Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (12) : 2156-2160    https://doi.org/10.1007/s11705-023-2371-3
COMMUNICATION
The CatMath: an online predictive platform for thermal + electrocatalysis
Heng Liu1, Hao Zheng1, Zhenhe Jia2, Binghui Zhou2, Yan Liu2, Xuelu Chen2, Yajun Feng2, Li Wei3, Weijie Yang2, Hao Li1()
1. Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
2. Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China
3. School of Chemical and Biomolecule Engineering, The University of Sydney, Sydney NSW 2006, Australia
 Download: PDF(1181 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The catalytic volcano activity models are the quantified and visualized tools of the Sabatier principle for heterogeneous catalysis, which can depict the intrinsic activity optima and trends of a catalytic reaction as a function of the reaction descriptors, i.e., the bonding strengths of key reaction species. These models can be derived by microkinetic modeling and/or free energy changes in combination with the scaling relations among the reaction intermediates. Herein, we introduce the CatMath—an online platform for generating a variety of common and industrially important thermal + electrocatalysis. With the CatMath, users can request the volcano models for available reactions and analyze their materials of interests as potential catalysts. Besides, the CatMath provides the function of the online generation of Surface Pourbaix Diagram for surface state analysis under electrocatalytic conditions, which is an essential step before analyzing the activity of an electrocatalytic surface. All the model generation and analysis processes are realized by cloud computing via a user-friendly interface.

Keywords CatMath      catalysis      volcano activity plots      Surface Pourbaix Diagrams      online platform     
Corresponding Author(s): Hao Li   
Just Accepted Date: 09 October 2023   Online First Date: 10 November 2023    Issue Date: 30 November 2023
 Cite this article:   
Heng Liu,Hao Zheng,Zhenhe Jia, et al. The CatMath: an online predictive platform for thermal + electrocatalysis[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2156-2160.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-023-2371-3
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I12/2156
Fig.1  Schematic illustration of the Sabatier principle for understanding heterogeneous catalysis.
Reaction name Model type Descriptor Parameter
Electrocatalysis
Hydrogen evolution reaction 1D EH EH
Oxygen evolution reaction 1D ?GO– ?GHO ?GO?GHO
2D ?GO– ?GHO, ?GHO ?GO– ?GHO, ?GHO
Oxygen reduction reaction 2e, 1D ?GHO ?GHO
4e, 1D ?GHO ?GHO
2D EHO, EHOO EHO, EHOO
2D EHO, EHO EHO, EHO
CO2 reduction reaction HCOOH, 2D ?GHCOOH, ?GOCHO ?GHCOOH, ?GOCHO
CO, 2D ?GCO, ?GCOOH ?GCO, ?GCOOH
Water oxidation reaction Thermal dynamic, 1D ?GHO ?GHO
Kinetic, 1D
Electrolytic propylene epoxidation 1D EO U (*), EO
Thermal catalysis
CO oxidation 2D ECO, EO T (*), ECO, EO
Ethylene epoxidation Activity, 1D EO T (*), P (*), EO
Selectivity, 1D
Nitrite reduction NH3, 2D EN, E N H3 EN, E N H3
N2, 2D EN, E N2 EN, E N2
Hg oxidation 1D EO T (*), P (*), EO
NO oxidation 1D EO T (*), P (*), EO
Tab.1  Summary of the current available catalytic reactions in CatMatha)
Fig.2  The user interface of CatMath in the currently available version: (a) the Surface Pourbaix Diagrams module and (b) the Catalytic Volcano Models module.
Fig.3  Examples of the generated Surface Pourbaix Diagram for ZnCr2O4 (a) with a solvation correction value of –0.15 eV, volcano activity model for (b) thermal catalysis and (c) electrocatalysis. Note: The fonts on the images have been adjusted by the journal based on the publication requirement.
1 Z W Seh, J Kibsgaard, C F Dickens, I Chorkendorff, J K Nørskov, T F Jaramillo. Combining theory and experiment in electrocatalysis: insights into materials design. Science, 2017, 355(6321): eaad4998
https://doi.org/10.1126/science.aad4998
2 A J Medford, A Vojvodic, J S Hummelshøj, J Voss, F Abild-Pedersen, F Studt, T Bligaard, A Nilsson, J K Nørskov. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328: 36–42
https://doi.org/10.1016/j.jcat.2014.12.033
3 A J Medford, P G Moses, K W Jacobsen, A A Peterson. A career in catalysis: Jens Kehlet Nørskov. ACS Catalysis, 2022, 12(15): 9679–9689
https://doi.org/10.1021/acscatal.2c02217
4 B Hammer, J K Nørskov. Theoretical surface science and catalysis—calculations and concepts. Advances in Catalysis, 2000, 45: 71–129
https://doi.org/10.1016/S0360-0564(02)45013-4
5 J K Nørskov, F Abild-Pedersen, F Studt, T Bligaard. Density functional theory in surface chemistry and catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(3): 937–943
https://doi.org/10.1073/pnas.1006652108
6 G Jones, T Bligaard, F Abild-Pedersen, J K Nørskov. Using scaling relations to understand trends in the catalytic activity of transition metals. Journal of Physics Condensed Matter, 2008, 20(6): 064239
https://doi.org/10.1088/0953-8984/20/6/064239
7 J K Nørskov, T Bligaard, A Logadottir, J R Kitchin, J G Chen, S Pandelov, U Stimming. Trends in the exchange current for hydrogen evolution. Journal of the Electrochemical Society, 2005, 152(3): J23–J26
https://doi.org/10.1149/1.1856988
8 J K Nørskov, J Rossmeisl, A Logadottir, L Lindqvist, J R Kitchin, T Bligaard, H Jónsson. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. Journal of Physical Chemistry B, 2004, 108(46): 17886–17892
https://doi.org/10.1021/jp047349j
9 H Falsig, B Hvolbæk, I S Kristensen, T Jiang, T Bligaard, C H Christensen, J K Nørskov. Trends in the catalytic CO oxidation activity of nanoparticles. Angewandte Chemie International Edition, 2008, 47(26): 4835–4839
https://doi.org/10.1002/anie.200801479
10 C F Dickens, C Kirk, J K Nørskov. Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: beyond the limiting potential volcano. Journal of Physical Chemistry C, 2019, 123(31): 18960–18977
https://doi.org/10.1021/acs.jpcc.9b03830
11 H A Hansen, J B Varley, A A Peterson, J K Nørskov. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. Journal of Physical Chemistry Letters, 2013, 4(3): 388–392
https://doi.org/10.1021/jz3021155
12 S Pan, H Li, D Liu, R Huang, X Pan, D Ren, J Li, M Shakouri, Q X Zhang, M J Wang. et al.. Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nature Communications, 2022, 13(1): 2294
https://doi.org/10.1038/s41467-022-30064-6
13 I C Man, H Y Su, F Calle-Vallejo, H A Hansen, J I Martínez, N G Inoglu, J Kitchin, T F Jaramillo, J K Nørskov, J Rossmeisl. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 2011, 3(7): 1159–1165
https://doi.org/10.1002/cctc.201000397
14 H Liu, D Zhang, S M Holmes, C D’Agostino, H Li. Origin of the superior oxygen reduction activity of zirconium nitride in alkaline media. Chemical Science, 2023, 14(34): 9000–9009
https://doi.org/10.1039/D3SC01827J
15 H Xu, L Zhu, Y Nan, Y Xie, D Cheng. Revisit the role of metal dopants in enhancing the selectivity of Ag-catalyzed ethylene epoxidation: optimizing oxophilicity of reaction site via cocatalytic mechanism. ACS Catalysis, 2021, 11(6): 3371–3383
https://doi.org/10.1021/acscatal.0c04951
16 X Liu, J Xiao, H Peng, X Hong, K Chan, J K Nørskov. Understanding trends in electrochemical carbon dioxide reduction rates. Nature Communications, 2017, 8(1): 15438
https://doi.org/10.1038/ncomms15438
17 J K Nørskov, T Bligaard, J Rossmeisl, C H Christensen. Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1(1): 37–46
https://doi.org/10.1038/nchem.121
18 S R Kelly, C Kirk, K Chan, J K Nørskov. Electric field effects in oxygen reduction kinetics: rationalizing pH dependence at the Pt(111), Au(111), and Au(100) Electrodes. Journal of Physical Chemistry C, 2020, 124(27): 14581–14591
https://doi.org/10.1021/acs.jpcc.0c02127
19 A J Medford, C Shi, M J Hoffmann, A C Lausche, S R Fitzgibbon, T Bligaard, J K Nørskov. CatMAP: a software package for descriptor-based microkinetic mapping of catalytic trends. Catalysis Letters, 2015, 145(3): 794–807
https://doi.org/10.1007/s10562-015-1495-6
20 H Liu, X Jia, A Cao, L Wei, C D’Agostino, H Li. The surface states of transition metal X-ides under electrocatalytic conditions. Journal of Chemical Physics, 2023, 158(12): 124705
https://doi.org/10.1063/5.0147123
21 H A Hansen, J Rossmeisl, J K Nørskov. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Physical Chemistry Chemical Physics, 2008, 10(25): 3722–3730
https://doi.org/10.1039/b803956a
22 O Vinogradova, D Krishnamurthy, V Pande, V Viswanathan. Quantifying confidence in DFT-predicted surface pourbaix diagrams of transition-metal electrode-electrolyte interfaces. Langmuir, 2018, 34(41): 12259–12269
https://doi.org/10.1021/acs.langmuir.8b02219
23 W Yang, Z Jia, B Zhou, L Wei, Z Gao, H Li. Surface states of dual-atom catalysts should be considered for analysis of electrocatalytic activity. Communications Chemistry, 2023, 6(1): 6
https://doi.org/10.1038/s42004-022-00810-4
[1] Zulfiqar Ali, Jiliang Ma, Dongnv Jin, Rui Cui, Runcang Sun. Clean production of lactic acid by selective carbon-carbon bond cleavage of biomass feedstock over a novel carbon-bismuth oxychloride photocatalyst[J]. Front. Chem. Sci. Eng., 2024, 18(2): 17-.
[2] Yuxin Li, Junxin Guo, Rui Han, Zhao Wang. Plasma-exfoliated g-C3N4 with oxygen doping: tailoring photocatalytic properties[J]. Front. Chem. Sci. Eng., 2024, 18(2): 15-.
[3] Ying Wang, Yue Han, Ruiyang Zhao, Jishu Han, Lei Wang. Efficient flower-like ZnSe/Cu0.08Zn0.92S photocatalyst for hydrogen production application[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1301-1310.
[4] Xianglin Pei, Siyu Long, Lingyu Zhang, Zhuoyue Liu, Wei Gong, Aiwen Lei, Dongdong Ye. Pd nano-catalyst supported on biowaste-derived porous nanofibrous carbon microspheres for efficient catalysis[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1289-1300.
[5] Guodong Tian, Chao Duan, Bingxu Zhou, Chaochao Tian, Qiang Wang, Jiachuan Chen. Lignin-based electrospun nanofiber membrane decorated with photo-Fenton Ag@MIF-100(Fe) heterojunctions for complex wastewater remediation[J]. Front. Chem. Sci. Eng., 2023, 17(7): 930-941.
[6] Rui Cui, Dongnv Jin, Gaojie Jiao, Zhendong Liu, Jiliang Ma, Runcang Sun. Cuprous oxide/copper oxide interpenetrated into ordered mesoporous cellulose-based carbon aerogels for efficient photocatalytic degradation of methylene blue[J]. Front. Chem. Sci. Eng., 2023, 17(7): 918-929.
[7] Shangcong Zhang, Qian Liu, Xinyue Tang, Zhiming Zhou, Tieyan Fan, Yingmin You, Qingcheng Zhang, Shusheng Zhang, Jun Luo, Xijun Liu. Electrocatalytic reduction of NO to NH3 in ionic liquids by P-doped TiO2 nanotubes[J]. Front. Chem. Sci. Eng., 2023, 17(6): 726-734.
[8] Lili Cheng, Xiaoyao Yu, Danyao Huang, Hao Wang, Ying Wu. Piezocatalytic performance of Fe2O3−Bi2MoO6 catalyst for dye degradation[J]. Front. Chem. Sci. Eng., 2023, 17(6): 716-725.
[9] Xiao Han, Xiaoxuan Wang, Jiafang Wang, Yingjie Xie, Cuiwei Du, Chongfei Yu, Jinglan Feng, Jianhui Sun, Shuying Dong. Construction of defect-containing UiO-66/MoSe2 heterojunctions with superior photocatalytic performance for wastewater treatment and mechanism insight[J]. Front. Chem. Sci. Eng., 2023, 17(4): 449-459.
[10] Meiyu Zheng, Zhenzhen Cui, Jing Zhang, Jing Fu, Zhiwen Wang, Tao Chen. Efficient acetoin production from pyruvate by engineered Halomonas bluephagenesis whole-cell biocatalysis[J]. Front. Chem. Sci. Eng., 2023, 17(4): 425-436.
[11] Zexing Huang, Zhijuan Zeng, Xiaoting Zhu, Wenguang Zhao, Jing Lei, Qiong Xu, Yongjun Yang, Xianxiang Liu. Boehmite-supported CuO as a catalyst for catalytic transfer hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan[J]. Front. Chem. Sci. Eng., 2023, 17(4): 415-424.
[12] Jiaxin Li, Chengguang Yue, Wenhao Ji, Bangman Feng, Mei-Yan Wang, Xinbin Ma. Recent advances in cycloaddition of CO2 with epoxides: halogen-free catalysis and mechanistic insights[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1879-1894.
[13] Shiqing Ma, Chundong Peng, Zeyu Jia, Yanmei Feng, Kai Chen, Hao Ding, Daimei Chen, Zhong-Yong Yuan. Improving hole transfer of boron nitride quantum dots modified PDI for efficient photodegradation[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1718-1727.
[14] Yu Liu, Lin Chen, Yong Wang, Yuan Dong, Liang Zhou, Susana I. Córdoba de Torresi, Kenneth I. Ozoemena, Xiao-Yu Yang. NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater splitting[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1698-1706.
[15] Yu-Xuan Xiao, Jie Ying, Hong-Wei Liu, Xiao-Yu Yang. Pt–C interactions in carbon-supported Pt-based electrocatalysts[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1677-1697.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed