Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (2) : 145-153    https://doi.org/10.1007/s11705-013-1327-4
RESEARCH ARTICLE
H2 production by ethanol decomposition with a gliding arc discharge plasma reactor
Baowei WANG(), Wenjie GE, Yijun Lü, Wenjuan YAN
Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(219 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A gliding arc discharge (GRD) reactor was used to decompose ethanol into primarily H2 and CO with small amounts of CH4, C2H2, C2H4, and C2H6. The ethanol concentration, electrode gap, input voltage and Ar flow rate all affected the conversion of ethanol with results ranging from 40.7% to 58.0%. Interestingly, for all experimental conditions the SH2/SCO selectivity ratio was quite stable at around 1.03. The mechanism for the decomposition of ethanol is also described.

Keywords gliding arc discharge      ethanol      hydrogen      decomposition      plasma     
Corresponding Author(s): WANG Baowei,Email:wangbw@tju.edu.cn   
Issue Date: 05 June 2013
 Cite this article:   
Baowei WANG,Wenjie GE,Yijun Lü, et al. H2 production by ethanol decomposition with a gliding arc discharge plasma reactor[J]. Front Chem Sci Eng, 2013, 7(2): 145-153.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1327-4
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I2/145
Fig.1  1 Ar tank; 2 electric constant temperature water bath; 3 jar; 4 vaporization room (VR); 5 thermocouple; 6 oscilloscope; 7 high-voltage probe; 8 electrodes; 9 quartz tube; 10 high voltage power supply; 11 cool trap; 12 bubble flow controller; 13 gas chromatograph; 14 wet gas flowmeter
A schematic diagram of the GRD reactor and experimental setup
MeasurementInstrumentmeasurement rangePrecision
Ar gas flowMass flowmeter Jianzhong D07-7A/ZMM0-200 mL/min±0.1 mL
Ethanol massAnalytical balance Mettler-Toledo Al2040-210 g±0.0001 g
Discharge voltageHigh-voltage probe Tektronix P6015A1.5-20 kV±0.01 V
Discharge currentCurrent probe Tektronix A6220-10 A±0.01 mA
Tab.1  Instrument ranges and precisions.
Fig.2  The Effect of ethanol concentration on (a) ethanol conversion and H yield, (b) selectivity of the gaseous products (Electrode gap 4.0 mm, discharge voltage 9.4 kV, Ar flow rate 52.0 mL/min)
Fig.3  Effect of Ar flow rate on ethanol conversion and H yield (Electrode gap 4.0 mm, ethanol volume content 25.6%, discharge voltage 9.4 kV)
Ar flow rate/(mL?min–1)SelectivitySH2/SCO
H2/%CO/%CH4/%C2H2/C2H4 /%C2H6/%
43.342.341.212.834.87.71.03
52.043.241.813.335.88.71.03
60.642.840.812.235.29.31.05
69.341.740.211.634.29.61.04
Tab.2  The effect of the Ar flow rate on the selectivity of the gaseous products (H, CO, CH, CH and CH)
Fig.4  Effect of discharge voltage on (a) ethanol conversion and H yield, (b) selectivity of gaseous products (Electrode gap 4.0 mm, ethanol volume content 25.6%, Ar flow rate 52.0 mL/min)
Electrode gap/mmEthanol conversion/%Hydrogen yield/%Rate of generation/(mL?min–1)
H2COhydrocarbons
2.047.920.56.94.43.4
3.050.822.47.34.63.5
3.552.523.47.74.93.6
4.056.126.58.75.33.8
Tab.3  The effect of the electrode gap on ethanol decomposition
Fig.5  Effect of the electrode gap on the selectivity of outlet gaseous products
(Ethanol volume content 25.6%, Ar flow rate 52.0 mL/min, discharge voltage 14.2 kV)
Fig.6  
ReactorDBDMW surface-waveArc dischargeLNADGRD in this work
MethodSRSRPOX+ SRPOX+ SRDD
Flow rate g/s(2.37 – 5.8) × 10–30.015-0.0450.250.1-0.351.89 × 10–4
Ethanol conversion/%20-40100<6550-9058
Hydrogen yield/%5-18-35-404028
Energy efficiency/%--<35288
Input power/W4060–801200100-30014
Reference[23][24][25][26]-
Tab.4  Comparison of hydrogen generation from ethanol using different plasma reactors
1 Joensen F, Jens R, Nielsen R. Conversion of hydrocarbons and alcohols for fuel cells. Journal of Power Sources , 2002, 105(2): 195-201
doi: 10.1016/S0378-7753(01)00939-9
2 Navarro R, Pe?a M, Fierro J. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chemical Reviews , 2007, 107(10): 3952-3991
doi: 10.1021/cr0501994
3 Haryanto A, Fernando S, Murali N, Adhikari S. Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy & Fuels , 2005, 19(5): 2098-2106
doi: 10.1021/ef0500538
4 Goltsov V, Veziroglu T, Goltsova L. Hydrogen civilization of the future—A new conception of the IAHE. International Journal of Hydrogen Energy , 2006, 31(2): 153-159
doi: 10.1016/j.ijhydene.2005.04.045
5 Meng N, Michael L, Sumathy K, Dennis L. Potential of renewable hydrogen production for energy supply in HongKong. International Journal of Hydrogen Energy , 2006, 31(10): 1401-1412
doi: 10.1016/j.ijhydene.2005.11.005
6 Meng N, Dennis L, Michael L, Sumathy K. An overview of hydrogen production from biomass. Fuel Processing Technology , 2006, 87(5): 461-472
doi: 10.1016/j.fuproc.2005.11.003
7 Meng N, Dennis L, Michael L. A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy , 2007, 32(15): 3238-3247
doi: 10.1016/j.ijhydene.2007.04.038
8 Li J, Kazakov A, Dryer F. Experimental and numerical studies of ethanol decomposition reactions. Journal of Physical Chemistry A , 2004, 108(38): 7671-7680
doi: 10.1021/jp0480302
9 Diagne C, Idriss H, Kiennemann A. Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts. Catalysis Communications , 2002, 3(12): 565-571
doi: 10.1016/S1566-7367(02)00226-1
10 Toshiya N, Tomoaki M, Hiroyoshi K, Kazunori U, Yasuyuki M, Shen W, Seiichiro I. Catalytic steam reforming of ethanol to produce hydrogen and acetone. Applied Catalysis A, General , 2005, 279(1-2): 273-277
doi: 10.1016/j.apcata.2004.10.035
11 Fishtik I, Alexander A, Datta R, Geana D. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions. International Journal of Hydrogen Energy , 2000, 25(1): 31-45
doi: 10.1016/S0360-3199(99)00004-X
12 Fierro V, Klouz V, Akdim O, Mirodatos C. Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications. Catalysis Today , 2002, 75(1-4): 141-144
doi: 10.1016/S0920-5861(02)00056-1
13 Cavallaro S, Chiodo V, Vita A, Freni S. Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst. Journal of Power Sources , 2003, 123(1): 10-16
doi: 10.1016/S0378-7753(03)00437-3
14 Matsumura Y, Nakamori T. Steam reforming of methane over nickel catalysts at low reaction temperature. Applied Catalysis A, General , 2004, 258(1): 107-114
doi: 10.1016/j.apcata.2003.08.009
15 Petitpasa G, Rollier J, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L. A comparative study of non-thermal plasma assisted reforming technologies. International Journal of Hydrogen Energy , 2007, 32(14): 2848-2867
doi: 10.1016/j.ijhydene.2007.03.026
16 Aubry O, Met C, Khacef A, Cormier J. On the use of a non-thermal plasma reactor for ethanol steam reforming. Chemical Engineering Journal , 2005, 106(3): 241-247
doi: 10.1016/j.cej.2004.12.003
17 Zheng B, Yan J, Li X, Chi Y, Cen K. Plasma assisted dry methane reforming using gliding arc gas discharge: effect of feed gases proportion. International Journal of Hydrogen Energy , 2008, 33(20): 5545-5553
doi: 10.1016/j.ijhydene.2008.05.101
18 Yang Y, Lee B, Chun Y. Characteristics of methane reforming using gliding arc reactor. Energy , 2009, 34(2): 172-177
doi: 10.1016/j.energy.2008.11.006
19 Rueangjitt N, Sreethawonga T, Chavadej S, Sekiguchi H. Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: effects of input power, reactor thickness, and catalyst existence. Chemical Engineering Journal , 2009, 155(3): 874-880
doi: 10.1016/j.cej.2009.10.009
20 Burlica R, Shih K, Hnatiuc B, Locke B. Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions. Industrial & Engineering Chemistry Research , 2011, 50(15): 9466-9470
doi: 10.1021/ie101920n
21 Yanguas-Gil A, Hueso J, Cotrino J, Caballero A, González-Elipe A. Reforming of ethanol in a microwave surface-wave plasma discharge. Applied Physics Letters , 2004, 85(18): 4004-4006
doi: 10.1063/1.1808875
22 Tanabe S, Matsuguma H, Okitsu K, Matsumoto H. Generation of hydrogen from methanol in a dielectric-barrier discharge-plasma system. Chemistry Letters , 2000, 29(10): 1116-1117
doi: 10.1246/cl.2000.1116
23 Wang B, Lv Y, Zhang X, Hu S. Hydrogen generation from steam reforming of ethanol in dielectric barrier discharge. Journal of Natural Gas Chemistry , 2011, 20(2): 151-154
doi: 10.1016/S1003-9953(10)60160-0
24 Henriques J, Bundaleska N, Tatarova E, Dias F, Ferreira C. Microwave plasma torches driven by surface wave applied for hydrogen production. International Journal of Hydrogen Energy , 2011, 36(1): 345-354
doi: 10.1016/j.ijhydene.2010.09.101
25 Petitpas G, José G, Adeline D, Laurent F. Ethanol and E85 reforming assisted by a non-thermal arc discharge. Energy & Fuels , 2011, 24(4): 2607-2613
doi: 10.1021/ef100022r
26 Du C, Li H, Zhang L, Wang J, Huang D, Xiao M, Cai J, Chen Y, Yan H, Xiong Y, Xiong Y. Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge. International Journal of Hydrogen Energy , 2012, 37(10): 8318-8329
doi: 10.1016/j.ijhydene.2012.02.166
[1] Xin Wang, Wei Cui, Bin Li, Xiaojie Zhang, Yongxin Zhang, Yaodong Huang. Supramolecular self-assembly of two-component systems comprising aromatic amides/Schiff base and tartaric acid[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1112-1121.
[2] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[3] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[4] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[5] Jie Gao, Zhikai Li, Mei Dong, Weibin Fan, Jianguo Wang. Thermodynamic analysis of ethanol synthesis from hydration of ethylene coupled with a sequential reaction[J]. Front. Chem. Sci. Eng., 2020, 14(5): 847-856.
[6] Shumei Wei, Yarong Xu, Zhaoyang Jin, Xuedong Zhu. Co-conversion of methanol and n-hexane into aromatics using intergrown ZSM-5/ZSM-11 as a catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(5): 783-792.
[7] Sen Wang, Shiyun Liu, Danhua Mei, Rusen Zhou, Congcong Jiang, Xianhui Zhang, Zhi Fang, Kostya (Ken) Ostrikov. Liquid discharge plasma for fast biomass liquefaction at mild conditions: The effects of homogeneous catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 763-771.
[8] Pavlo I. Kyriienko. Selective catalytic reduction of NOx with ethanol and other C1-4 oxygenates over Ag/Al2O3 catalysts: A review[J]. Front. Chem. Sci. Eng., 2020, 14(4): 471-491.
[9] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[10] Chunyan Yang, Xiaoliang Yuan, Xueting Wang, Kejing Wu, Yingying Liu, Changjun Liu, Houfang Lu, Bin Liang. Ball milling promoted direct liquefaction of lignocellulosic biomass in supercritical ethanol[J]. Front. Chem. Sci. Eng., 2020, 14(4): 605-613.
[11] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[12] Mahboube Ghahramaninezhad, Fatemeh Mohajer, Mahdi Niknam Shahrak. Improved CO2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure[J]. Front. Chem. Sci. Eng., 2020, 14(3): 425-435.
[13] Guoxing Chen, Marc Widenmeyer, Binjie Tang, Louise Kaeswurm, Ling Wang, Armin Feldhoff, Anke Weidenkaff. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation[J]. Front. Chem. Sci. Eng., 2020, 14(3): 405-414.
[14] Daniil Marinov. Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces[J]. Front. Chem. Sci. Eng., 2019, 13(4): 815-822.
[15] Romain Chanson, Remi Dussart, Thomas Tillocher, P. Lefaucheux, Christian Dussarrat, Jean François de Marneffe. Low-k integration: Gas screening for cryogenic etching and plasma damage mitigation[J]. Front. Chem. Sci. Eng., 2019, 13(3): 511-516.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed