Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (10) : 1503-1515    https://doi.org/10.1007/s11705-022-2294-4
RESEARCH ARTICLE
Theoretical insights into influence of additives on sulfamethoxazole crystal growth kinetics and mechanisms
Qiao Chen, Mingdong Zhang, Yuanhui Ji()
Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
 Download: PDF(4106 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, the influence of the initial chemical potential gradient, stirring speed, and polymer type on sulfamethoxazole (SMX) crystal growth kinetics was systematically investigated through density functional theory (DFT) calculations, experimental measurements and the two-step chemical potential gradient model. To investigate the influence of different conditions on the thermodynamic driving force of SMX crystal growth, SMX solubilities in different polymer solutions were studied. Four model polymers effectively improved SMX solubility. It was further found that polyvinylpyrrolidone (PVP) and hydroxypropyl methyl cellulose (HPMC) played a crucial role in inhibiting SMX crystal growth. However, polyethylene glycol (PEG) promoted SMX crystal growth. The effect of the polymer on the crystal growth mechanisms of SMX was further analyzed by the two-step chemical potential gradient model. In the system containing PEG 6000, crystal growth is dominated by the surface reaction. However, in the system containing PEG 20000, crystal growth is dominated by both the surface reaction and diffusion. In addition, DFT calculations results showed that HPMC and PVP could form strong and stable binding energies with SMX, indicating that PVP and HPMC had the potential ability to inhibit SMX crystal growth.

Keywords insoluble drugs      polymer      inhibition crystallization      crystal growth kinetics      DFT calculations     
Corresponding Author(s): Yuanhui Ji   
Online First Date: 17 May 2023    Issue Date: 07 October 2023
 Cite this article:   
Qiao Chen,Mingdong Zhang,Yuanhui Ji. Theoretical insights into influence of additives on sulfamethoxazole crystal growth kinetics and mechanisms[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1503-1515.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2294-4
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I10/1503
Fig.1  Chemical structures of (a) SMX, (b) PVP, (c) HPMC, and (d) PEG.
Initial concentration/ (g?L?1)Δμ/(J?mol?1)Stirring/(r?min?1)PolymerPolymer concentration/ (g?L?1)
1.342 × 103100
1.322 × 103200
1.322 × 103250
1.171.7 × 103200
1.462.2 × 103200
1.832 × 103200PEG 600020
2.322 × 103200PEG 600040
1.952 × 103200PEG 2000020
2.582 × 103200PEG 2000040
1.322 × 103200PVP0.5
1.322 × 103200HPMC0.5
Tab.1  Experimental conditions for the measurement of the crystal growth kinetics of SMX
Fig.2  SMX solubilities in polymer/water solutions: (a) PEG 6000/water, (b) PEG 20000/water, (c) PVP/water, and (d) HPMC/water.
Fig.3  Crystal growth kinetics of SMX in solutions at different conditions: (a) the different initial chemical potential gradients, (b) stirring speed, (c) PVP, (d) PEG 6000, (e) PEG 20000 and (f) HPMC. The inset was the crystallization ratio as a function of time according to Eq. (16). In Fig.3(a), the triangles, circles and squares represent the crystal growth kinetics of SMX at the initial chemical potential gradients of 1.7 × 103, 2 × 103 and 2.2 × 103 J?mol?1, respectively. The dashed, full and dotted lines denote the crystallization ratio with the initial chemical potential gradient of 1.7 × 103, 2 × 103 and 2.2 × 103 J?mol?1, respectively. In Fig.3(b), the circles and squares denote the crystal growth kinetics of SMX at 200 and 250 r?min?1. The full and dotted lines denote the crystallization ratio at 200 and 250 r?min?1. In Fig.3(c), the stars denote the crystal growth kinetics of SMX in the aqueous solutions containing 0.05% PVP content. In Fig.3(d), the circles, triangles and squares represent the crystal growth kinetics of SMX at 0%, 2% and 4% content of PEG 6000, respectively. The full, dashed and dotted lines denote the crystallization ratio at 0%, 2% and 4% content of PEG 6000, respectively. In Fig.3(e), the circles, triangles and squares represent the crystal growth kinetics of SMX at 0%, 2% and 4% content of PEG 20000, respectively. The full, dashed and dotted lines denote the crystallization ratio at 0%, 2% and 4% content of PEG 20000, respectively. In Fig.3(f), the triangles denote the crystal growth kinetics of SMX in the aqueous solutions containing 0.05% HPMC content.
Fig.4  SEM images of SMX: (a) seed crystals; the crystalline products obtained from the initial chemical potential gradient of (b) 1.7 × 103, (c) 2 × 103, and (d) 2.2 × 103 J?mol?1 at 310.15 K and 200 r?min?1 in the aqueous solutions; (e) the crystalline products obtained at 250 r?min?1, 310.15 K in aqueous solutions; and the crystalline products obtained in the aqueous solutions containing (f) 2% PEG 6000, (g) 4% PEG 6000, (h) 2% PEG 20000, and (i) 4% PEG 20000 at 310.15 K and 200 r?min?1.
Fig.5  PXRD patterns of (a) seed crystals and the crystalline products obtained in solutions without polymer, and (b) the crystalline products obtained in solutions with polymer.
Fig.6  PXRD patterns of the crystalline products dried for 24 h in vacuum at 343.15 K.
Δμ/ (J?mol?1)Stirring/ (r?min?1)Polymerkdkskta)ARD%Average ARD%
k × 104/(mol?m?2?s?1)
1.7 × 10320018.63.993.292.84.6
2 × 10320028.25.984.933.5
2.2 × 10320042.06.455.597.1
2 × 10325034.78.216.644.9
2 × 1032002% PEG 600029.612.98.986.25.1
2 × 1032004% PEG 600079.114.912.65.2
2 × 1032002% PEG 2000018.019.29.303.7
2 × 1032004% PEG 2000029.524.613.45.1
Tab.2  Surface-reaction rate constant and diffusion rate constant obtained from the two-step chemical potential gradient model, and the ARDs between the modeled results and experimental dat
Fig.7  Diffusion rate constants and surface-reaction rate constants for SMX crystal growth in (a) the aqueous solutions and (b) the aqueous solutions containing PEG.
Fig.8  The noncovalent interactions between SMX and (a) PEG 6000, (b) PEG 20000, (c) PVP and (d) HPMC. White, red, blue, cyan and yellow balls represent H, O, N, C and S, respectively.
kd=A×e?ERT+B×ω(Δμ×10?3)2ks=C×e?ERT+D×ω(Δμ×10?3)2kd/(mol?m?2?s?1)ks/(mol?m?2?s?1)
A/(mol?m?2?s?1)B/(J2?m?2?s?1?r?1?min)C/(mol?m?2?s?1)D/(J2?m?2?s?1?r?1?min)
30.953.39 × 10?524.92?3.37 × 10?61.84 × 10?37.16 × 10?4
Tab.3  Predicted surface-reaction rate constant and the diffusion rate constant of SMX at 100 r?min?1 and 310.15 Ka)
Fig.9  The crystal growth kinetics of SMX in aqueous solutions at 310.15 K and 100 r?min?1. The circles represent the experimental results. The dashed line represents the predicted results using the two-step chemical potential gradient model.
1 N J Babu, A Nangia. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Crystal Growth & Design, 2011, 11(7): 2662–2679
https://doi.org/10.1021/cg200492w
2 A M Thayer. Finding solutions. Chemical and Engineering News, 2010, 88(22): 13–18
https://doi.org/10.1021/cen-v088n022.p013
3 M A H Malek, P M Patel. Diverse strategies to boost up solubility of poor water soluble drugs a review. International Journal of Pharmaceutical Sciences and Research, 2020, 11(11): 5346–5359
4 R Kumar. Nanotechnology based approaches to enhance aqueous solubility and bioavailability of griseofulvin: a literature survey. Journal of Drug Delivery Science and Technology, 2019, 53: 101221
https://doi.org/10.1016/j.jddst.2019.101221
5 H J Chen, Y S Pui, C Y Liu, Z Chen, C C Su, M Hageman, M Hussain, R Haskell, K Stefanski, K Foster, O Gudmundsson, F Qian. Moisture-induced amorphous phase separation of amorphous solid dispersions: molecular mechanism, microstructure, and its impact on dissolution performance. Journal of Pharmaceutical Sciences, 2018, 107(1): 317–326
https://doi.org/10.1016/j.xphs.2017.10.028
6 M Y Yang, W Gong, Y L Wang, L Shan, Y Li, C S Gao. Bioavailability improvement strategies for poorly water-soluble drugs based on the supersaturation mechanism: an update. Journal of Pharmacy & Pharmaceutical Sciences, 2016, 19(2): 208–225
https://doi.org/10.18433/J3W904
7 A Sharma, K Arora, H Mohapatra, R K Sindhu, M Bulzan, S Cavalu, G Paneshar, H O Elansary, A M El-Sabrout, E A Mahmoud, A Alaklabi. Supersaturation-based drug delivery systems: strategy for bioavailability enhancement of poorly water-soluble drugs. Molecules, 2022, 27(9): 2969
https://doi.org/10.3390/molecules27092969
8 Q Shi, F Li, S Yeh, Y A Wang, J B Xin. Physical stability of amorphous pharmaceutical solids: nucleation, crystal growth, phase separation and effects of the polymers. International Journal of Pharmaceutics, 2020, 590: 119925
https://doi.org/10.1016/j.ijpharm.2020.119925
9 D E Alonzo, G G Z Zhang, D L Zhou, Y Gao, L S Taylor. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharmaceutical Research, 2010, 27(4): 608–618
https://doi.org/10.1007/s11095-009-0021-1
10 Sunagawa. Crystals: Growth, Morphology, & Perfection. Cambridge: Cambridge University, 2007
11 H S Na, S J Oh. A comparison of crystal growth kinetics by use of chemical potential difference and concentration difference. Korean Journal of Chemical Engineering, 1996, 13(4): 343–350
https://doi.org/10.1007/BF02705960
12 J Y Weng, Y P Huang, D L Hao, Y H Ji. Recent advances of pharmaceutical crystallization theories. Chinese Journal of Chemical Engineering, 2020, 28(4): 935–948
https://doi.org/10.1016/j.cjche.2019.11.008
13 Z H Wu, S L Yang, W Wu. Shape control of inorganic nanoparticles from solution. Nanoscale, 2016, 8(3): 1237–1259
https://doi.org/10.1039/C5NR07681A
14 Y H Ji, D L Hao, C Luebbert, G Sadowski. Insights into influence mechanism of polymeric excipients on dissolution of drug formulations: a molecular interaction-based theoretical model analysis and prediction. AIChE Journal, 2021, 67(11): e17372
https://doi.org/10.1002/aic.17372
15 J W Mullin. Crystallization. Oxford: Butterworth-Heinemann, 1993, 216–225
16 C Y Tai, M C Chang, C K Wu, Y C Lin. Interpretation of calcite growth data using the two-step crystal growth model. Chemical Engineering Science, 2006, 61(16): 5346–5354
https://doi.org/10.1016/j.ces.2006.03.047
17 C J Schram, R J Smyth, L S Taylor, S P Beaudoin. Understanding crystal growth kinetics in the absence and presence of a polymer using a rotating disk apparatus. Crystal Growth & Design, 2016, 16(5): 2640–2645
https://doi.org/10.1021/acs.cgd.5b01729
18 K V Kumar. Regression analysis for the two-step growth kinetics of crystals in pure solutions. Industrial & Engineering Chemistry Research, 2009, 48(16): 7852–7859
https://doi.org/10.1021/ie9002975
19 D E Alonzo, S Raina, D Zhou, Y Gao, G G Z Zhang, L S Taylor. Characterizing the impact of hydroxypropylmethyl cellulose on the growth and nucleation kinetics of felodipine from supersaturated solutions. Crystal Growth & Design, 2012, 12(3): 1538–1547
https://doi.org/10.1021/cg201590j
20 R M Dannenfelser, H He, Y Joshi, S Bateman, A T M Serajuddin. Development of clinical dosage forms for a poorly water soluble drug I: application of polyethylene glycol-polysorbate 80 solid dispersion carrier system. Journal of Pharmaceutical Sciences, 2004, 93(5): 1165–1175
https://doi.org/10.1002/jps.20044
21 T Miyazaki, S Yoshioka, Y Aso, T Kawanishi. Crystallization rate of amorphous nifedipine analogues unrelated to the glass transition temperature. International Journal of Pharmaceutics, 2007, 336(1): 191–195
https://doi.org/10.1016/j.ijpharm.2006.11.052
22 D B Warren, H Benameur, C J H Porter, C W Pouton. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. Journal of Drug Targeting, 2010, 18(10): 704–731
https://doi.org/10.3109/1061186X.2010.525652
23 Z Huang, S Staufenbiel, R Bodmeier. Kinetic solubility improvement and influence of polymers on controlled supersaturation of itraconazole-succinic acid nano-co-crystals. International Journal of Pharmaceutics, 2022, 616: 121536
https://doi.org/10.1016/j.ijpharm.2022.121536
24 K Ueda, N Yamamoto, K Higashi, K Moribe. NMR-based mechanistic study of crystal nucleation inhibition in a supersaturated drug solution by polyvinylpyrrolidone. Crystal Growth & Design, 2022, 22(5): 3235–3244
https://doi.org/10.1021/acs.cgd.2c00084
25 P X Zhao, G W Hu, H N Chen, M Li, Y T Wang, N Sun, L L Wang, Y Xu, J L Xia, B C Tian, Y Liu, Z He, Q Fu. Revealing the roles of polymers in supersaturation stabilization from the perspective of crystallization behaviors: a case of nimodipine. International Journal of Pharmaceutics, 2022, 616: 121538
https://doi.org/10.1016/j.ijpharm.2022.121538
26 B Wang, D D Wang, S Zhao, X B Huang, J B Zhang, Y Lv, X C Liu, G J Lv, X J Ma. Evaluate the ability of PVP to inhibit crystallization of amorphous solid dispersions by density functional theory and experimental verify. European Journal of Pharmaceutical Sciences, 2017, 96: 45–52
https://doi.org/10.1016/j.ejps.2016.08.046
27 A H Mazurek, L Szeleszczuk, D M Pisklak. Periodic DFT calculations-review of applications in the pharmaceutical sciences. Pharmaceutics, 2020, 12(5): 415
https://doi.org/10.3390/pharmaceutics12050415
28 B F Choonara, Y E Choonara, P Kumar, L C du Toit, L K Tomar, C Tyagi, V Pillay. A menthol-based solid dispersion technique for enhanced solubility and dissolution of sulfamethoxazole from an oral tablet matrix. AAPS PharmSciTech, 2015, 16(4): 771–786
https://doi.org/10.1208/s12249-014-0271-z
29 L Z Benet, F Broccatelli, T I Oprea. BDDCS applied to over 900 drugs. AAPS Journal, 2011, 13(4): 519–547
https://doi.org/10.1208/s12248-011-9290-9
30 D X Wu, Y H Ji. Influence of polymeric excipients on the solubility of aspirin: experimental measurement and model prediction. Fluid Phase Equilibria, 2020, 508: 112450
https://doi.org/10.1016/j.fluid.2019.112450
31 Q Chen, Y H Ji, K Ge. Influence of excipients on thermodynamic phase behavior of pharmaceutical/solvent systems: molecular thermodynamic model prediction. Chemical Engineering Science, 2021, 244: 116798
https://doi.org/10.1016/j.ces.2021.116798
32 A Prudic, A K Lesniak, Y H Ji, G Sadowski. Thermodynamic phase behaviour of indomethacin/PLGA formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93: 88–94
https://doi.org/10.1016/j.ejpb.2015.01.029
33 J Gross, G Sadowski. Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Industrial & Engineering Chemistry Research, 2001, 40(4): 1244–1260
https://doi.org/10.1021/ie0003887
34 A Prudic, T Kleetz, M Korf, Y H Ji, G Sadowski. Influence of copolymer composition on the phase behavior of solid dispersions. Molecular Pharmaceutics, 2014, 11(11): 4189–4198
https://doi.org/10.1021/mp500412d
35 Y H Ji, A K Lesniak, A Prudic, R Paus, G Sadowski. Drug release kinetics and mechanism from PLGA formulations. AIChE Journal, 2016, 62(11): 4055–4065
https://doi.org/10.1002/aic.15282
36 R Schneider, L Taspinar, Y H Ji, G Sadowski. The influence of polymeric excipients on desupersaturation profiles of active pharmaceutical ingredients. 1: polyethylene glycol. International Journal of Pharmaceutics, 2020, 582: 119317
https://doi.org/10.1016/j.ijpharm.2020.119317
37 R Paus, A Prudic, Y H Ji. Influence of excipients on solubility and dissolution of pharmaceuticals. International Journal of Pharmaceutics, 2015, 485(1−2): 277–287
https://doi.org/10.1016/j.ijpharm.2015.03.004
38 C A Ward, M Rizk, A S Tucker. Statistical rate theory of interfacial transport. 2. Rate of isothermal bubble evolution in a liquid gas solution. Journal of Chemical Physics, 1982, 76(11): 5606–5614
https://doi.org/10.1063/1.442866
39 C A Ward, R D Findlay, M Rizk. Statistical rate theory of interfacial transport. 1. Theoretical development. Journal of Chemical Physics, 1982, 76(11): 5599–5605
https://doi.org/10.1063/1.442865
40 M Dejmek, C A Ward. A statistical rate theory study of interface concentration during crystal growth or dissolution. Journal of Chemical Physics, 1998, 108(20): 8698–8704
https://doi.org/10.1063/1.476298
41 M Skotnicki, B Jadach, A Skotnicka, B Milanowski, L Tajber, M Pyda, J Kujawski. Physicochemical characterization of a co-amorphous atorvastatin-irbesartan system with a potential application in fixed-dose combination therapy. Pharmaceutics, 2021, 13(1): 118
https://doi.org/10.3390/pharmaceutics13010118
42 S G Sagdinc, A Esme. Theoretical and vibrational studies of 4,5-diphenyl-2–2 oxazole propionic acid (oxaprozin). Spectrochimica Acta, 2010, 75(4): 1370–1376
https://doi.org/10.1016/j.saa.2010.01.004
43 T Lu, F W Chen. Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. Journal of Molecular Graphics & Modelling, 2012, 38: 314–323
https://doi.org/10.1016/j.jmgm.2012.07.004
44 S S Xantheas. On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy. Journal of Chemical Physics, 1996, 104(21): 8821–8824
https://doi.org/10.1063/1.471605
45 C P Price, A L Grzesiak, A J Matzger. Crystalline polymorph selection and discovery with polymer heteronuclei. Journal of the American Chemical Society, 2005, 127(15): 5512–5517
https://doi.org/10.1021/ja042561m
46 E Patyk-Kazmierczak, M Kazmierczak. Hydrate vs anhydrate under a pressure-(de)stabilizing effect of the presence of water in solid forms of sulfamethoxazole. Crystal Growth & Design, 2021, 21(12): 6879–6888
https://doi.org/10.1021/acs.cgd.1c00784
47 A M Healy, Z A Worku, D Kumar, A M Madi. Pharmaceutical solvates, hydrates and amorphous forms: a special emphasis on cocrystals. Advanced Drug Delivery Reviews, 2017, 117: 25–46
https://doi.org/10.1016/j.addr.2017.03.002
[1] FCE-22119-OF-CQ_suppl_1 Download
[1] Yi Qi, Xuezhi Zeng, Lingyingzi Xiong, Xuliang Lin, Bowen Liu, Yanlin Qin. Efficient conversion of lignin to alkylphenols over highly stable inverse spinel MnFe2O4 catalysts[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1085-1095.
[2] Yong Zheng, Mingjin Li, Yongye Wang, Niu Huang, Wei Liu, Shan Chen, Xuepeng Ni, Kunming Li, Siwei Xiong, Yi Shen, Siliang Liu, Baolong Zhou, Niaz Ali Khan, Liqun Ye, Chao Zhang, Tianxi Liu. Floret-like Fe–Nx nanoparticle-embedded porous carbon superstructures from a Fe-covalent triazine polymer boosting oxygen electroreduction[J]. Front. Chem. Sci. Eng., 2023, 17(5): 525-535.
[3] Nan Sun, Qing Wu, Lifang Jin, Zichen Zhu, Jianhui Sun, Shuying Dong, Haijiao Xie, Chunyan Zhang, Yanrui Cui. Hyperbranched magnetic polymer: highly efficient removal of Cr(VI) and application in electroplating wastewater[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1568-1580.
[4] Sania Kadanyo, Christine N. Matindi, Derrick S. Dlamini, Nozipho N. Gumbi, Yunxia Hu, Zhenyu Cui, Jianxin Li. Uncovering the effect of poly(ethylene-co-vinyl alcohol) molecular weight and vinyl alcohol content on morphology, antifouling, and permeation properties of polysulfone ultrafiltration membrane: thermodynamic and formation hydrodynamic behavior[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1484-1502.
[5] Jianbin Mo, Haixu Wang, Mengzhen Yan, Jianhua Huang, Rui Li, Danting Sun, Junjie Lei, Xueqing Qiu, Weifeng Liu. Construction of interfacial dynamic bonds for high performance lignin/polymer biocomposites[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1372-1388.
[6] Ping Zhang, Yi-Han Li, Li Chen, Mao-Jie Zhang, Yang Ren, Yan-Xu Chen, Zhi Hu, Qi Wang, Wei Wang, Liang-Yin Chu. Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants[J]. Front. Chem. Sci. Eng., 2022, 16(6): 939-949.
[7] Shanshan Zhang, Jiemei Zhou, Zhaogen Wang, Jianzhong Xia, Yong Wang. Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and sacrificing nanofillers[J]. Front. Chem. Sci. Eng., 2022, 16(5): 745-754.
[8] Huaxin Qu, Jie Deng, Bei Wang, Lezi Ouyang, Yong Tang, Kai Yu, Lan-Lan Lou, Shuangxi Liu. Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl-2-furfural[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1514-1523.
[9] Faiz Almansour, Monica Alberto, Rupesh S. Bhavsar, Xiaolei Fan, Peter M. Budd, Patricia Gorgojo. Recovery of free volume in PIM-1 membranes through alcohol vapor treatment[J]. Front. Chem. Sci. Eng., 2021, 15(4): 872-881.
[10] Dingqin Hu, Jiehao Fu, Shanshan Chen, Jun Li, Qianguang Yang, Jie Gao, Hua Tang, Zhipeng Kan, Tainan Duan, Shirong Lu, Kuan Sun, Zeyun Xiao. Block copolymers as efficient cathode interlayer materials for organic solar cells[J]. Front. Chem. Sci. Eng., 2021, 15(3): 571-578.
[11] Xiuzhen Wei, Xufeng Xu, Yi Chen, Qian Zhang, Lu Liu, Ruiyuan Yang, Jinyuan Chen, Bosheng Lv. Preparation and properties of hollow fibre nanofiltration membrane with continuous coffee-ring structure[J]. Front. Chem. Sci. Eng., 2021, 15(2): 351-362.
[12] Vincent Froidevaux, Mélanie Decostanzi, Abdelatif Manseri, Sylvain Caillol, Bernard Boutevin, Rémi Auvergne. Improved “cure on demand” of aromatic bismaleimide with thiol triggered by retro-Diels-Alder reaction[J]. Front. Chem. Sci. Eng., 2021, 15(2): 330-339.
[13] Jie Liu, Jiahao Shen, Jingjing Wang, Yuan Liang, Routeng Wu, Wenwen Zhang, Delin Shi, Saixiang Shi, Yanping Wang, Yimin Wang, Yumin Xia. Polymeric ionic liquid—assisted polymerization for soluble polyaniline nanofibers[J]. Front. Chem. Sci. Eng., 2021, 15(1): 118-126.
[14] Boa Jin, Hyunmin Park, Yang Liu, Leijing Liu, Jongdeok An, Wenjing Tian, Chan Im. Charge-carrier photogeneration and extraction dynamics of polymer solar cells probed by a transient photocurrent nearby the regime of the space charge-limited current[J]. Front. Chem. Sci. Eng., 2021, 15(1): 164-179.
[15] Feng Sun, Jinren Lu, Yuhong Wang, Jie Xiong, Congjie Gao, Jia Xu. Reductant-assisted polydopamine-modified membranes for efficient water purification[J]. Front. Chem. Sci. Eng., 2021, 15(1): 109-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed