|
|
Ultralong hydroxyapatite-based forward osmosis membrane for freshwater generation |
Mohamed Gamal Gomaa1,2, Hamdy Maamoun Abdel-Ghafar1( ), Francesco Galiano3, Francesca Russo3, Alberto Figoli3, El-Sayed Ali Abdel-Aal1, Abdel-Hakim Taha Kandil2, Bahaa Ahmed Salah2 |
1. Central Metallurgical Research and Development Institute (CMRDI), 11421 Cairo, Egypt 2. Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt 3. Institute on Membrane Technology (CNR-ITM), 87036 Rende, Italy |
|
|
Abstract Increasing global water shortages are accelerating the pace of membrane manufacturing, which generates many environmentally harmful solvents. Such challenges need a radical rethink of developing innovative membranes that can address freshwater production without generating environmentally harmful solvents. This work utilized the synthesized ultra-long hydroxyapatite (UHA) by the solvothermal method using the green solvent oleic acid in preparing UHA-based forward osmosis membranes. The membranes were developed using different loading ratios of graphene oxide (GO) by vacuum-assisted filtration technique. The prepared GO/UHA membranes were identified using X-ray diffraction, scanning electron microscope, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Water contact angle and pore size distribution were determined for the obtained GO/UHA membranes. The obtained hierarchical porous structure in the prepared membranes with interconnected channels results in a stable water flux with reverse salt flux. The best water flux rate of 42 ± 2 L·m–2·h–1 was achieved using the 50 mg GO/UHA membrane, which is 3.3 times higher than the pristine membrane, and a reverse salt flux of 67 g·m–2·h–1. The obtained results showed a promising capability of a new generation of sustainable inorganic-based membranes that can be utilized in freshwater generation by energy-efficient techniques such as forward osmosis.
|
Keywords
forward osmosis
ultra-long hydroxyapatite
graphene oxide
inorganic-based membrane
|
Corresponding Author(s):
Hamdy Maamoun Abdel-Ghafar
|
Just Accepted Date: 24 April 2024
Issue Date: 27 May 2024
|
|
1 |
S P Nunes , P Z Culfaz-Emecen , G Z Ramon , T Visser , G H Koops , W Jin , M Ulbricht . Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science, 2020, 598: 117761
https://doi.org/10.1016/j.memsci.2019.117761
|
2 |
R Keyikoglu , O Karatas , H Rezania , M Kobya , V Vatanpour , A Khataee . A review on treatment of membrane concentrates generated from landfill leachate treatment processes. Separation and Purification Technology, 2021, 259: 118182
https://doi.org/10.1016/j.seppur.2020.118182
|
3 |
P Yadav , N Ismail , M Essalhi , M Tysklind , D Athanassiadis , N Tavajohi . Assessment of the environmental impact of polymeric membrane production. Journal of Membrane Science, 2021, 622: 118987
https://doi.org/10.1016/j.memsci.2020.118987
|
4 |
N Ismail , J Pan , M Rahmati , Q Wang , D Bouyer , M Khayet , Z Cui , N Tavajohi . Non-ionic deep eutectic solvents for membrane formation. Journal of Membrane Science, 2022, 646: 120238
https://doi.org/10.1016/j.memsci.2021.120238
|
5 |
S BenferU PoppH RichterC SiewertG Tomandl. Development and characterization of ceramic nanofiltration membranes. Separation and Purification Technology, 2001, 22–23(1–2): 231–237
|
6 |
A Kayvani Fard , G McKay , A Buekenhoudt , H Al Sulaiti , F Motmans , M Khraisheh , M Atieh . Inorganic membranes: preparation and application for water treatment and desalination. Materials, 2018, 11(1): 74
https://doi.org/10.3390/ma11010074
|
7 |
H Verweij . Inorganic membranes. Current Opinion in Chemical Engineering, 2012, 1(2): 156–162
https://doi.org/10.1016/j.coche.2012.03.006
|
8 |
T S Chung , L Y Jiang , Y Li , S Kulprathipanja . Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 2007, 32(4): 483–507
https://doi.org/10.1016/j.progpolymsci.2007.01.008
|
9 |
C Sanchez , P Belleville , M Popall , L Nicole . Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chemical Society Reviews, 2011, 40(2): 696–753
https://doi.org/10.1039/c0cs00136h
|
10 |
B Q Lu , Y J Zhu , F Chen . Highly flexible and nonflammable inorganic hydroxyapatite paper. Chemistry, 2014, 20(5): 1242–1246
https://doi.org/10.1002/chem.201304439
|
11 |
Y T Shao , Y J Zhu , L Y Dong , Q Q Zhang . A new kind of nanocomposite Xuan paper comprising ultralong hydroxyapatite nanowires and cellulose fibers with a unique ink wetting performance. RSC Advances, 2019, 9(69): 40750–40757
https://doi.org/10.1039/C9RA08349A
|
12 |
Q Q Zhang , Y J Zhu , J Wu , Y T Shao , L Y Dong . A new kind of filter paper comprising ultralong hydroxyapatite nanowires and double metal oxide nanosheets for high-performance dye separation. Journal of Colloid and Interface Science, 2020, 575: 78–87
https://doi.org/10.1016/j.jcis.2020.04.079
|
13 |
D D Qin , Y J Zhu , F F Chen , R L Yang , Z C Xiong . Self-floating aerogel composed of carbon nanotubes and ultralong hydroxyapatite nanowires for highly efficient solar energy-assisted water purification. Carbon, 2019, 150: 233–243
https://doi.org/10.1016/j.carbon.2019.05.010
|
14 |
E B Eide. Global Risks 2015. 10th ed. World Economic Forum, 2015
|
15 |
M M Mekonnen , A Y Hoekstra . Four billion people facing severe water scarcity. Science Advances, 2016, 2(2): e1500323
https://doi.org/10.1126/sciadv.1500323
|
16 |
T Y Cath , A E Childress , M Elimelech . Forward osmosis: principles, applications, and recent developments. Journal of Membrane Science, 2006, 281(1-2): 70–87
https://doi.org/10.1016/j.memsci.2006.05.048
|
17 |
E Aliyev , V Filiz , M M Khan , Y J Lee , C Abetz , V Abetz . Structural characterization of graphene oxide: surface functional groups and fractionated oxidative debris. Nanomaterials, 2019, 9(8): 1180
https://doi.org/10.3390/nano9081180
|
18 |
L Zhang , Y Lu , Y L Liu , M Li , H Y Zhao , L A Hou . High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater. Journal of Hazardous Materials, 2016, 320: 187–193
https://doi.org/10.1016/j.jhazmat.2016.08.020
|
19 |
D Jiang , V R Cooper , S Dai . Porous graphene as the ultimate membrane for gas separation. Nano Letters, 2009, 9(12): 4019–4024
https://doi.org/10.1021/nl9021946
|
20 |
Z C Xiong , R L Yang , Y J Zhu , F F Chen , L Y Dong . Flexible hydroxyapatite ultralong nanowire-based paper for highly efficient and multifunctional air filtration. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(33): 17482–17491
https://doi.org/10.1039/C7TA03870D
|
21 |
H Li , Y Zhu , Y Jiang , Y Yu , F Chen , L Dong , J Wu . Hierarchical assembly of monodisperse hydroxyapatite nanowires and construction of high-strength fire-resistant inorganic paper with high-temperature flexibility. Chem Nano Mat: Chemistry of Nanomaterials for Energy, Biology and More, 2017, 3(4): 259–268
https://doi.org/10.1002/cnma.201700027
|
22 |
Y Wang , R Ou , H Wang , T Xu . Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane. Journal of Membrane Science, 2015, 475: 281–289
https://doi.org/10.1016/j.memsci.2014.10.028
|
23 |
W S Jr Hummers , R E Offeman . Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339
https://doi.org/10.1021/ja01539a017
|
24 |
X Song , Y Zhang , H M Abdel-Ghafar , E A Abdel-Aal , M Huang , S Gul , H Jiang . Polyamide membrane with an ultrathin GO interlayer on macroporous substrate for minimizing internal concentration polarization in forward osmosis. Chemical Engineering Journal, 2021, 412: 128607
https://doi.org/10.1016/j.cej.2021.128607
|
25 |
P H H Duong , J Zuo , T S Chung . Highly crosslinked layer-by-layer polyelectrolyte FO membranes: understanding effects of salt concentration and deposition time on FO performance. Journal of Membrane Science, 2013, 427: 411–421
https://doi.org/10.1016/j.memsci.2012.10.014
|
26 |
Q Q Zhang , Y J Zhu , J Wu , L Y Dong . Nanofiltration filter paper based on ultralong hydroxyapatite nanowires and cellulose fibers/nanofibers. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17198–17209
https://doi.org/10.1021/acssuschemeng.9b03793
|
27 |
X Qiao , S Liao , C You , R Chen . Phosphorus and nitrogen dual doped and simultaneously reduced graphene oxide with high surface area as efficient metal-free electrocatalyst for oxygen reduction. Catalysts, 2015, 5(2): 981–991
https://doi.org/10.3390/catal5020981
|
28 |
B Flora , R Kumar , P Tiwari , A Kumar , J Ruokolainen , A K Narasimhan , K K Kesari , P K Gupta , A Singh . Development of chemically synthesized hydroxyapatite composite with reduced graphene oxide for enhanced mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142: 105845
https://doi.org/10.1016/j.jmbbm.2023.105845
|
29 |
M A Ceniceros-Reyes , K S Marín-Hernández , U Sierra , E M Saucedo-Salazar , R Mendoza-Resendez , C Luna , P J Hernández-Belmares , O S Rodríguez-Fernández , S Fernández-Tavizón , E Hernández-Hernández . et al.. Reduction of graphene oxide by in-situ heating experiments in the transmission electron microscope. Surfaces and Interfaces, 2022, 35: 102448
https://doi.org/10.1016/j.surfin.2022.102448
|
30 |
J Wang , Z Yu , X Xiao , Z Chen , J Huang , Y Liu . Xiao X, Chen Z, Huang J, Liu Y. A novel hydroxyapatite super-hydrophilic membrane for efficient separation of oil-water emulsions, desalting and removal of metal ions. Desalination, 2023, 565: 116864
https://doi.org/10.1016/j.desal.2023.116864
|
31 |
Z C Xiong , Y J Zhu , F F Chen , T W Sun , Y Q Shen . One-step synthesis of silver nanoparticle-decorated hydroxyapatite nanowires for the construction of highly flexible free-standing paper with high antibacterial activity. Chemistry, 2016, 22(32): 11224–11231
https://doi.org/10.1002/chem.201601438
|
32 |
Z C Xiong , Y J Zhu , D D Qin , R L Yang . Flexible salt-rejecting photothermal paper based on reduced graphene oxide and hydroxyapatite nanowires for high-efficiency solar energy-driven vapor generation and stable desalination. ACS Applied Materials & Interfaces, 2020, 12(29): 32556–32565
https://doi.org/10.1021/acsami.0c05986
|
33 |
B Q Lu , Y J Zhu , F Chen . Highly flexible and nonflammable inorganic hydroxyapatite paper. Chemistry, 2014, 20(5): 1242–1246
https://doi.org/10.1002/chem.201304439
|
34 |
R Atchudan , S Perumal , J Joo , Y R Lee . Synthesis and characterization of monodispersed spherical calcium oxide and calcium carbonate nanoparticles via simple pyrolysis. Nanomaterials, 2022, 12(14): 2424
https://doi.org/10.3390/nano12142424
|
35 |
G Bharath , B S Latha , E H Alsharaeh , P Prakash , N Ponpandian . Enhanced hydroxyapatite nanorods formation on graphene oxide nanocomposite as a potential candidate for protein adsorption, pH controlled release and an effective drug delivery platform for cancer therapy. Analytical Methods, 2017, 9(2): 240–252
https://doi.org/10.1039/C6AY02348G
|
36 |
F F Chen , Y J Zhu , Y G Zhang , R L Yang , H P Yu , D D Qin , Z C Xiong . Portable and writable photoluminescent chalk for on-site information protection on arbitrary substrates. Chemical Engineering Journal, 2019, 369: 766–774
https://doi.org/10.1016/j.cej.2019.03.153
|
37 |
Z Huang , T Gengenbach , J Tian , W Shen , G Garnier . The role of polyaminoamide-epichlorohydrin (PAE) on antibody longevity in bioactive paper. Colloids and Surfaces. B, Biointerfaces, 2017, 158: 197–202
https://doi.org/10.1016/j.colsurfb.2017.07.005
|
38 |
F Niu , M Huang , T Cai , L Meng . Effect of membrane thickness on properties of FO membranes with nanofibrous substrate. IOP Conference Series. Earth and Environmental Science, 2018, 170(5): 052005
https://doi.org/10.1088/1755-1315/170/5/052005
|
39 |
X Song , W Dong , Y Zhang , H M Abdel-Ghafar , A Toghan , H Jiang . Coupling solar-driven interfacial evaporation with forward osmosis for continuous water treatment. Exploration, 2022, 2(4): 20220054
https://doi.org/10.1002/EXP.20220054
|
40 |
Z Zhou , Y Hu , C Boo , Z Liu , J Li , L Deng , X An . High-performance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer. Environmental Science & Technology Letters, 2018, 5(5): 243–248
https://doi.org/10.1021/acs.estlett.8b00169
|
41 |
X Song , Q Zhou , T Zhang , H Xu , Z Wang . Pressure-assisted preparation of graphene oxide quantum dot-incorporated reverse osmosis membranes: antifouling and chlorine resistance potentials. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(43): 16896–16905
https://doi.org/10.1039/C6TA06636D
|
42 |
Q Wang , Z Zhou , J Li , Q Tang , Y Hu . Modeling and measurement of temperature and draw solution concentration induced water flux increment efficiencies in the forward osmosis membrane process. Desalination, 2019, 452: 75–86
https://doi.org/10.1016/j.desal.2018.11.001
|
43 |
J Huang , S Xiong , Q Long , L Shen , Y Wang . Evaluation of food additive sodium phytate as a novel draw solute for forward osmosis. Desalination, 2018, 448: 87–92
https://doi.org/10.1016/j.desal.2018.10.004
|
44 |
W Zhao , H Liu , Y Liu , M Jian , L Gao , H Wang , X Zhang . Thin-film nanocomposite forward-osmosis membranes on hydrophilic microfiltration support with an intermediate layer of graphene oxide and multiwall carbon nanotube. ACS Applied Materials & Interfaces, 2018, 10(40): 34464–34474
https://doi.org/10.1021/acsami.8b10550
|
45 |
J C Han , S F Wang , R Deng , Q Y Wu . Polydopamine/imogolite nanotubes (PDA/INTs) interlayer modulated thin film composite forward osmosis membrane for minimizing internal concentration polarization. Chinese Journal of Polymer Science, 2022, 40(10): 1233–1241
https://doi.org/10.1007/s10118-022-2776-3
|
46 |
R Alfahel , R S Azzam , M Hafiz , A H Hawari , R P Pandey , K A Mahmoud , M K Hassan , A A Elzatahry . Fabrication of fouling-resistant Ti3C2Tx (MXene)/cellulose acetate nanocomposite membrane for forward osmosis application. Journal of Water Process Engineering, 2020, 38: 101551
https://doi.org/10.1016/j.jwpe.2020.101551
|
47 |
G Liu , K Han , H Ye , C Zhu , Y Gao , Y Liu , Y Zhou . Graphene oxide/triethanolamine modified titanate nanowires as photocatalytic membrane for water treatment. Chemical Engineering Journal, 2017, 320: 74–80
https://doi.org/10.1016/j.cej.2017.03.024
|
48 |
Y Huang , H Jin , P Yu , Y Luo . Polyamide thin-film composite membrane based on nano-silica modified polysulfone microporous support layer for forward osmosis. Desalination and Water Treatment, 2016, 57(43): 20177–20187
https://doi.org/10.1080/19443994.2015.1108874
|
49 |
A L Ohland , V M M Salim , C P Borges . Plasma functionalized hydroxyapatite incorporated in membranes for improved performance of osmotic processes. Desalination, 2019, 452: 87–93
https://doi.org/10.1016/j.desal.2018.11.008
|
50 |
N Niksefat , M Jahanshahi , A Rahimpour . The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination, 2014, 343: 140–146
https://doi.org/10.1016/j.desal.2014.03.031
|
51 |
D Emadzadeh , W J Lau , T Matsuura , A F Ismail , M Rahbari-Sisakht . Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization. Journal of Membrane Science, 2014, 449: 74–85
https://doi.org/10.1016/j.memsci.2013.08.014
|
52 |
M Ghanbari , D Emadzadeh , W J Lau , S O Lai , T Matsuura , A F Ismail . Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination. Desalination, 2015, 358: 33–41
https://doi.org/10.1016/j.desal.2014.11.035
|
53 |
A Zirehpour , A Rahimpour , F Seyedpour , M Jahanshahi . Developing new CTA/CA-based membrane containing hydrophilic nanoparticles to enhance the forward osmosis desalination. Desalination, 2015, 371: 46–57
https://doi.org/10.1016/j.desal.2015.05.026
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|