Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (5) : 53    https://doi.org/10.1007/s11705-024-2412-6
Crystal facet-dependent CO2 cycloaddition to epoxides over ZnO catalysts
Yongjian Wei1,2, Ying Li1,2(), Yunfei Xu1,2, Yinghui Sun1,2, Tong Xu1,2, Haiou Liang1,2, Jie Bai1,2
1. Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, China
2. College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
 Download: PDF(5159 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With regard to green chemistry and sustainable development, the fixation of CO2 into epoxides to form cyclic carbonates is an attractive and promising pathway for CO2 utilization. Metal oxides, renowned as promising eco-friendly catalysts for industrial production, are often undervalued in terms of their impact on the CO2 addition reaction. In this work, we successfully developed ZnO nanoplates with (002) surfaces and ZnO nanorods with (100) surfaces via morphology-oriented regulation to explore the effect of crystal faces on CO2 cycloaddition. The quantitative data obtained from electron paramagnetic resonance spectroscopy indicated that the concentration of oxygen vacancies on the ZnO nanoplate surfaces was more than twice that on the ZnO nanorod surfaces. Density functional theory calculations suggested that the (002) surfaces have lower adsorption energies for CO2 and epichlorohydrin than the (100) surfaces. As a result, the yield of cyclochloropropene carbonate on the ZnO nanoplates (64.7%) was much greater than that on the ZnO nanorods (42.3%). Further evaluation of the reused catalysts revealed that the decrease in the oxygen vacancy concentration was the primary factor contributing to the decrease in catalytic performance. Based on these findings, a possible catalytic mechanism for CO2 cycloaddition with epichlorohydrin was proposed. This work provides a new idea for the controllable preparation of high-performance ZnO catalysts for the synthesis of cyclic carbonates from CO2 and epoxides.

Keywords carbon dioxide      cycloaddition      zinc oxide      crystal face      oxygen vacancy     
Corresponding Author(s): Ying Li   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Just Accepted Date: 19 January 2024   Issue Date: 15 April 2024
 Cite this article:   
Yongjian Wei,Ying Li,Yunfei Xu, et al. Crystal facet-dependent CO2 cycloaddition to epoxides over ZnO catalysts[J]. Front. Chem. Sci. Eng., 2024, 18(5): 53.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2412-6
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I5/53
Fig.1  XRD patterns of P-ZnO and R-ZnO catalysts.
Fig.2  SEM images of (a) P-ZnO and (b) R-ZnO; HRTEM images and crystal plots of (c, e) P-ZnO and (d, f) R-ZnO.
MaterialSurface area/ (m2·g?1)Pore volume/ (cm3·g?1)Average pore size/nm
P-ZnO4.6040.0073.056
R-ZnO4.1670.0053.057
Tab.1  BET and BJH results for the P-ZnO and R-ZnO materials
Fig.3  (a) N2-physisorption isotherms of P-ZnO and R-ZnO and (b) pore size distributions of P-ZnO and R-ZnO.
Fig.4  (a) Raman spectra of P-ZnO and R-ZnO, (b) O 1s XPS spectra of P-ZnO and R-ZnO, (c) EPR spectra of P-ZnO and R-ZnO, and (d) total spin number associated with oxygen vacancies and zinc vacancies of P-ZnO and R-ZnO.
Fig.5  (a) The effects of reaction temperature on the CO2 cycloaddition reaction over ZnO catalysts (reaction conditions: 6 mL of ECH, 0.05 mL of DMF, 0.1 g of ZnO catalysts, 125 °C, 2 MPa CO2, and 4 h). (b) Arrhenius plot of the reaction over P-ZnO and R-ZnO.
Fig.6  Recyclability of (a) P-ZnO and (b) R-ZnO catalysts in CO2 cycloaddition (reaction conditions: 6 mL of ECH, 0.05 mL of DMF, 0.1 g of ZnO catalyst, 130 °C, 2 MPa CO2, and 4 h).
Fig.7  (a) TG curve of the reused P-ZnO and R-ZnO catalysts at 400 °C, (b) total spin number associated with oxygen vacancies and zinc vacancies of the reused P-ZnO and R-ZnO, and (c, d) total spin number associated with vacancies of the reused P-ZnO and R-ZnO.
Fig.8  (a) Effect of reaction pressure at 130 °C, 4 h reaction time, 76.5 mmol ECH, 0.1 g P-ZnO, and 50 μL DMF. (b) Effect of reaction time at 130 °C, 1.5 MPa, 76.5 mmol ECH, 0.1 g P-ZnO, and 50 μL DMF. (c) Effect of DMF dosage at 130 °C, 1.5 MPa, 4 h reaction time, 76.5 mmol ECH, and 0.1 g P-ZnO.
Entry Epoxides Products Yield/%
1 92.0
2 93.7
3a) 62.7
4a) 49.9
5b) 69.6
Tab.2  Cycloaddition of CO2 to various epoxides over the P-ZnO catalyst (reaction conditions: 0.1 g P-ZnO, 70 μL DMF, 76.5 mmol epoxides, 130 °C, 1.5 MPa, and 4 h)
Fig.9  (a) Adsorption energy of CO2 on oxygen vacancies at the ZnO (002) and ZnO (100) surfaces. (b) Adsorption energy of ECH on oxygen vacancies at the ZnO (002) and ZnO (100) surfaces. (c) Plausible reaction mechanism of the synthesis of CPC from CO2 and ECH over P-ZnO. (d) Plausible reaction mechanism of the synthesis of CPC from CO2 and ECH over P-ZnO and DMF.
1 S Bierbaumer , M Nattermann , L Schulz , R Zschoche , T J Erb , C K Winkler , M Tinzl , S M Glueck . Enzymatic conversion of CO2: from natural to artificial utilization. Chemical Reviews, 2023, 123(9): 5702–5754
https://doi.org/10.1021/acs.chemrev.2c00581
2 J Ren , H Lou , N Xu , F Zeng , G Pei , Z Wang . Methanation of CO/CO2 for power to methane process: fundamentals, status, and perspectives. Journal of Energy Chemistry, 2023, 80: 182–206
https://doi.org/10.1016/j.jechem.2023.01.034
3 X Liu , S Bai , H Zhuang , Z Yan . Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2. Frontiers of Chemical Science and Engineering, 2012, 6(1): 47–52
https://doi.org/10.1007/s11705-011-1170-4
4 X Zhang , J Wang , Z Song , X Zhao , J Sun , Y Mao , W Wang . Co3O4–CeO2 for enhanced syngas by low-temperature methane conversion with C utilization via a catalytic chemical looping process. Fuel Processing Technology, 2023, 245: 107741
https://doi.org/10.1016/j.fuproc.2023.107741
5 S Liu , Q Zhao , X Han , C Wei , H Liang , Y Wang , S Huang , X Ma . Proximity effect of Fe–Zn bimetallic catalysts on CO2 hydrogenation performance. Transactions of Tianjin University, 2023, 29(4): 293–303
https://doi.org/10.1007/s12209-023-00360-3
6 A Kilic , B Sobay , E Aytar , R Söylemez . Synthesis and effective catalytic performance in cycloaddition reactions with CO2 of boronate esters versus N-heterocyclic carbene (NHC)-stabilized boronate esters. Sustainable Energy & Fuels, 2020, 4(11): 5682–5696
https://doi.org/10.1039/D0SE01189D
7 J Li , C Yue , W Ji , B Feng , M Y Wang , X Ma . Recent advances in cycloaddition of CO2 with epoxides: halogen-free catalysis and mechanistic insights. Frontiers of Chemical Science and Engineering, 2023, 17(12): 1879–1894
https://doi.org/10.1007/s11705-023-2354-4
8 Y Y Zeng , L Y Qiao , S S Zong , R Guo , J K Cheng , X Y Cao , Z F Zhou , M H Fan , Y G Yao . Dispersed Pd/alumina catalyst with finite iodine entry for boosted CO purification and dimethyl carbonate synthesis. Chemical Engineering Journal, 2023, 466: 143348
https://doi.org/10.1016/j.cej.2023.143348
9 A Kilic , E Yasar , E Aytar . Neutral boron [(L1–3)BPh2] and cationic charged boron [(L1a–3a)BPh2] complexes for chemical CO2 conversion to obtain cyclic carbonates under ambient conditions. Sustainable Energy & Fuels, 2019, 3(4): 1066–1077
https://doi.org/10.1039/C8SE00633D
10 K A Andrea , F M Kerton . Triarylborane-catalyzed formation of cyclic organic carbonates and polycarbonates. ACS Catalysis, 2019, 9(3): 1799–1809
https://doi.org/10.1021/acscatal.8b04282
11 I Ansari , P Singh , A Mittal , R I Mahato , D Chitkara . 2,2-Bis(hydroxymethyl) propionic acid based cyclic carbonate monomers and their (co)polymers as advanced materials for biomedical applications. Biomaterials, 2021, 275: 120953
https://doi.org/10.1016/j.biomaterials.2021.120953
12 C C Su , M He , R Amine , Z Chen , R Sahore , N Dietz Rago , K Amine . Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries. Energy Storage Materials, 2019, 17: 284–292
https://doi.org/10.1016/j.ensm.2018.11.003
13 K Wu , T Su , D Hao , W Liao , Y Zhao , W Ren , C Deng , H Lu . Choline chloride-based deep eutectic solvents for efficient cycloaddition of CO2 with propylene oxide. Chemical Communications, 2018, 54(69): 9579–9582
https://doi.org/10.1039/C8CC04412K
14 R Wang , G Liu , S K Kim , K H Bowen , X Zhang . Gas-phase CO2 activation with single electrons, metal atoms, clusters, and molecules. Journal of Energy Chemistry, 2021, 63: 130–137
https://doi.org/10.1016/j.jechem.2021.09.030
15 P Wang , Q Lv , Y Tao , L Cheng , R Li , Y Jiao , C Fang , H Li , C Geng , C Sun . et al.. One-pot efficient fixation of low-concentration CO2 into cyclic carbonate by mesoporous pyridine-functionalized binuclear poly(ionic liquid)s. Molecular Catalysis, 2023, 544: 113157
https://doi.org/10.1016/j.mcat.2023.113157
16 A Alhafez , E Aytar , A Kilic . Enhancing catalytic strategy for cyclic carbonates synthesized from CO2 and epoxides by using cobaloxime-based double complex salts as catalysts. Journal of CO2 Utilization, 2022, 63: 102129
17 A Kilic , A Alhafez , E Aytar , R Soylemez . The sustainable catalytic conversion of CO2 into value-added chemicals by using cobaloxime-based double complex salts as efficient and solvent-free catalysts. Inorganica Chimica Acta, 2023, 554: 121547
https://doi.org/10.1016/j.ica.2023.121547
18 Y Chen , J Yu , Y Yang , F Huo , C Li . A continuous process for cyclic carbonate synthesis from CO2 catalyzed by the ionic liquid in a microreactor system: reaction kinetics, mass transfer, and process optimization. Chemical Engineering Journal, 2023, 455: 140670
https://doi.org/10.1016/j.cej.2022.140670
19 S Aggrawal , R Sharma , P Mohanty . CuO immobilized paper matrices: a green catalyst for conversion of CO2 to cyclic carbonates. Journal of CO2 Utilization, 2021, 46: 101466
20 Q Shen , H Yan , X Yuan , R Li , D Kong , W Zhang , H Zhang , Y Liu , X Chen , X Feng . et al.. Tailoring morphology of MgO catalyst for the enhanced coupling reaction of CO2 and glycerol to glycerol carbonate. Fuel, 2023, 335: 126972
https://doi.org/10.1016/j.fuel.2022.126972
21 W Dai , S Luo , S Yin , C Au . A mini review on chemical fixation of CO2: absorption and catalytic conversion into cyclic carbonates. Frontiers of Chemical Engineering in China, 2010, 4(2): 163–171
https://doi.org/10.1007/s11705-009-0235-0
22 S Zhong , L Liang , M Liu , B Liu , J Sun . DMF and mesoporous Zn/SBA-15 as synergistic catalysts for the cycloaddition of CO2 to propylene oxide. Journal of CO2 Utilization, 2015, 9: 58–65
23 H Zhang , S Si , G Zhai , Y Li , Y Liu , H Cheng , Z Wang , P Wang , Z Zheng , Y Dai . et al.. The long-distance charge transfer process in ferrocene-based MOFs with FeO6 clusters boosts photocatalytic CO2 chemical fixation. Applied Catalysis B: Environmental, 2023, 337: 122909
https://doi.org/10.1016/j.apcatb.2023.122909
24 R Cheng , A Wang , S Sang , H Liang , S Liu , P Tsiakaras . Photocatalytic CO2 cycloaddition over highly efficient W18O49-based composites: an economic and ecofriendly choice. Chemical Engineering Journal, 2023, 466: 142982
https://doi.org/10.1016/j.cej.2023.142982
25 T Yano , H Matsui , T Koike , H Ishiguro , H Fujihara , M Yoshihara , T Maeshima . Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chemical Communications, 1997, 12(12): 1129–1130
https://doi.org/10.1039/a608102i
26 A Sahoo , A H Chowdhury , P Singha , A Banerjee , S M Islam , T Bala . Morphology of ZnO triggered versatile catalytic reactions towards CO2 fixation and acylation of amines at optimized reaction conditions. Molecular Catalysis, 2020, 493: 111070
https://doi.org/10.1016/j.mcat.2020.111070
27 W Dai , M Zou , J Long , B Li , S Zhang , L Yang , D Wang , P Mao , S Luo , X Luo . Nanoporous N-doped carbon/ZnO hybrid derived from zinc aspartate: an acid-base bifunctional catalyst for efficient fixation of carbon dioxide into cyclic carbonates. Applied Surface Science, 2021, 540: 148311
https://doi.org/10.1016/j.apsusc.2020.148311
28 T T Zhang , B S Zhang , L Li , N Zhao , F K Xiao . Zn–Mg mixed oxide as high-efficiency catalyst for the synthesis of propylene carbonate by urea alcoholysis. Catalysis Communications, 2015, 66: 38–41
https://doi.org/10.1016/j.catcom.2015.03.014
29 C Park , J E Park , H C Choi . Crystallization-induced properties from morphology-controlled organic crystals. Accounts of Chemical Research, 2014, 47(8): 2353–2364
https://doi.org/10.1021/ar5000874
30 L Martínez-Suárez , N Siemer , J Frenzel , D Marx . Reaction network of methanol synthesis over Cu/ZnO nanocatalysts. ACS Catalysis, 2015, 5(7): 4201–4218
https://doi.org/10.1021/acscatal.5b00442
31 Y Chen , Q Dai , Q Zhang , Y Huang . Precisely deposited Pd on ZnO (002) surfacets derived from complex reduction strategy for methanol steam reforming. International Journal of Hydrogen Energy, 2022, 47(33): 14869–14883
https://doi.org/10.1016/j.ijhydene.2022.03.003
32 A Goktas , S Modanlı , A Tumbul , A Kilic . Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: role of crystallite/grain size and microstrain in photocatalytic performance. Journal of Alloys and Compounds, 2022, 893: 162334
https://doi.org/10.1016/j.jallcom.2021.162334
33 A Tumbul , F Aslan , S Demirozu , A Goktas , A Kilic , M Durgun , M Z Zarbali . Solution processed boron doped ZnO thin films: influence of different boron complexes. Materials Research Express, 2018, 6(3): 035903
https://doi.org/10.1088/2053-1591/aaf4d8
34 A Mclaren , T Valdes-Solis , G Li , S C Tsang . Shape and size effects of ZnO nanocrystals on photocatalytic activity. Journal of the American Chemical Society, 2009, 131(35): 12540–12541
https://doi.org/10.1021/ja9052703
35 H Chen , H Cui , Y Lv , P Liu , F Hao , W Xiong , H Luo . CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts: effects of ZnO morphology and oxygen vacancy. Fuel, 2022, 314: 123035
https://doi.org/10.1016/j.fuel.2021.123035
36 M Q Chai , Y Tan , G X Pei , L Li , L Zhang , X Y Liu , A Wang , T Zhang . Crystal plane effect of ZnO on the catalytic activity of gold nanoparticles for the acetylene hydrogenation reaction. Journal of Physical Chemistry C, 2017, 121(36): 19727–19734
https://doi.org/10.1021/acs.jpcc.7b04022
37 W Liu , H Liu , Y Liu , Z Dong , L Luo . Surface plane effect of ZnO on the catalytic performance of Au/ZnO for the CO oxidation reaction. Journal of Physical Chemistry C, 2022, 126(33): 14155–14162
https://doi.org/10.1021/acs.jpcc.2c03523
38 A Iglesias-Juez , F Viñes , García O Lamiel , García M Fernández , F Illas . Morphology effects in photoactive ZnO nanostructures: photooxidative activity of polar surfaces. Journal of Materials Chemistry A, 2015, 3(16): 8782–8792
https://doi.org/10.1039/C5TA01111F
39 G Wu , G Zhao , J Sun , X Cao , Y He , J Feng , D Li . The effect of oxygen vacancies in ZnO at an Au/ZnO interface on its catalytic selective oxidation of glycerol. Journal of Catalysis, 2019, 377: 271–282
https://doi.org/10.1016/j.jcat.2019.06.030
40 M Ghosh , S Ghosh , M Seibt , K Y Rao , P Peretzki , G Mohan Rao . Ferroelectric origin in one-dimensional undoped ZnO towards high electromechanical response. CrystEngComm, 2016, 18(4): 622–630
https://doi.org/10.1039/C5CE02262B
41 L Niu , S Hong , M Wang . Properties of ZnO with oxygen vacancies and its application in humidity sensor. Journal of Electronic Materials, 2021, 50(8): 4480–4487
https://doi.org/10.1007/s11664-021-08966-w
42 M Zhu , Z Zhang , M Zhong , M Tariq , Y Li , W Li , H Jin , K Skotnicova , Y Li . Oxygen vacancy induced ferromagnetism in Cu-doped ZnO. Ceramics International, 2017, 43(3): 3166–3170
https://doi.org/10.1016/j.ceramint.2016.11.137
43 C Huang , J Wen , Y Sun , M Zhang , Y Bao , Y Zhang , L Liang , M Fu , J Wu , D Ye . et al.. CO2 hydrogenation to methanol over Cu/ZnO plate model catalyst: effects of reducing gas induced Cu nanoparticle morphology. Chemical Engineering Journal, 2019, 374: 221–230
https://doi.org/10.1016/j.cej.2019.05.123
44 J Wang , Y Xia , Y Dong , R Chen , L Xiang , S Komarneni . Defect-rich ZnO nanosheets of high surface area as an efficient visible-light photocatalyst. Applied Catalysis B: Environmental, 2016, 192: 8–16
https://doi.org/10.1016/j.apcatb.2016.03.040
45 Q Ren , K Yang , F Liu , M Yao , J Ma , S Geng , J Cao . Role of the structure and morphology of zirconia in ZnO/ZrO2 catalyst for CO2 hydrogenation to methanol. Molecular Catalysis, 2023, 547: 113280
https://doi.org/10.1016/j.mcat.2023.113280
46 M H Liu , Y W Chen , T S Lin , C Y Mou . Defective mesocrystal ZnO-supported gold catalysts: facilitating CO oxidation via vacancy defects in ZnO. ACS Catalysis, 2018, 8(8): 6862–6869
https://doi.org/10.1021/acscatal.8b01282
47 G R Li , T Hu , G L Pan , T Y Yan , X P Gao , H Y Zhu . Morphology-function relationship of ZnO: polar planes, oxygen vacancies, and activity. Journal of Physical Chemistry C, 2008, 112(31): 11859–11864
https://doi.org/10.1021/jp8038626
48 J Zhou , S Yang , W Wan , L Chen , J Chen . Synergistic catalysis of mesoporous Cu/Co3O4 and surface oxygen vacancy for CO2 fixation to carbamates. Journal of Catalysis, 2023, 418: 178–189
https://doi.org/10.1016/j.jcat.2023.01.017
49 S Lu , H Song , Y Xiao , K Qadir , Y Li , Y Li , G He . Promoted catalytic activity of CO oxidation at low temperatures by tuning ZnO morphology for optimized CuO/ZnO catalysts. Colloid and Interface Science Communications, 2023, 52: 100698
https://doi.org/10.1016/j.colcom.2023.100698
50 P T Hsieh , Y C Chen , K S Kao , C M Wang . Luminescence mechanism of ZnO thin film investigated by XPS measurement. Applied Physics A, 2007, 90(2): 317–321
https://doi.org/10.1007/s00339-007-4275-3
51 A Kilic , E Aytar , L Beyazsakal . A novel dopamine-based boronate esters with the organic base as highly efficient, stable, and green catalysts for the conversion of CO2 with epoxides to cyclic carbonates. Energy Technology, 2021, 9(9): 2100478
https://doi.org/10.1002/ente.202100478
[1] FCE-23091-OF-WY_suppl_1 Download
[1] Yuke Zhang, Hongxue Xu, Haonan Wu, Lijuan Shi, Jiancheng Wang, Qun Yi. Controllable construction of ionic frameworks for multi-site synergetic enhancement of CO2 capture[J]. Front. Chem. Sci. Eng., 2024, 18(1): 4-.
[2] Ting Li, Ji Xiong, Minghui Chen, Quan Shi, Xiangyu Li, Yu Jiang, Yaqing Feng, Bao Zhang. A tunable ionic covalent organic framework platform for efficient CO2 catalytic conversion[J]. Front. Chem. Sci. Eng., 2024, 18(1): 3-.
[3] Junjun Cheng, Yitao Zhao, Guohao Xu, Peng Zhang, Xuedong Zhu, Fan Yang. ZnxZr/HZSM-5 as efficient catalysts for alkylation of benzene with carbon dioxide[J]. Front. Chem. Sci. Eng., 2023, 17(4): 404-414.
[4] Fei Wang, Jian Mao. Role of oxygen vacancy inducer for graphene in graphene-containing anodes[J]. Front. Chem. Sci. Eng., 2023, 17(3): 326-333.
[5] Xicheng Gao, Jianqiang Bi, Linjie Meng, Lulin Xie, Chen Liu. Activated carbon induced oxygen vacancies-engineered nickel ferrite with enhanced conductivity for supercapacitor application[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2088-2100.
[6] Jiaxin Li, Chengguang Yue, Wenhao Ji, Bangman Feng, Mei-Yan Wang, Xinbin Ma. Recent advances in cycloaddition of CO2 with epoxides: halogen-free catalysis and mechanistic insights[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1879-1894.
[7] Xiangxiang Ren, Zhong-Pan Hu, Jingfeng Han, Yingxu Wei, Zhongmin Liu. Enhancing the aromatic selectivity of cyclohexane aromatization by CO2 coupling[J]. Front. Chem. Sci. Eng., 2023, 17(11): 1801-1808.
[8] Jianxin Chen, Yupeng Li, Jihui Li, Jian Han, Guijun Zhu, Liang Ren. Crystal design of bismuth oxyiodide with highly exposed (110) facets on curved carbon nitride for the photocatalytic degradation of pollutants in wastewater[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1125-1138.
[9] Xuesong Lu, Xiaojiao Luo, Warren A. Thompson, Jeannie Z.Y. Tan, M. Mercedes Maroto-Valer. Investigation of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational fluid dynamic and reaction kinetic modeling[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1149-1163.
[10] Pingle Liu, Yu Liu, Yang Lv, Wei Xiong, Fang Hao, Hean Luo. Zinc modification of Ni-Ti as efficient NixZnyTi1 catalysts with both geometric and electronic improvements for hydrogenation of nitroaromatics[J]. Front. Chem. Sci. Eng., 2022, 16(4): 461-474.
[11] Xiangyu Liu, Yanling Pan, Peng Zhang, Yilin Wang, Guohao Xu, Zhaojie Su, Xuedong Zhu, Fan Yang. Alkylation of benzene with carbon dioxide to low-carbon aromatic hydrocarbons over bifunctional Zn-Ti/HZSM-5 catalyst[J]. Front. Chem. Sci. Eng., 2022, 16(3): 384-396.
[12] Linlin You, Yandong Guo, Yanjing He, Feng Huo, Shaojuan Zeng, Chunshan Li, Xiangping Zhang, Xiaochun Zhang. Molecular level understanding of CO2 capture in ionic liquid/polyimide composite membrane[J]. Front. Chem. Sci. Eng., 2022, 16(2): 141-151.
[13] Yijian Li, Jianbo Hu, Jiyu Cui, Qingju Wang, Huabin Xing, Xili Cui. Efficient acetylene/carbon dioxide separation with excellent dynamic capacity and low regeneration energy by anion-pillared hybrid materials[J]. Front. Chem. Sci. Eng., 2022, 16(11): 1616-1622.
[14] Shan Wang, Xuelian Xu, Ping Xiao, Junjiang Zhu, Xinying Liu. Cooperative effect between copper species and oxygen vacancy in Ce0.7−xZrxCu0.3O2 catalysts for carbon monoxide oxidation[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1524-1536.
[15] Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(4): 534-545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed