Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (6) : 62    https://doi.org/10.1007/s11705-024-2421-5
Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes
Guoxing Chen1(), Wenmei Liu2, Marc Widenmeyer3, Xiao Yu1, Zhijun Zhao4, Songhak Yoon1, Ruijuan Yan3, Wenjie Xie1,3, Armin Feldhoff4, Gert Homm1, Emanuel Ionescu1,3, Maria Fyta5,6(), Anke Weidenkaff1,3
1. Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS, Alzenau 63755, Germany
2. Electrochemistry Laboratory, Paul Scherrer Institute, Villigen PSI 5232, Switzerland
3. Department of Materials and Earth Sciences, Materials and Resources, Technical University of Darmstadt, Darmstadt 64287, Germany
4. Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Hannover 30167, Germany
5. Institute for Computational Physics, University of Stuttgart, Stuttgart 70569, Germany
6. Computational Biotechnology, RWTH Aachen, Aachen 52074, Germany
 Download: PDF(6245 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, perovskite-type La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La0.7Ca0.3Co0.3Fe0.6Zn0.1O3–δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min−1·cm−2 under air/He and air/CO2 gradients at 1173 K, respectively. After 1600 h of CO2 exposure, the perovskite structure remained intact, showcasing superior CO2 resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO2-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials.

Keywords perovskite      oxygen permeation      membrane      oxygen ions diffusion      oxygen vacancy      formation energy      energy barrier     
Corresponding Author(s): Guoxing Chen,Maria Fyta   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Just Accepted Date: 04 February 2024   Issue Date: 22 April 2024
 Cite this article:   
Guoxing Chen,Wenmei Liu,Marc Widenmeyer, et al. Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes[J]. Front. Chem. Sci. Eng., 2024, 18(6): 62.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2421-5
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I6/62
Fig.1  (a) A ball and stick model of the LCCFM perovskite structure with alternating layers of AO+ and BO2?, where A stands for La/Ca, and B stands for Fe/Co/Cu/Zn (the La, Ca, Fe, Co, M = Fe/Cu/Zn, and O atoms are colored purple, green, orange, blue, cyan, and red, respectively). (b) We consider three types of oxygen vacancy locations a, b, and c, which are coordination-dependent and represented as Va, Vb, and Vc, respectively.
Fig.2  Rietveld refinements of XRD patterns of the investigated perovskite-type powders at room temperature: (a) LCCFFe, (b) LCCFCu, and (c) LCCFZn.
Fig.3  SEM micrographs of fresh membranes: (a) LCCFFe, (b) LCCFCu, and (c) LCCFZn.
Fig.4  TG-curves of the fresh membranes under (a) Ar, (b) air, and (c) CO2 atmospheres.
Fig.5  XRD patterns of the investigated membranes after exposure to CO2 at 1173 K for various times: (a) LCCFFe, (b) LCCFCu, and (c) LCCFZn. (d) XRD patterns of the studied membranes after exposure to CO2 plasma at 1173 K for 3 h.
Fig.6  Temperature dependence of (a) the total conductivity and (b) its Arrhenius plot of fresh membranes.
Fig.7  (a) Oxygen permeation fluxes through LCCFM membranes under air/He gradient, air/CO2 gradient, and 80% air-20% CO2/He gradient; (b) oxygen permeation flux through LCCFZn membrane under (100–x)% air-x% CO2/He gradient.
Fig.8  The formation energy of a single oxygen vacancy in LCCFM with respect to their environment and increasing distance to M. The coordination of corresponding atoms is represented by a, b, and c (see Fig. 1).
Fig.9  Barrier energy of oxygen migration to next-neighbor (N) sites of LCCFM (M = Fe, Cu, and Zn). The cases corresponding to the largest/lowest barriers are indicated by the circular red/cyan regions.
Fig.10  Potential pathways of oxygen migration in (a) LCCFZn, (b) LCCFFe, and (c) LCCFCu (TS: transition state).
1 G Chen , A Feldhoff , A Weidenkaff , C Li , S Liu , X Zhu , J Sunarso , K Huang , X Wu , A F Ghoniem . et al.. Roadmap for sustainable mixed ionic-electronic conducting membranes. Advanced Functional Materials, 2022, 32(6): 2105702
https://doi.org/10.1002/adfm.202105702
2 X Zou , Q Lu , Y Zhong , K Liao , W Zhou , Z Shao . Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li–O2/air batteries workable under hurdle conditions. Small, 2018, 14(34): e1801798
https://doi.org/10.1002/smll.201801798
3 M Du , K Liao , Q Lu , Z Shao . Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization. Energy & Environmental Science, 2019, 12(6): 1780–1804
https://doi.org/10.1039/C9EE00515C
4 J Guo , W Tang , X Xiong , H Liu , T Wang , Y Wu , X Cheng . Localized high-concentration electrolytes for lithium metal batteries: progress and prospect. Frontiers of Chemical Science and Engineering, 2023, 17(10): 1354–1371
https://doi.org/10.1007/s11705-022-2286-4
5 J Ren , Y He , H Sun , R Zhang , J Li , W Ma , Z Liu , J Li , X Du , X Hao . Construction of nitrogen-doped carbon cladding LiMn2O4 film electrode with enhanced stability for electrochemically selective extraction of lithium ions. Frontiers of Chemical Science and Engineering, 2023, 17(12): 2050–2060
https://doi.org/10.1007/s11705-023-2343-7
6 X Yu , G Chen , M Widenmeyer , I Kinski , X Liu , U Kunz , D Schüpfer , L Molina-Luna , X Tu , G Homm . et al.. Catalytic recycling of medical plastic wastes over La0.6Ca0.4Co1–xFexO3−δ pre-catalysts for co-production of H2 and high-value added carbon nanomaterials. Applied Catalysis B: Environmental, 2023, 334: 122838
https://doi.org/10.1016/j.apcatb.2023.122838
7 D M Amaya-Dueñas , G Chen , A Weidenkaff , N Sata , F Han , I Biswas , R Costa , K A Friedrich . A-site deficient chromite with in situ Ni exsolution as a fuel electrode for solid oxide cells (SOCs). Journal of Materials Chemistry A, 2021, 9(9): 5685–5701
https://doi.org/10.1039/D0TA07090D
8 S Wang , P Xiao , J Yang , S A C Carabineiro , M Wiśniewski , J Zhu , X Liu . Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review. Frontiers of Chemical Science and Engineering, 2023, 17(11): 1649–1676
https://doi.org/10.1007/s11705-023-2324-x
9 X Zhu , W Yang . Microstructural and interfacial designs of oxygen-permeable membranes for oxygen separation and reaction-separation coupling. Advanced Materials, 2019, 31(50): e1902547
https://doi.org/10.1002/adma.201902547
10 G Chen , M Widenmeyer , X Yu , N Han , X Tan , G Homm , S Liu , A Weidenkaff . Perspectives on achievements and challenges of oxygen transport dual-functional membrane reactors. Journal of the American Ceramic Society, 2024, 107(3): 1490–1504
https://doi.org/10.1111/jace.19411
11 C Zhang , J Sunarso , S Liu . Designing CO2-resistant oxygen-selective mixed ionic-electronic conducting membranes: guidelines, recent advances, and forward directions. Chemical Society Reviews, 2017, 46(10): 2941–3005
https://doi.org/10.1039/C6CS00841K
12 P M Geffroy , E Blond , N Richet , T Chartier . Understanding and identifying the oxygen transport mechanisms through a mixed-conductor membrane. Chemical Engineering Science, 2017, 162: 245–261
https://doi.org/10.1016/j.ces.2017.01.006
13 G Chen , M Widenmeyer , B Tang , L Kaeswurm , L Wang , A Feldhoff , A Weidenkaff . A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ Ruddlesden-Popper membrane for oxygen separation. Frontiers of Chemical Science and Engineering, 2020, 14(3): 405–414
https://doi.org/10.1007/s11705-019-1886-0
14 W Bai , J Feng , C Luo , P Zhang , H Wang , Y Yang , Y Zhao , H A Fan . A comprehensive review on oxygen transport membranes: development history, current status, and future directions. International Journal of Hydrogen Energy, 2021, 46(73): 36257–36290
https://doi.org/10.1016/j.ijhydene.2021.08.177
15 X Tan , M Alsaiari , Z Shen , S Asif , F A Harraz , B Šljukić , D M F Santos , W Zhang , A Bokhari , N Han . Rational design of mixed ionic-electronic conducting membranes for oxygen transport. Chemosphere, 2022, 305: 135483
https://doi.org/10.1016/j.chemosphere.2022.135483
16 M S Alam , I Kagomiya , K Kakimoto . Tailoring the oxygen permeability of BaCo0.4Fe0.4Y0.2–xAxO3–δ (x = 0, 0.1; A: Zr, Mg, Zn) cubic perovskite. Ceramics International, 2023, 49(7): 11368–11377
https://doi.org/10.1016/j.ceramint.2022.11.336
17 Z Zhao , G Chen , Cano G Escobar , P A Kißling , O Stölting , B Breidenstein , S Polarz , N C Bigall , A Weidenkaff , A Feldhoff . Multiplying oxygen permeability of a ruddlesden-popper oxide by orientation control via magnets. Angewandte Chemie International Edition, 2024, 63(8): e202312473
https://doi.org/10.1002/anie.202312473
18 M Johanning , M Widenmeyer , G Escobar Cano , V Zeller , S Klemenz , G Chen , A Feldhoff , A Weidenkaff . Recycling process development with integrated life cycle assessment—a case study on oxygen transport membrane material. Green Chemistry, 2023, 25(12): 4735–4749
https://doi.org/10.1039/D3GC00391D
19 G Chen , F Buck , I Kistner , M Widenmeyer , T Schiestel , A Schulz , M Walker , A Weidenkaff . A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma. Chemical Engineering Journal, 2020, 392: 123699
https://doi.org/10.1016/j.cej.2019.123699
20 G Chen , R Snyders , N Britun . CO2 conversion using catalyst-free and catalyst-assisted plasma-processes: recent progress and understanding. Journal of CO2 Utilization, 2021, 49: 101557
21 M Widenmeyer , K S Wiegers , G Chen , S Yoon , A Feldhoff , A Weidenkaff . Engineering of oxygen pathways for better oxygen permeability in Cr-substituted Ba2In2O5 membranes. Journal of Membrane Science, 2020, 595: 117558
https://doi.org/10.1016/j.memsci.2019.117558
22 A Arratibel Plazaola , A Cruellas Labella , Y Liu , N Badiola Porras , D A Pacheco Tanaka , M V Sint Annaland , F Gallucci . Mixed ionic-electronic conducting membranes (MIEC) for their application in membrane reactors: a review. Processes, 2019, 7(3): 128
https://doi.org/10.3390/pr7030128
23 H Wang , C Tablet , A Feldhoff , J Caro . Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 2005, 262(1–2): 20–26
https://doi.org/10.1016/j.memsci.2005.03.046
24 G Chen , B Tang , M Widenmeyer , L Wang , A Feldhoff , A Weidenkaff . Novel CO2-tolerant dual-phase Ce0.9Pr0.1O2–δ-La0.5Sr0.5Fe0.9Cu0.1O3–δ membranes with high oxygen permeability. Journal of Membrane Science, 2020, 595: 117530
https://doi.org/10.1016/j.memsci.2019.117530
25 G Chen , Z Zhao , M Widenmeyer , T Frömling , T Hellmann , R Yan , F Qu , G Homm , J P Hofmann , A Feldhoff . et al.. A comprehensive comparative study of CO2-resistance and oxygen permeability of 60 wt % Ce0.8M0.2O2–δ (M = La, Pr, Nd, Sm, Gd)-40 wt % La0.5Sr0.5Fe0.8Cu0.2O3–δ dual-phase membranes. Journal of Membrane Science, 2021, 639: 119783
https://doi.org/10.1016/j.memsci.2021.119783
26 R Kiebach , S Pirou , Aguilera L Martinez , A B Haugen , A Kaiser , P V Hendriksen , M Balaguer , J García-Fayos , J M Serra , F Schulze-Küppers . et al.. A review on dual-phase oxygen transport membranes: from fundamentals to commercial deployment. Journal of Materials Chemistry A, 2022, 10(5): 2152–2195
https://doi.org/10.1039/D1TA07898D
27 H Luo , K Efimov , H Jiang , A Feldhoff , H Wang , J Caro . CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angewandte Chemie International Edition, 2011, 50(3): 759–763
https://doi.org/10.1002/anie.201003723
28 C Li , J Song , S Zhang , X Tan , X Meng , J Sunarso , S Liu . SDC-SCFZ dual-phase ceramics: structure, electrical conductivity, thermal expansion, and O2 permeability. Journal of the American Ceramic Society, 2021, 104(5): 2268–2284
https://doi.org/10.1111/jace.17665
29 S Wang , L Shi , Z Xie , Y He , D Yan , M R Li , J Caro , H Luo . High-flux dual-phase percolation membrane for oxygen separation. Journal of the European Ceramic Society, 2019, 39(15): 4882–4890
https://doi.org/10.1016/j.jeurceramsoc.2019.06.039
30 Y Huang , C Zhang , X Wang , D Li , L Zeng , Y He , P Yu , H Luo . High CO2 resistance of indium-doped cobalt-free 60wt% Ce0.9Pr0.1O2–δ-40wt%Pr0.6Sr0.4Fe1–xInxO3–δ oxygen transport membranes. Ceramics International, 2022, 48(1): 415–426
https://doi.org/10.1016/j.ceramint.2021.09.117
31 X Wang , Y Huang , D Li , L Zeng , Y He , M Boubeche , H Luo . High oxygen permeation flux of cobalt-free Cu-based ceramic dual-phase membranes. Journal of Membrane Science, 2021, 633: 119403
https://doi.org/10.1016/j.memsci.2021.119403
32 X Zhu , H Liu , Y Cong , W Yang . Novel dual-phase membranes for CO2 capture via an oxyfuel route. Chemical Communications, 2012, 48(2): 251–253
https://doi.org/10.1039/C1CC16631J
33 S Zhang , J Y J Yeo , C Li , X Meng , N Yang , J Sunarso , S Liu . Oxygen permeation simulation of La0.8Ca0.2Fe0.95O3–δ-Ag hollow fiber membrane at different modes and flow configurations. AIChE Journal, 2022, 68(2): e17508
https://doi.org/10.1002/aic.17508
34 G Chen , W Liu , M Widenmeyer , P Ying , M Dou , W Xie , C Bubeck , L Wang , M Fyta , A Feldhoff . et al.. High flux and CO2-resistance of La0.6Ca0.4Co1–xFexO3–δ oxygen-transporting membranes. Journal of Membrane Science, 2019, 590: 117082
https://doi.org/10.1016/j.memsci.2019.05.007
35 K Efimov , T Klande , N Juditzki , A Feldhoff . Ca-containing CO2-tolerant perovskite materials for oxygen separation. Journal of Membrane Science, 2012, 389: 205–215
https://doi.org/10.1016/j.memsci.2011.10.030
36 R D Shannon . Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, 32(5): 751–767
https://doi.org/10.1107/S0567739476001551
37 G Kresse , J Furthmüller . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50
https://doi.org/10.1016/0927-0256(96)00008-0
38 P E Blöchl . Projector augmented-wave method. Physical Review B: Condensed Matter, 1994, 50(24): 17953–17979
https://doi.org/10.1103/PhysRevB.50.17953
39 J P Perdew , K Burke , M Ernzerhof . Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
https://doi.org/10.1103/PhysRevLett.77.3865
40 N Troullier , J L Martins . Efficient pseudopotentials for plane-wave calculations. Physical Review B: Condensed Matter, 1991, 43(3): 1993–2006
https://doi.org/10.1103/PhysRevB.43.1993
41 W H Yang , V F Smolen , N A Peppas . Oxygen permeability coefficients of polymers for hard and soft contact lens applications. Journal of Membrane Science, 1981, 9(1–2): 53–67
https://doi.org/10.1016/S0376-7388(00)85117-0
42 Z Wang , R Peng , W Zhang , X Wu , C Xia , Y Lu . Oxygen reduction and transport on the La1–xSrxCo1–yFeyO3–δ cathode in solid oxide fuel cells: a first-principles study. Journal of Materials Chemistry A, 2013, 1(41): 12932–12940
https://doi.org/10.1039/c3ta11554b
43 C Freysoldt , B Grabowski , T Hickel , J Neugebauer , G Kresse , A Janotti , C G Van de Walle . First-principles calculations for point defects in solids. Reviews of Modern Physics, 2014, 86(1): 253–305
https://doi.org/10.1103/RevModPhys.86.253
44 G Henkelman , B P Uberuaga , H Jónsson . A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904
https://doi.org/10.1063/1.1329672
45 H JonssonG MillsK W Jacobsen. Chapter 16. Nudged elastic band method for finding minimum energy paths of transitions. In: Berne B, Ciccotti G, Coker D, eds. Classical and Quantum Dynamics in Condensed Phase Simulations. New Jersey: World Scientific, 1998, 385–404
46 A Klein , K Albe , N Bein , O Clemens , K A Creutz , P Erhart , M Frericks , E Ghorbani , J P Hofmann , B Huang . et al.. The Fermi energy as common parameter to describe charge compensation mechanisms: a path to Fermi level engineering of oxide electroceramics. Journal of Electroceramics, 2023, 1: 1–31
47 I V KhromushinT I AksenovaZ R Zhotabaev. Mechanism of gas-solid exchange processes for some perovskites. Solid State Ionics, 2003, 162–163: 37–40
48 J Sunarso , S Baumann , J M Serra , W A Meulenberg , S Liu , Y S Lin , J C Diniz da Costa . Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 2008, 320(1–2): 13–41
https://doi.org/10.1016/j.memsci.2008.03.074
49 J E Ten Elshof , H J M Bouwmeester , H Verweij . Oxygen transport through La1–xSrxFeO3–δ membranes II. Permeation in air/CO, CO2 gradients. Solid State Ionics, 1996, 89(1–2): 81–92
https://doi.org/10.1016/0167-2738(96)00255-X
50 W Fang , F Steinbach , C Chen , A Feldhoff . An approach to enhance the CO2 tolerance of fluorite-perovskite dual-phase oxygen-transporting membrane. Chemistry of Materials, 2015, 27(22): 7820–7826
https://doi.org/10.1021/acs.chemmater.5b03823
51 F Liang , H Luo , K Partovi , O Ravkina , Z Cao , Y Liu , J Caro . A novel CO2-stable dual phase membrane with high oxygen permeability. Chemical Communications, 2014, 50(19): 2451–2454
https://doi.org/10.1039/C3CC47962E
52 H Luo , T Klande , Z Cao , F Liang , H Wang , J Caro . A CO2-stable reduction-tolerant Nd-containing dual phase membrane for oxyfuel CO2 capture. Journal of Materials Chemistry A, 2014, 2(21): 7780–7787
https://doi.org/10.1039/C3TA14870J
53 J Xue , Q Liao , Y Wei , Z Li , H Wang . A CO2-tolerance oxygen permeable 60Ce0.9Gd0.1O2–δ–40Ba0.5Sr0.5Co0.8Fe0.2O3–δ dual phase membrane. Journal of Membrane Science, 2013, 443: 124–130
https://doi.org/10.1016/j.memsci.2013.04.067
[1] FCE-23100-OF-CG_suppl_1 Download
[1] Yongjian Wei, Ying Li, Yunfei Xu, Yinghui Sun, Tong Xu, Haiou Liang, Jie Bai. Crystal facet-dependent CO2 cycloaddition to epoxides over ZnO catalysts[J]. Front. Chem. Sci. Eng., 2024, 18(5): 53-.
[2] Ying Li, Lu Wang, Junyan Xie, Yong Dai, Xuehong Gu, Xuerui Wang. Asymmetric copolyimide membranes fabricated by nonsolvent-induced phase separation for He/CH4 and He/N2 separation[J]. Front. Chem. Sci. Eng., 2024, 18(4): 44-.
[3] Yayun Zhao, Dechuan Zhao, Chunlong Kong, Yichao Lin, Xuezhen Wang, Liang Chen. Remarkable enhancement of gas selectivity on organosilica hybrid membranes using urea-modulated metal-organic framework nanoparticles[J]. Front. Chem. Sci. Eng., 2024, 18(2): 18-.
[4] Jiangyan Lu, Zhu Xiong, Yuhang Cheng, Qingwu Long, Kaige Dong, Hongguo Zhang, Dinggui Luo, Li Yu, Wei Zhang, Gaosheng Zhang. The energy-free purification of trace thallium(I)-contaminated potable water using a high-selective filter paper with multi-layered Prussian blue decoration[J]. Front. Chem. Sci. Eng., 2024, 18(2): 13-.
[5] Saeed Seraj, Toraj Mohammadi, Maryam Ahmadzadeh Tofighy. Incorporation of 3-dimensional lycopodium with hydrophobic nature and interconnected nano-channels into polyvinylidene fluoride membranes for desalination applications by vacuum membrane distillation[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1162-1182.
[6] Yili Liu, Guoliang Che, Weizhong Cui, Beili Pang, Qiong Sun, Liyan Yu, Lifeng Dong. Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified TiO2 layer[J]. Front. Chem. Sci. Eng., 2023, 17(5): 516-524.
[7] Quan Liu, Xian Wang, Yanan Guo, Gongping Liu, Kai-Ge Zhou. Mechanism of ethanol/water reverse separation through a functional graphene membrane: a molecular simulation investigation[J]. Front. Chem. Sci. Eng., 2023, 17(3): 347-357.
[8] Fei Wang, Jian Mao. Role of oxygen vacancy inducer for graphene in graphene-containing anodes[J]. Front. Chem. Sci. Eng., 2023, 17(3): 326-333.
[9] Bowen Du, Yuhong Luo, Feichao Wu, Guihua Liu, Jingde Li, Wei Xue. Continuous amino-functionalized University of Oslo 66 membranes as efficacious polysulfide barriers for lithium−sulfur batteries[J]. Front. Chem. Sci. Eng., 2023, 17(2): 194-205.
[10] Xicheng Gao, Jianqiang Bi, Linjie Meng, Lulin Xie, Chen Liu. Activated carbon induced oxygen vacancies-engineered nickel ferrite with enhanced conductivity for supercapacitor application[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2088-2100.
[11] Jamilu Usman, Abdul Waheed, Umair Baig, Isam H. Aljundi. The effect of altering crosslinker chemistry during interfacial polymerization on the performance of nanofiltration membranes for desalination, organic, and micropollutants removal[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2025-2036.
[12] Muhammad Tawalbeh, Haya Aljaghoub, Muhammad Qasim, Amani Al-Othman. Surface modification techniques of membranes to improve their antifouling characteristics: recent advancements and developments[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1837-1865.
[13] Farah Abuhatab, Omar Khalifa, Husam Al Araj, Shadi W. Hasan. From plasma to plasmonics: toward sustainable and clean water production through membranes[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1809-1836.
[14] Shan Wang, Ping Xiao, Jie Yang, Sónia A.C. Carabineiro, Marek Wiśniewski, Junjiang Zhu, Xinying Liu. Catalytic combustion of volatile organic compounds using perovskite oxides catalysts—a review[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1649-1676.
[15] Xiaowei Liu, Christine Matindi, Sania Kadanyo, Mengyang Hu, Shuqian Yang, Gansheng Liu, Ran Tao, Zhenyu Cui, Xiaohua Ma, Kuanjun Fang, Jianxin Li. Tailoring the microstructure and properties of PES/SPSf loose nanofiltration membranes using SPES as a hydrophilic polymer for the effective removal of dyes via steric hindrance and charge effect[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1555-1567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed