield gaps through nutrient and water management. Nature , 2012, 490( 7419): 254–257
https://doi.org/10.1038/nature11420 pmid: 22932270
33 C J Stevens. Nitrogen in the environment. Science , 2019, 363( 6427): 578–580
https://doi.org/10.1126/science.aav8215 pmid: 30733401
34 R W, Howarth K, Ramakrishna E, Choi R, Elmgren Z Zhao-Liang. Chapter 9: nutrient management, responses assessment. In: Chopra K, Leemans R, eds. Ecosystems and Human Well-being, Volume 3. Policy Responses, the Millennium Ecosystem Assessment. Washington: Island Press , 2005, 3: 295–311
35 D R, Kanter T D Searchinger. A technology-forcing approach to reduce nitrogen pollution. Nature Sustainability , 2018, 1( 10): 544–552
https://doi.org/10.1038/s41893-018-0143-8
36 B Z, Houlton M, Almaraz V, Aneja A T, Austin E, Bai K G, Cassman J E, Compton E A, Davidson J W, Erisman J N, Galloway B, Gu G, Yao L A, Martinelli K, Scow W H, Schlesinger T P, Tomich C, Wang X Zhang. A world of co-benefits: solving the global nitrogen challenge. Earth’s Future , 2019, 7( 8): 1–8
https://doi.org/10.1029/2019EF001222 pmid: 31501769
37 J N, Galloway J D, Aber J W, Erisman S P, Seitzinger R W, Howarth E B, Cowling B J Cosby. The nitrogen cascade. Bioscience , 2003, 53( 4): 341–356
https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
38 J K, Ladha M I, Jat C M, Stirling D, Chakraborty P, Pradhan T J, Krupnik T B, Sapkota H, Pathak D S, Rana K, Tesfaye B Gerard. Achieving the sustainable development goals in agriculture: The crucial role of nitrogen in cereal-based systems. Advances in Agronomy , 2020, 163 : 39–116
https://doi.org/10.1016/bs.agron.2020.05.006
39 M A, Sutton O, Oenema J W, Erisman A, Leip Grinsven H, van W Winiwarter. Too much of a good thing. Nature , 2011, 472( 7342): 159–161
https://doi.org/10.1038/472159a pmid: 21478874
40 P M, Vitousek R, Naylor T, Crews M B, David L E, Drinkwater E, Holland P J, Johnes J, Katzenberger L A, Martinelli P A, Matson G, Nziguheba D, Ojima C A, Palm G P, Robertson P A, Sanchez A R, Townsend F S Zhang. Nutrient imbalances in agricultural development. Science , 2009, 324( 5934): 1519–1520
https://doi.org/10.1126/science.1170261 pmid: 19541981
41 B, Gu Grinsven H J M, van S K, Lam O, Oenema M A, Sutton A, Mosier D Chen. A credit system to solve agricultural nitrogen pollution. Innovation , 2021, 2( 1): 100079
https://doi.org/10.1016/j.xinn.2021.100079 pmid: 34557735
42 X, Liu W, Xu E, Du A, Tang Y, Zhang Y, Zhang Z, Wen T, Hao Y, Pan L, Zhang B, Gu Y, Zhao J, Shen F, Zhou Z, Gao Z, Feng Y, Chang K, Goulding J L Jr, Collett P M, Vitousek F Zhang. Environmental impacts of nitrogen emissions in China and the role of policies in emission reduction. Philosophical Transactions of the Royal Society Series A-Mathematical , Philosophical Transactions of the Royal Society Series A-Mathematical , 2020, 378( 2183): 20190324
43 X, Liu Z, Sha Y, Song H, Dong Y, Pan Z, Gao Y, Li L, Ma W, Dong C, Hu W, Wang Y, Wang H, Geng Y, Zheng M Gu. China’s atmospheric ammonia emission characteristics, mitigation options and policy recommendations. Research of Environmental Sciences , 2021, 34(1): 149−157 ( in Chinese)
44 X, Zhan W, Adalibieke X, Cui W, Winiwarter S, Reis L, Zhang Z, Bai Q, Wang W, Huang F Zhou. Improved estimates of ammonia emissions from global croplands. Environmental Science & Technology , 2021, 55( 2): 1329–1338
https://doi.org/10.1021/acs.est.0c05149 pmid: 33378621
45 L, Liu W, Xu X, Lu B, Zhong Y, Guo X, Lu Y, Zhao W, He S, Wang X, Zhang X, Liu P Vitousek. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proceedings of the National Academy of Sciences of the United States of America , 2022, 119( 14): e2121998119
https://doi.org/10.1073/pnas.2121998119 pmid: 35344440
46 B, Gu M A, Sutton S X, Chang Y, Ge J Chang. Agricultural ammonia emissions contribute to China’s urban air pollution. Frontiers in Ecology and the Environment , 2014, 12( 5): 265–266
https://doi.org/10.1890/14.WB.007
47 W, Xu X, Liu L, Liu A J, Dore A, Tang L, Lu Q, Wu Y, Zhang T, Hao Y, Pan J, Chen F Zhang. Impact of emission controls on air quality in Beijing during APEC 2014: implications from water-soluble ions and carbonaceous aerosol in PM2.5 and their precursors. Atmospheric Environment , 2019, 210 : 241–252
https://doi.org/10.1016/j.atmosenv.2019.04.050
48 G L, Velthof D, Oudendag H P, Witzke W A H, Asman Z, Klimont O Oenema. Integrated assessment of nitrogen losses from agriculture in EU-27 using MITERRA-EUROPE. Journal of Environmental Quality , 2009, 38( 2): 402–417
https://doi.org/10.2134/jeq2008.0108 pmid: 19202011
49 M, Kesik P, Ambus R, Baritz N, Brüggemann K, Butterbach-Bahl M, Damm J, Duyzer L, Horváth R, Kiese B, Kitzler A, Leip C, Li M, Pihlatie K, Pilegaard S, Seufert D, Simpson U, Skiba G, Smiatek T, Vesala S Zechmeister-Boltenstern. Inventories of N2O and NO emissions from European forest soils. Biogeosciences , 2005, 2( 4): 353–375
https://doi.org/10.5194/bg-2-353-2005
50 H W Bange. Nitrous oxide and methane in European coastal waters. Estuarine, Coastal and Shelf Science , 2006, 70( 3): 361–374
https://doi.org/10.1016/j.ecss.2006.05.042
51 E, Du Vries W de. Nitrogen-induced new net primary production and carbon sequestration in global forests. Environmental Pollution , 2018, 242(Pt B): 1476–1487
52 E D, Schulze P, Högberg Oene H, van T, Persson A F, Harrison D, Read A, KjøLler G Matteucci. Interactions between the carbon and nitrogen cycles and the role of biodiversity: a synopsis of a study along a north-south transect through Europe. In: Schulze E D, eds. Carbon and Nitrogen Cycling in European Forest Ecosystems. Berlin, Heidelberg: Springer , 2000, 468–491
53 I A, Janssens W, Dieleman S, Luyssaert J A, Subke M, Reichstein R, Ceulemans P, Ciais A J, Dolman J, Grace G, Matteucci D, Papale S L, Piao E D, Schulze J, Tang B E Law. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience , 2010, 3( 5): 315–322
https://doi.org/10.1038/ngeo844
54 T, Ding Y, Ning Y Zhang. Estimation of greenhouse gas emissions in China 1990–2013. Greenhouse Gases (Chichester, UK) , 2017, 7( 6): 1097–1115
https://doi.org/10.1002/ghg.1718
55 X, Liu F Zhang. Nitrogen fertilizer induced greenhouse gas emissions in China. Current Opinion in Environmental Sustainability , 2011, 3( 5): 407–413
https://doi.org/10.1016/j.cosust.2011.08.006
56 F, Zhou Z, Shang P, Ciais S, Tao S, Piao P, Raymond C, He B, Li R, Wang X, Wang S, Peng Z, Zeng H, Chen N, Ying X, Hou P Xu. A new high-resolution N2O emission inventory for China in 2008. Environmental Science & Technology , 2014, 48( 15): 8538–8547
https://doi.org/10.1021/es5018027 pmid: 24964395
57 H, Kobayashi R Sago. A study on life cycle assessment of energy consumption and CO2 emissions in the manufacturing and transportation processes of nitrogen and phosphate fertilizers . Japanese Journal of Farm Work Research , 2001, 36(3): 141−151 ( in Japanese)
58 R F Follett. Soil management concepts and carbon sequestration in cropland soils. Soil & Tillage Research , 2001, 61( 1−2): 77–92
https://doi.org/10.1016/S0167-1987(01)00180-5
59 W F, Zhang Z X, Dou P, He X T, Ju D, Powlson D, Chadwick D, Norse Y L, Lu Y, Zhang L, Wu X P, Chen K G, Cassman F S Zhang. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences of the United States of America , 2013, 110( 21): 8375–8380
https://doi.org/10.1073/pnas.1210447110 pmid: 23671096
60 S, Duan T, Liang S, Zhang L, Wang X, Zhang X Chen. Seasonal changes in nitrogen and phosphorus transport in the lower Changjiang River before the construction of the Three Gorges Dam. Estuarine, Coastal and Shelf Science , 2008, 79( 2): 239–250
https://doi.org/10.1016/j.ecss.2008.04.002
61 G, Billen J, Garnier L Lassaletta. The nitrogen cascade from agricultural soils to the sea: modelling nitrogen transfers at regional watershed and global scales. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences , 2013, 368( 1621): 20130123
https://doi.org/10.1098/rstb.2013.0123 pmid: 23713121
62 N, Gruber J N Galloway. An earth-system perspective of the global nitrogen cycle. Nature , 2008, 451( 7176): 293–296
https://doi.org/10.1038/nature06592 pmid: 18202647
63 G, Billen M, Silvestre B, Grizzetti A, Leip J, Garnier M, Voss R, Howarth F, Bouraoui A, Lepistö P, Kortelainen P, Johnes C, Curtis C, Humborg E, Smedberg Ø, Kaste R, Ganeshram A, Beusen C Lancelot. Nitrogen flows from European watersheds to coastal marine waters. In: Sutton, M. A, Howard C M, Erisman J W, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B, eds. The European Nitrogen Assessment. Cambridge: Cambridge University Press , 2011, 271–297
64 Y, Han Y, Fan P, Yang X, Wang Y, Wang J, Tian L, Xu C Wang. Net anthropogenic nitrogen inputs (NANI) index application in Mainland China. Geoderma , 2014, 213 : 87–94
https://doi.org/10.1016/j.geoderma.2013.07.019
65 R, Howarth D, Swaney G, Billen J, Garnier B, Hong C, Humborg P, Johnes C M, Mörth R Marino. Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Frontiers in Ecology and the Environment , 2012, 10( 1): 37–43
https://doi.org/10.1890/100178
66 J, Shen J, Liu Y, Li Y, Li Y, Wang X, Liu J Wu. Contribution of atmospheric nitrogen deposition to diffuse pollution in a typical hilly red soil catchment in southern China. Journal of Environmental Sciences , 2014, 26( 9): 1797–1805
https://doi.org/10.1016/j.jes.2014.06.026 pmid: 25193827
67 W, Gao R W, Howarth B, Hong D P, Swaney H C Guo. Estimating net anthropogenic nitrogen inputs (NANI) in the Lake Dianchi basin of China. Biogeosciences , 2014, 11( 16): 4577–4586
https://doi.org/10.5194/bg-11-4577-2014
68 Y, Han G, Feng D P, Swaney F, Dentener R, Koeble Y, Ouyang W Gao. Global and regional estimation of net anthropogenic nitrogen inputs (NANI). Geoderma , 2020, 361 : 114066
https://doi.org/10.1016/j.geoderma.2019.114066
69 J, Wang A H W, Beusen X, Liu R V, Dingenen F, Dentener Q, Yao B, Xu X, Ran Z, Yu A F Bouwman. Spatially explicit inventory of sources of nitrogen inputs to the Yellow Sea, East China Sea, and South China Sea for the period 1970–2010. Earth’s Future , 2020, 8( 10): e2020EF001516
70 M, Strokal H, Yang Y, Zhang C, Kroeze L, Li S, Luan H, Wang S, Yang Y Zhang. Increasing eutrophication in the coastal seas of China from 1970 to 2050. Marine Pollution Bulletin , 2014, 85( 1): 123–140
https://doi.org/10.1016/j.marpolbul.2014.06.011 pmid: 24981103
71 M, Strokal L, Ma Z, Bai S, Luan C, Kroeze O, Oenema G, Velthof F Zhang. Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions. Environmental Research Letters , 2016, 11( 2): 024014
https://doi.org/10.1088/1748-9326/11/2/024014
72 Y, Liu Q, Jiang Y, Sun Y, Jian F Zhou. Decline in nitrogen concentrations of eutrophic Lake Dianchi associated with policy interventions during 2002−2018. Environmental Pollution , 2021, 288 : 117826
https://doi.org/10.1016/j.envpol.2021.117826 pmid: 34329052
73 Y, Yang C, Ji W, Ma S, Wang S, Wang W, Han A, Mohammat D, Robinson P Smith. Significant soil acidification across northern China’s grasslands during 1980s−2000s. Global Change Biology , 2012, 18( 7): 2292–2300
https://doi.org/10.1111/j.1365-2486.2012.02694.x
74 Q, Zhu Vries W, de X, Liu M, Zeng T, Hao E, Du F, Zhang J Shen. The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980. Atmospheric Environment , 2016, 146 : 215–222
https://doi.org/10.1016/j.atmosenv.2016.04.023
75 N K, Fageria A S Nascente. Management of soil acidity of South American soils for sustainable crop production. Advances in Agronomy , 2014, 128 : 221–275
https://doi.org/10.1016/B978-0-12-802139-2.00006-8
76 X, Lu Q, Mao F S, Gilliam Y, Luo J Mo. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology , 2014, 20( 12): 3790–3801
https://doi.org/10.1111/gcb.12665 pmid: 24953639
77 Vries W, De M H, Dobbertin S, Solberg Dobben H F, Van M Schaub. Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: an overview. Plant and Soil , 2014, 380( 1−2): 1–45
https://doi.org/10.1007/s11104-014-2056-2
78 B, Zhao X, Li X, Li X, Shi S, Huang B, Wang P, Zhu X, Yang H, Liu Y, Chen P, Poulton D, Powlson A, Todd R Payne. Long-term fertilizer experiment network in China: crop yields and soil nutrient trends. Agronomy Journal , 2010, 102( 1): 216–230
https://doi.org/10.2134/agronj2009.0182
79 T, Hao Q, Zhu M, Zeng J, Shen X, Shi X, Liu F, Zhang Vries W de. Quantification of the contribution of nitrogen fertilization and crop harvesting to soil acidification in a wheat-maize double cropping system. Plant and Soil , 2019, 434( 1−2): 167–184
https://doi.org/10.1007/s11104-018-3760-0
80 Q, Zhu Vries W, de X, Liu T, Hao M, Zeng J, Shen F Zhang. Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980−2010. Science of the Total Environment , 2018, 618 : 1497–1505
https://doi.org/10.1016/j.scitotenv.2017.09.289 pmid: 29089131
81 L V, Kochian O A, Hoekenga M A Piñeros. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology , 2004, 55( 1): 459–493
https://doi.org/10.1146/annurev.arplant.55.031903.141655 pmid: 15377228
82 B L, Wang J B, Shen W H, Zhang F S, Zhang G Neumann. Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum. New Phytologist , 2007, 176( 3): 581–589
https://doi.org/10.1111/j.1469-8137.2007.02206.x pmid: 17725555
83 Q, Zhu X, Liu T, Hao M, Zeng J, Shen F, Zhang Vries W De. Modeling soil acidification in typical Chinese cropping systems. Science of the Total Environment , 2018, 613–614: 1339–1348
84 X, Zhang W, Liu G, Zhang L, Jiang X Han. Mechanisms of soil acidification reducing bacterial diversity. Soil Biology & Biochemistry , 2015, 81 : 275–281
https://doi.org/10.1016/j.soilbio.2014.11.004
85 Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Intergovernmental. Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Paris: IPBES , 2019
86 P W, Leadley C B, Krug R, Alkemade H M, Pereira U R, Sumaila M, Walpole A, Marques T, Newbold L S L, Teh Kolck J, van C, Bellard S R, Januchowski-Hartley P J Mumby. Progress towards the Aichi Biodiversity Targets: an Assessment of Biodiversity Trends, Policy Scenarios and Key Actions. CBD Technical Series 78. Montreal, Canada: Secretariat of the Convention on Biological Diversity , 2014
87 R, Bobbink K, Hicks J, Galloway T, Spranger R, Alkemade M, Ashmore M, Bustamante S, Cinderby E, Davidson F, Dentener B, Emmett J W, Erisman M, Fenn F, Gilliam A, Nordin L, Pardo Vries W De. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications , 2010, 20( 1): 30–59
https://doi.org/10.1890/08-1140.1 pmid: 20349829
88 J, Shen D, Chen M, Bai J, Sun S K, Lam A, Mosier X, Liu Y Li. Spatial variations in soil and plant nitrogen levels caused by ammonia deposition near a cattle feedlot. Atmospheric Environment , 2018, 176 : 120–127
https://doi.org/10.1016/j.atmosenv.2017.12.022
89 C E R, Pitcairn L D, Leith L J, Sheppard A M, Sutton D, Fowler R C, Munro S, Tang D, Wilson I D Leith. The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environmental Pollution , 1998, 102( Suppl.1): 41–48
https://doi.org/10.1016/S0269-7491(98)80013-4
90 C M, Clark S M, Simkin E B, Allen W D, Bowman J, Belnap M L, Brooks S L, Collins L H, Geiser F S, Gilliam S E, Jovan L H, Pardo B K, Schulz C J, Stevens K N, Suding H L, Throop D M Waller. Potential vulnerability of 348 herbaceous species to atmospheric deposition of nitrogen and sulfur in the United States. Nature Plants , 2019, 5( 7): 697–705
https://doi.org/10.1038/s41477-019-0442-8 pmid: 31263243
91 T, Hao L, Song K, Goulding F, Zhang X Liu. Cumulative and partially recoverable impacts of nitrogen addition on a temperate steppe. Ecological Applications , 2018, 28( 1): 237–248
https://doi.org/10.1002/eap.1647 pmid: 29113017
92 den Berg L J L, Van P, Vergeer T C G, Rich S M, Smart D, Guest M R Ashmore. Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands. Global Change Biology , 2011, 17( 5): 1871–1883
https://doi.org/10.1111/j.1365-2486.2010.02345.x
93 A J, Britton J M Fisher. Terricolous alpine lichens are sensitive to both load and concentration of applied nitrogen and have potential as bioindicators of nitrogen deposition. Environmental Pollution , 2010, 158( 5): 1296–1302
https://doi.org/10.1016/j.envpol.2010.01.015 pmid: 20149506
94 C J, Stevens S M, Smart P A, Henrys L C, Maskell A, Crowe J, Simkin C M, Cheffings C, Whitfleld D J G, Gowing E C, Rowe A J, Dore B A Emmett. Terricolous lichens as indicators of nitrogen deposition: evidence from national records. Ecological Indicators , 2012, 20 : 196–203
https://doi.org/10.1016/j.ecolind.2012.02.027
95 Health Organization (WHO) World. Regional Office for Europe. Air quality guidelines for Europe, 2nd ed. WHO: Regional Office for Europe Publishing , 2000
96 X, Lü K, Li L, Song X Liu. Impacts of nitrogen deposition on China’s grassland ecosystems. In: Liu X, Du E, eds. Atmospheric Reactive Nitrogen in China. Singapore: Springer , 2020, 215–243
97 C J, Stevens K, Thompson J P, Grime C J, Long D J G Gowing. Contribution of acidification and eutrophication to declines in species richness of calcifuge grasslands along a gradient of atmospheric nitrogen deposition. Functional Ecology , 2010, 24( 2): 478–484
https://doi.org/10.1111/j.1365-2435.2009.01663.x
98 S M, Simkin E B, Allen W D, Bowman C M, Clark J, Belnap M L, Brooks B S, Cade S L, Collins L H, Geiser F S, Gilliam S E, Jovan L H, Pardo B K, Schulz C J, Stevens K N, Suding H L, Throop D M Waller. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States. Proceedings of the National Academy of Sciences of the United States of America , 2016, 113( 15): 4086–4091
https://doi.org/10.1073/pnas.1515241113 pmid: 27035943
99 C J, Stevens N B, Dise D J G, Gowing J O Mountford. Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controls. Global Change Biology , 2006, 12( 10): 1823–1833
https://doi.org/10.1111/j.1365-2486.2006.01217.x
100 T I, David J, Storkey C J Stevens. Understanding how changing soil nitrogen affects plant-pollinator interactions. Arthropod-Plant Interactions , 2019, 13( 5): 671–684
https://doi.org/10.1007/s11829-019-09714-y
101 C J, Stevens T I, David J Storkey. Atmospheric nitrogen deposition in terrestrial ecosystems: Its impact on plant communities and consequences across trophic levels. Functional Ecology , 2018, 32( 7): 1757–1769
https://doi.org/10.1111/1365-2435.13063
102 G, Yu Y, Jia N, He J, Zhu Z, Chen Q, Wang S, Piao X, Liu H, He X, Guo Z, Wen P, Li G, Ding K Goulding. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience , 2019, 12( 6): 424–429
https://doi.org/10.1038/s41561-019-0352-4
103 Z, Wen W, Xu Q, Li M, Han A, Tang Y, Zhang X, Luo J, Shen W, Wang K, Li Y, Pan L, Zhang W, Li J L Jr, Collett B, Zhong X, Wang K, Goulding F, Zhang X Liu. Changes of nitrogen deposition in China from 1980 to 2018. Environment International , 2020, 144 : 106022
https://doi.org/10.1016/j.envint.2020.106022 pmid: 32795750
104 R, Norton E, Davidson T Roberts. Nitrogen use efficiency and nutrient performance indicators. Global Partnership on Nutrient Management (GPNM), Washington: GPNM, 2015
105 O Oenema. Nitrogen use efficiency (NUE): an indicator for the utilisation of nitrogen in agricultural and food systems. Proceedings - International Fertiliser Society , 2015, 773 : 1–32
106 X, Liu W, Zhang F Zhang. Chemical fertilizer and agriculture. Bulletin of Chinese Academy of Sciences , 2011, 26(Suppl.): 119−124 ( in Chinese)
107 W, Zhang G, Cao X, Li H, Zhang C, Wang Q, Liu X, Chen Z, Cui J, Shen R, Jiang G, Mi Y, Miao F, Zhang Z Dou. Closing yield gaps in China by empowering smallholder farmers. Nature , 2016, 537( 7622): 671–674
https://doi.org/10.1038/nature19368 pmid: 27602513
108 C, Zhang X, Ju D, Powlson O, Oenema P Smith. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China. Environmental Science & Technology , 2019, 53( 12): 6678–6687
https://doi.org/10.1021/acs.est.8b06383 pmid: 31125212
109 K G, Cassman A, Dobermann D T Walters. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio , 2002, 31( 2): 132–140
https://doi.org/10.1579/0044-7447-31.2.132 pmid: 12078002
110 Z, Cui F, Zhang X, Chen Z, Dou J Li. In-season nitrogen management strategy for winter wheat: Maximizing yields, minimizing environmental impact in an over-fertilization context. Field Crops Research , 2010, 116( 1−2): 140–146
https://doi.org/10.1016/j.fcr.2009.12.004
111 L, Xia S K, Lam D, Chen J, Wang Q, Tang X Yan. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Change Biology , 2017, 23( 5): 1917–1925
https://doi.org/10.1111/gcb.13455 pmid: 27506858
112 X, Cui F, Zhou P, Ciais E A, Davidson F N, Tubiello X, Niu X, Ju J G, Canadell A F, Bouwman R B, Jackson N D, Mueller X, Zheng D R, Kanter H Q, Tian W, Adalibieke Y, Bo Q, Wang X, Zhan D Zhu. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nature Food , 2021, 2( 11): 886–893
https://doi.org/10.1038/s43016-021-00384-9
113 T, Li X, Zhang H, Gao B, Li H, Wang Q, Yan M, Ollenburger W Zhang. Exploring optimal nitrogen management practices within site-specific ecological and socioeconomic conditions. Journal of Cleaner Production , 2019, 241 : 118295
https://doi.org/10.1016/j.jclepro.2019.118295
114 X T, Ju G X, Xing X P, Chen S L, Zhang L J, Zhang X J, Liu Z L, Cui B, Yin P, Christie Z L, Zhu F S Zhang. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America , 2009, 106( 9): 3041–3046
https://doi.org/10.1073/pnas.0813417106 pmid: 19223587
115 F, Zhang Z, Cui X, Chen X, Ju J, Shen Q, Chen X, Liu W, Zhang G, Mi M, Fan R Jiang. Integrated nutrient management for food security and environmental quality in China. Advances in Agronomy , 2012, 116 : 1–40
https://doi.org/10.1016/B978-0-12-394277-7.00001-4
116 Z, Cui F, Zhang X, Chen Y, Miao J, Li L, Shi J, Xu L, Ye C, Liu Z, Yang Q, Zhang S, Huang D Bao. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Research , 2008, 105( 1−2): 48–55
https://doi.org/10.1016/j.fcr.2007.07.008
117 S, Peng R J, Buresh J, Huang X, Zhong Y, Zou J, Yang G, Wang Y, Liu R, Hu Q, Tang K, Cui F, Zhang A Dobermann. Improving nitrogen fertilization in rice by site-specific N management. A review. Agronomy for Sustainable Development , 2010, 30( 3): 649–656
https://doi.org/10.1051/agro/2010002
118 J K, Ladha H, Pathak T J, Krupnik J, Six Kessel C van. Efficiency of fertilizer nitrogen in cereal production: retrospects and prospects. Advances in Agronomy , 2005, 87 : 85–156
https://doi.org/10.1016/S0065-2113(05)87003-8
119 D D, Songstad J L, Hatfield D T Tomes. Convergence of food security, energy security and sustainable agriculture. Berlin, Heidelberg: Springer , 2014
120 T, Li W, Zhang J, Yin D, Chadwick D, Norse Y, Lu X, Liu X, Chen F, Zhang D, Powlson Z Dou. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem. Global Change Biology , 2018, 24( 2): e511–e521
https://doi.org/10.1111/gcb.13918 pmid: 28973790
121 D, Abalos S, Jeffery A, Sanz-Cobena G, Guardia A Vallejo. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agriculture, Ecosystems & Environment , 2014, 189 : 136–144
https://doi.org/10.1016/j.agee.2014.03.036
122 Z, Sha X, Ma N, Loick T, Lv L M, Cardenas M, Yan X, Liu T Misselbrook. Nitrogen stabilizers mitigate reactive N and greenhouse gas emissions from an arable soil in North China Plain: field and laboratory investigation. Journal of Cleaner Production , 2020, 258 : 121025
https://doi.org/10.1016/j.jclepro.2020.121025
123 S K, Lam H, Suter A R, Mosier D Chen. Using nitrification inhibitors to mitigate agricultural N2O emission: a double-edged sword. Global Change Biology , 2017, 23( 2): 485–489
https://doi.org/10.1111/gcb.13338 pmid: 27144727
124 M, Zhou B, Zhu S, Wang X, Zhu H, Vereecken N Brüggemann. Stimulation of N2O emission by manure application to agricultural soils may largely offset carbon benefits: a global meta-analysis. Global Change Biology , 2017, 23( 10): 4068–4083
https://doi.org/10.1111/gcb.13648 pmid: 28142211
125 X, Zhang Q, Fang T, Zhang W, Ma G L, Velthof Y, Hou O, Oenema F Zhang. Benefits and trade-offs of replacing synthetic fertilizers by animal manures in crop production in China: a meta-analysis. Global Change Biology , 2020, 26( 2): 888–900
https://doi.org/10.1111/gcb.14826 pmid: 31495039
126 P, Zhou H, Sheng Y, Li C, Tong T, Ge J Wu. Lower C sequestration and N use efficiency by straw incorporation than manure amendment on paddy soils. Agriculture, Ecosystems & Environment , 2016, 219 : 93–100
https://doi.org/10.1016/j.agee.2015.12.012
127 J, Fan J, Xiao D, Liu G, Ye J, Luo D, Houlbrooke S, Laurenson J, Yan L, Chen J, Tian W Ding. Effect of application of dairy manure, effluent and inorganic fertilizer on nitrogen leaching in clayey fluvo-aquic soil: a lysimeter study. Science of the Total Environment , 2017, 592 : 206–214
https://doi.org/10.1016/j.scitotenv.2017.03.060 pmid: 28319708
128 L, Xia S K, Lam X, Yan D Chen. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance. Environmental Science & Technology , 2017, 51( 13): 7450–7457
https://doi.org/10.1021/acs.est.6b06470 pmid: 28574704
129 S M, Swarbreck M, Wang Y, Wang D, Kindred R, Sylvester-Bradley W, Shi , Varinderpal-Singh A R, Bentley H Griffiths. A roadmap for lowering crop nitrogen requirement. Trends in Plant Science , 2019, 24( 10): 892–904
https://doi.org/10.1016/j.tplants.2019.06.006 pmid: 31285127
130 H, Ying Y, Yin H, Zheng Y, Wang Q, Zhang Y, Xue D, Stefanovski Z, Cui Z Dou. Newer and select maize, wheat, and rice varieties can help mitigate N footprint while producing more grain. Global Change Biology , 2019, 25( 12): 4273–4281
https://doi.org/10.1111/gcb.14798 pmid: 31418955
131 F, Chen Z, Fang Q, Gao Y, Ye L, Jia L, Yuan G, Mi F Zhang. Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China. Science China: Life Sciences , 2013, 56( 6): 552–560
https://doi.org/10.1007/s11427-013-4462-8 pmid: 23504275
132 G, Mi F, Chen L, Yuan F Zhang. Ideotype root system architecture for maize to achieve high yield and resource use efficiency in intensive cropping systems. Advances in Agronomy , 2016, 139 : 73–97
https://doi.org/10.1016/bs.agron.2016.05.002
133 X, Chen F, Chen Y, Chen Q, Gao X, Yang L, Yuan F, Zhang G Mi. Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change. Global Change Biology , 2013, 19( 3): 923–936
https://doi.org/10.1111/gcb.12093 pmid: 23504848
134 F, Chen J, Liu Z, Liu Z, Chen W, Ren X, Gong L, Wang H, Cai Q, Pan L, Yuan F, Zhang G Mi. Breeding for high-yield and nitrogen use efficiency in maize: lessons from comparison between Chinese and US cultivars. Advances in Agronomy , 2021, 166 : 251–275
https://doi.org/10.1016/bs.agron.2020.10.005
135 Q, Liu K, Wu N P, Harberd X Fu. Green Revolution DELLAs: from translational reinitiation to future sustainable agriculture. Molecular Plant , 2021, 14( 4): 547–549
https://doi.org/10.1016/j.molp.2021.03.015 pmid: 33753307
136 S, Li Y, Tian K, Wu Y, Ye J, Yu J, Zhang Q, Liu M, Hu H, Li Y, Tong N P, Harberd X Fu. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature , 2018, 560( 7720): 595–600
https://doi.org/10.1038/s41586-018-0415-5 pmid: 30111841
137 K, Wu S, Wang W, Song J, Zhang Y, Wang Q, Liu J, Yu Y, Ye S, Li J, Chen Y, Zhao J, Wang X, Wu M, Wang Y, Zhang B, Liu Y, Wu N P, Harberd X Fu. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science , 2020, 367( 6478): eaaz2046
https://doi.org/10.1126/science.aaz2046 pmid: 32029600
138 S, Lv X, Yang X, Lin Z, Liu J, Zhao K, Li C, Mu X, Chen F, Chen G Mi. Yield gap simulations using ten maize cultivars commonly planted in Northeast China during the past five decades. Agricultural and Forest Meteorology , 2015, 205 : 1–10
https://doi.org/10.1016/j.agrformet.2015.02.008
139 Z, Cui H, Zhang X, Chen C, Zhang W, Ma C, Huang W, Zhang G, Mi Y, Miao X, Li Q, Gao J, Yang Z, Wang Y, Ye S, Guo J, Lu J, Huang S, Lv Y, Sun Y, Liu X, Peng J, Ren S, Li X, Deng X, Shi Q, Zhang Z, Yang L, Tang C, Wei L, Jia J, Zhang M, He Y, Tong Q, Tang X, Zhong Z, Liu N, Cao C, Kou H, Ying Y, Yin X, Jiao Q, Zhang M, Fan R, Jiang F, Zhang Z Dou. Pursuing sustainable productivity with millions of smallholder farmers. Nature , 2018, 555( 7696): 363–366
https://doi.org/10.1038/nature25785 pmid: 29513654
140 F, Zhang X, Chen P Vitousek. Chinese agriculture: an experiment for the world. Nature , 2013, 497( 7447): 33–35
https://doi.org/10.1038/497033a pmid: 23636381
141 X, Ju F, Zhang X, Bao V, Römheld M Roelcke. Utilization and management of organic wastes in Chinese agriculture: past, present and perspectives. Science China: Life Sciences , 2005, 48(Suppl. 2): 965–979
142 Z, Bai W, Ma L, Ma G L, Velthof Z, Wei P, Havlík O, Oenema M R F, Lee F Zhang. China’s livestock transition: driving forces, impacts, and consequences. Science Advances , 2018, 4( 7): eaar8534
https://doi.org/10.1126/sciadv.aar8534 pmid: 30035221
143 L, Ma F, Wang W, Zhang W, Ma G, Velthof W, Qin O, Oenema F Zhang. Environmental assessment of management options for nutrient flows in the food chain in China. Environmental Science & Technology , 2013, 47( 13): 7260–7268
https://doi.org/10.1021/es400456u pmid: 23656482
144 P J, Gerber A, Uwizeye R P O, Schulte C I, Opio Boer I J M de. Nutrient use efficiency: a valuable approach to benchmark the sustainability of nutrient use in global livestock production? Current Opinion in Environmental Sustainability , 2014, 9–10: 122–130
145 A, Uwizeye P J, Gerber C I, Opio G, Tempio A, Mottet H P S, Makkar A, Falcucci H, Steinfeld Bore I J M de. Nitrogen flows in global pork supply chains and potential improvement from feeding swill to pigs. Resources, Conservation and Recycling , 2019, 146 : 168–179
https://doi.org/10.1016/j.resconrec.2019.03.032
146 Y, Cao X, Wang L, Liu G L, Velthof T, Misselbrook Z, Bai L Ma. Acidification of manure reduces gaseous emissions and nutrient losses from subsequent composting process. Journal of Environmental Management , 2020, 264 : 110454
https://doi.org/10.1016/j.jenvman.2020.110454 pmid: 32250891
147 N, Zhang Z, Bai W, Winiwarter S, Ledgard J, Luo J, Liu Y, Guo L Ma. Reducing ammonia emissions from dairy cattle production via cost-effective manure management techniques in China. Environmental Science & Technology , 2019, 53( 20): 11840–11848
https://doi.org/10.1021/acs.est.9b04284 pmid: 31536701
148 Y, Guo Y, Chen T D, Searchinger M, Zhou D, Pan J, Yang L, Wu Z, Cui W, Zhang F, Zhang L, Ma Y, Sun M A, Zondlo L, Zhang D L Mauzerall. Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nature Food , 2020, 1( 10): 648–658
https://doi.org/10.1038/s43016-020-00162-z
149 Z, Shang F, Zhou P, Smith E, Saikawa P, Ciais J, Chang H, Tian Grosso S J, Del A, Ito M, Chen Q, Wang Y, Bo X, Cui S, Castaldi R, Juszczak Å, Kasimir V, Magliulo S, Medinets V, Medinets R M, Rees G, Wohlfahrt S Sabbatini. Weakened growth of cropland-N2 O emissions in China associated with nationwide policy interventions. Global Change Biology , 2019, 25( 11): 3706–3719
https://doi.org/10.1111/gcb.14741 pmid: 31233668
150 L, Lassaletta G, Billen B, Grizzetti J, Anglade J Garnier. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters , 2014, 9( 10): 105011
https://doi.org/10.1088/1748-9326/9/10/105011
151 A, Singh A, Jaswal M Singh. Impact of neem coated urea on rice yield and nutrient use efficiency (NUE). Agricultural Reviews , 2019, 40( 1): 70–74
https://doi.org/10.18805/ag.R-1817
152 Bureau of Statistics of China (NBSC) National. China Statistical Database. Beijing: NBSC , 2022. Available at National Bureau of Statistics website on May 29, 2022
153 P, Heffer M Prud’homme. Global nitrogen fertilizer demand and supply: trend, current level and outlook. In: Proceedings of the 2016 International Nitrogen Initiative Conference. Melbourne, Australia: International Fertilizer Association , 2016
154 Nations (UN) United. The sustainable development goals report 2019. New York: UN , 2019. Available at UN website on May 29, 2022
155 J, Shen Q, Zhu X, Jiao H, Ying H, Wang X, Wen W, Xu T, Li W, Cong X, Liu Y, Hou Z, Cui O, Oenema W J, Davies F Zhang. Agriculture green development: a model for China and the world. Frontiers of Agricultural Science and Engineering , 2020, 7( 1): 5–13
https://doi.org/10.15302/J-FASE-2019300
156 L, Ma Z, Bai W, Ma M, Guo R, Jiang J, Liu O, Oenema G L, Velthof A P, Whitmore J, Crawford A, Dobermann M, Schwoob F Zhang. Exploring future food provision scenarios for China. Environmental Science & Technology , 2019, 53( 3): 1385–1393
https://doi.org/10.1021/acs.est.8b04375 pmid: 30609901
157 A, Uwizeye Boer I J M, de C I, Opio R P O, Schulte A, Falcucci G, Tempio F, Teillard F, Casu M, Rulli J N, Galloway A, Leip J W, Erisman T P, Robinson H, Steinfeld P J Gerber. Nitrogen emissions along global livestock supply chains. Nature Food , 2020, 1( 7): 437–446
https://doi.org/10.1038/s43016-020-0113-y
158 M, Wang L, Ma M, Strokal W, Ma X, Liu C Kroeze. Hotspots for nitrogen and phosphorus losses from food production in China: a county-scale analysis. Environmental Science & Technology , 2018, 52( 10): 5782–5791
https://doi.org/10.1021/acs.est.7b06138 pmid: 29671326
159 L, Schulte-Uebbing Vries W de. Reconciling food production and environmental boundaries for nitrogen in the European Union. Science of the Total Environment , 2021, 786 : 147427
https://doi.org/10.1016/j.scitotenv.2021.147427
160 Vries W, De L, Schulte-Uebbing H, Kros J C, Voogd G Louwagie. Spatially explicit boundaries for agricultural nitrogen inputs in the European Union to meet air and water quality targets. Science of the Total Environment , 2021, 786 : 147283
https://doi.org/10.1016/j.scitotenv.2021.147283 pmid: 33958210
161 B, Gu A M, Leach L, Ma J N, Galloway S X, Chang Y, Ge J Chang. Nitrogen footprint in China: food, energy, and nonfood goods. Environmental Science & Technology , 2013, 47( 16): 9217–9224
https://doi.org/10.1021/es401344h pmid: 23883136
162 Z, Bai L, Ma S, Jin W, Ma G L, Velthof O, Oenema L, Liu D, Chadwick F Zhang. Nitrogen, phosphorus, and potassium flows through the manure management chain in China. Environmental Science & Technology , 2016, 50( 24): 13409–13418
https://doi.org/10.1021/acs.est.6b03348 pmid: 27993054
163 D R, Kanter F, Bartolini S, Kugelberg A, Leip O, Oenema A Uwizeye. Nitrogen pollution policy beyond the farm. Nature Food , 2020, 1( 1): 27–32
https://doi.org/10.1038/s43016-019-0001-5
164 G, Lemaire P, Carvalho S, Kronberg S Recous. Agroecosystem diversity: reconciling contemporary agriculture and environmental quality. UK: Elsevier , 2018
165 X, Liu W, Xu Z, Sha Y, Zhang Z, Wen J, Wang F, Zhang K Goulding. A green eco-environment for sustainable development-framework and action. Frontiers of Agricultural Science and Engineering , 2020, 7( 1): 67–74
https://doi.org/10.15302/J-FASE-2019297
166 A, McBratney B, Whelan T, Ancev J Bouma. Future directions of precision agriculture. Precision Agriculture , 2005, 6( 1): 7–23
https://doi.org/10.1007/s11119-005-0681-8
167 T, Li W, Zhang H, Cao H, Ying Q, Zhang S, Ren Z, Liu Y, Yin W, Qin Z, Cui X, Liu X, Ju O, Oenema Vries W, de F Zhang. Region-specific nitrogen management indexes for sustainable cereal production in China. Environmental Research Communications , 2020, 2( 7): 075002
https://doi.org/10.1088/2515-7620/aba12d
168 E A, Davidson R L, Nifong R B, Ferguson C, Palm D L, Osmond J S Baron. Nutrients in the nexus. Journal of Environmental Studies and Sciences , 2016, 6( 1): 25–38
https://doi.org/10.1007/s13412-016-0364-y
169 L, Li S M, Li J H, Sun L L, Zhou X G, Bao H G, Zhang F S Zhang. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America , 2007, 104( 27): 11192–11196
https://doi.org/10.1073/pnas.0704591104 pmid: 17592130
170 Grinsven H J M, Van Berge H F M, Ten T, Dalgaard B, Fraters P, Durand A, Hart G, Hofman B H, Jacobsen S T J, Lalor J P, Lessche B, Osterburg K G, Richards A K, Techen F, Vertès J, Webb W J Willems. Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study. Biogeosciences , 2012, 9( 12): 5143–5160
https://doi.org/10.5194/bg-9-5143-2012
171 Boer I J M, De Ittersum M K van. Circularity in agricultural production. Wageningen: Wageningen University & Research , 2018
172 D R, Chadwick J R, Williams Y, Lu L, Ma Z, Bai Y, Hou X, Chen T H Misselbrook. Strategies to reduce nutrient pollution from manure management in China. Frontiers of Agricultural Science and Engineering , 2020, 7( 1): 45–55
https://doi.org/10.15302/J-FASE-2019293
173 Y, Hou G L, Velthof S D C, Case M, Oelofse C, Grignani P, Balsari L, Zavattaro F, Gioelli M P, Bernal D, Fangueiro H, Trindade L S, Jensen O Oenema. Stakeholder perceptions of manure treatment technologies in Denmark, Italy, the Netherlands and Spain. Journal of Cleaner Production , 2018, 172 : 1620–1630
https://doi.org/10.1016/j.jclepro.2016.10.162
174 P, Panneerselvam N, Halberg M, Vaarst J E Hermansen. Indian farmers’ experience with and perceptions of organic farming. Renewable Agriculture and Food Systems , 2012, 27( 2): 157–169
https://doi.org/10.1017/S1742170511000238
175 J T, Regan S, Marton O, Barrantes E, Ruane M, Hanegraaf J, Berland H, Korevaar S, Pellerin T Nesme. Does the recoupling of dairy and crop production via cooperation between farms generate environmental benefits? A case-study approach in Europe. European Journal of Agronomy , 2017, 82 : 342–356
https://doi.org/10.1016/j.eja.2016.08.005
176 and Agriculture Organization of the United Nations (FAO) Food. The State of Food and Agriculture 2019. Rome: FAO , 2019. Available at FAO website on May 29, 2022
177 Industry Research Institute (PIRI) Prospective. Report of prospects and investment strategy planning analysis on China food waste treatment industry (2020–2025). Beijing: PIRI , 2018. Available at PIRI website on May 29, 2022
[1] Tom MISSELBROOK, Zhaohai BAI, Zejiang CAI, Weidong CAO, Alison CARSWELL, Nicholas COWAN, Zhenling CUI, David CHADWICK, Bridget EMMETT, Keith GOULDING, Rui JIANG, Davey JONES, Xiaotang JU, Hongbin LIU, Yuelai LU, Lin MA, David POWLSON, Robert M. REES, Ute SKIBA, Pete SMITH, Roger SYLVESTER-BRADLEY, John WILLIAMS, Lianhai WU, Minggang XU, Wen XU, Fusuo ZHANG, Junling ZHANG, Jianbin ZHOU, Xuejun LIU. PROGRESS ON IMPROVING AGRICULTURAL NITROGEN USE EFFICIENCY: UK-CHINA VIRTUAL JOINT CENTERS ON NITROGEN AGRONOM[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 475-489.
[2] Jianlin SHEN, Yong LI, Yi WANG, Yanyan LI, Xiao ZHU, Wenqian JIANG, Yuyuan LI, Jinshui WU. SOIL NITROGEN CYCLING AND ENVIRONMENTAL IMPACTS IN THE SUBTROPICAL HILLY REGION OF CHINA: EVIDENCE FROM MEASUREMENTS AND MODELING[J]. Front. Agr. Sci. Eng. , 2022, 9(3): 407-424.
[3] Cathryn A. O'SULLIVAN, Elliott G. DUNCAN, Margaret M. ROPER, Alan E. RICHARDSON, John A. KIRKEGAARD, Mark B. PEOPLES. ROOT EXUDATES FROM CANOLA EXHIBIT BIOLOGICAL NITRIFICATION INHIBITION AND ARE EFFECTIVE IN INHIBITING AMMONIA OXIDATION IN SOIL[J]. Front. Agr. Sci. Eng. , 2022, 9(2): 177-186.
[4] Solomon Tulu TADESSE, Oene OENEMA, Christy van BEEK, Fikre Lemessa OCHO. EXPLORING THE RECYCLING OF MANURE FROM URBAN LIVESTOCK FARMS: A CASE STUDY IN ETHIOPIA[J]. Front. Agr. Sci. Eng. , 2021, 8(1): 159-174.
[5] Jianbo SHEN, Liyang WANG, Xiaoqiang JIAO, Fanlei MENG, Lin ZHANG, Gu FENG, Junling ZHANG, Lixing YUAN, Lin MA, Yong HOU, Tao ZHANG, Weifeng ZHANG, Guohua LI, Kai ZHANG, Fusuo ZHANG. Innovations of phosphorus sustainability: implications for the whole chain[J]. Front. Agr. Sci. Eng. , 2019, 6(4): 321-331.
[6] Jianchang YANG. Approaches to achieve high grain yield and high resource use efficiency in rice[J]. Front. Agr. Sci. Eng. , 2015, 2(2): 115-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed