Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (9) : 100    https://doi.org/10.1007/s11705-024-2450-0
Ultralong hydroxyapatite-based forward osmosis membrane for freshwater generation
Mohamed Gamal Gomaa1,2, Hamdy Maamoun Abdel-Ghafar1(), Francesco Galiano3, Francesca Russo3, Alberto Figoli3, El-Sayed Ali Abdel-Aal1, Abdel-Hakim Taha Kandil2, Bahaa Ahmed Salah2
1. Central Metallurgical Research and Development Institute (CMRDI), 11421 Cairo, Egypt
2. Chemistry Department, Faculty of Science, Helwan University, 11795 Cairo, Egypt
3. Institute on Membrane Technology (CNR-ITM), 87036 Rende, Italy
 Download: PDF(1583 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Increasing global water shortages are accelerating the pace of membrane manufacturing, which generates many environmentally harmful solvents. Such challenges need a radical rethink of developing innovative membranes that can address freshwater production without generating environmentally harmful solvents. This work utilized the synthesized ultra-long hydroxyapatite (UHA) by the solvothermal method using the green solvent oleic acid in preparing UHA-based forward osmosis membranes. The membranes were developed using different loading ratios of graphene oxide (GO) by vacuum-assisted filtration technique. The prepared GO/UHA membranes were identified using X-ray diffraction, scanning electron microscope, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Water contact angle and pore size distribution were determined for the obtained GO/UHA membranes. The obtained hierarchical porous structure in the prepared membranes with interconnected channels results in a stable water flux with reverse salt flux. The best water flux rate of 42 ± 2 L·m–2·h–1 was achieved using the 50 mg GO/UHA membrane, which is 3.3 times higher than the pristine membrane, and a reverse salt flux of 67 g·m–2·h–1. The obtained results showed a promising capability of a new generation of sustainable inorganic-based membranes that can be utilized in freshwater generation by energy-efficient techniques such as forward osmosis.

Keywords forward osmosis      ultra-long hydroxyapatite      graphene oxide      inorganic-based membrane     
Corresponding Author(s): Hamdy Maamoun Abdel-Ghafar   
Just Accepted Date: 24 April 2024   Issue Date: 27 May 2024
 Cite this article:   
Mohamed Gamal Gomaa,Hamdy Maamoun Abdel-Ghafar,Francesco Galiano, et al. Ultralong hydroxyapatite-based forward osmosis membrane for freshwater generation[J]. Front. Chem. Sci. Eng., 2024, 18(9): 100.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2450-0
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I9/100
Fig.1  Preparation of the UHA membrane.
Fig.2  Schematic illustration of the FO system used to determine the UHA membranes performance evaluation.
Fig.3  TEM images of the synthesized UHA nanowires at different magnifications: (a) at 600 nm, and (b, c) at 1.0 μm.
Fig.4  The prepared UHA-based membranes with different loads of GO: (a) 0 mg, (b) 10 mg, (c) 30 mg, (d) 60 mg, and (e) a schematic illustration of UHA and GO interactions.
Fig.5  The SEM morphology analysis for the top layer of the prepared membranes 0, 10, 20, and 30 mg GO/UHA of (a), (b), (c), and (d), respectively. The SEM cross-sectional analysis for the prepared membranes 0, 10, 20, and 30 mg GO/UHA of (e), (f), (g), and (h), respectively.
MembraneThickness/μm
0 mg GO/UHA membrane690 ± 56
10 mg GO/UHA membrane557 ± 1.0
20 mg GO/UHA membrane466 ± 10
30 mg GO/UHA membrane430 ± 29
40 mg GO/UHA membrane439 ± 5
50 mg GO/UHA membrane319 ± 10
60 mg GO/UHA membrane341 ± 5
Tab.1  The thickness of the prepared GO/UHA membranes
Fig.6  XRD of the UHA-based membranes.
Fig.7  (a) The AFM images “derived data” of the top surface of GO/UHA membranes, (b) an image of stable water drops on the top surface of 60 mg GO/UHA membranes, (c) water contact angle of the GO/UHA membranes, and (d) a schematic illustration of Wenzel and Cassie-Baxter models.
Fig.8  FTIR analysis of the GO/UHA membranes.
Fig.9  XPS analysis of the GO/UHA membranes.
Fig.10  The pore size flow distribution analysis of the GO/UHA membranes. (a) The MFP, and (b) the pore size flow distribution.
Fig.11  Performance evaluation of the GO/UHA membranes. (a) Water flux, and (b) comparison of water flux of 0 mg GO/UHA membrane and 50 mg GO/UHA membrane.
Fig.12  Reverse salt flux of the GO/UHA membranes.
No.Materialsa)MembraneDraw solutionFeed solutionWater flux/LMHReverse salt flux/gMHRef.
1SiO2/PSFODeionized water2 mol·L–1 NaCl22.321[48]
2HAP/CAFODeionized water2 mol·L–1 NaCl4.5 to 7.515–120[49]
3SiO2/TFNFODeionized water2 mol·L–1 NaCl366.0[50]
4GO/PESFODeionized water2 mol·L–1 NaCl41.4120[23]
5TiO2/PSFODeionized water2 mol·L–1 NaCl3320[51]
6HNTs/PSFO10 Mm NaCl2 mol·L–1 NaCl4117[52]
7Boehmite/CA/CTAFO10 Mm NaCl2 mol·L–1 NaCl237.0[53]
8GO/UHAFODeionized water2 mol·L–1 NaCl42.2865This work
Tab.2  Comparison of nanomaterials composed membranes applied in FO
1 S P Nunes , P Z Culfaz-Emecen , G Z Ramon , T Visser , G H Koops , W Jin , M Ulbricht . Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science, 2020, 598: 117761
https://doi.org/10.1016/j.memsci.2019.117761
2 R Keyikoglu , O Karatas , H Rezania , M Kobya , V Vatanpour , A Khataee . A review on treatment of membrane concentrates generated from landfill leachate treatment processes. Separation and Purification Technology, 2021, 259: 118182
https://doi.org/10.1016/j.seppur.2020.118182
3 P Yadav , N Ismail , M Essalhi , M Tysklind , D Athanassiadis , N Tavajohi . Assessment of the environmental impact of polymeric membrane production. Journal of Membrane Science, 2021, 622: 118987
https://doi.org/10.1016/j.memsci.2020.118987
4 N Ismail , J Pan , M Rahmati , Q Wang , D Bouyer , M Khayet , Z Cui , N Tavajohi . Non-ionic deep eutectic solvents for membrane formation. Journal of Membrane Science, 2022, 646: 120238
https://doi.org/10.1016/j.memsci.2021.120238
5 S BenferU PoppH RichterC SiewertG Tomandl. Development and characterization of ceramic nanofiltration membranes. Separation and Purification Technology, 2001, 22–23(1–2): 231–237
6 A Kayvani Fard , G McKay , A Buekenhoudt , H Al Sulaiti , F Motmans , M Khraisheh , M Atieh . Inorganic membranes: preparation and application for water treatment and desalination. Materials, 2018, 11(1): 74
https://doi.org/10.3390/ma11010074
7 H Verweij . Inorganic membranes. Current Opinion in Chemical Engineering, 2012, 1(2): 156–162
https://doi.org/10.1016/j.coche.2012.03.006
8 T S Chung , L Y Jiang , Y Li , S Kulprathipanja . Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 2007, 32(4): 483–507
https://doi.org/10.1016/j.progpolymsci.2007.01.008
9 C Sanchez , P Belleville , M Popall , L Nicole . Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chemical Society Reviews, 2011, 40(2): 696–753
https://doi.org/10.1039/c0cs00136h
10 B Q Lu , Y J Zhu , F Chen . Highly flexible and nonflammable inorganic hydroxyapatite paper. Chemistry, 2014, 20(5): 1242–1246
https://doi.org/10.1002/chem.201304439
11 Y T Shao , Y J Zhu , L Y Dong , Q Q Zhang . A new kind of nanocomposite Xuan paper comprising ultralong hydroxyapatite nanowires and cellulose fibers with a unique ink wetting performance. RSC Advances, 2019, 9(69): 40750–40757
https://doi.org/10.1039/C9RA08349A
12 Q Q Zhang , Y J Zhu , J Wu , Y T Shao , L Y Dong . A new kind of filter paper comprising ultralong hydroxyapatite nanowires and double metal oxide nanosheets for high-performance dye separation. Journal of Colloid and Interface Science, 2020, 575: 78–87
https://doi.org/10.1016/j.jcis.2020.04.079
13 D D Qin , Y J Zhu , F F Chen , R L Yang , Z C Xiong . Self-floating aerogel composed of carbon nanotubes and ultralong hydroxyapatite nanowires for highly efficient solar energy-assisted water purification. Carbon, 2019, 150: 233–243
https://doi.org/10.1016/j.carbon.2019.05.010
14 E B Eide. Global Risks 2015. 10th ed. World Economic Forum, 2015
15 M M Mekonnen , A Y Hoekstra . Four billion people facing severe water scarcity. Science Advances, 2016, 2(2): e1500323
https://doi.org/10.1126/sciadv.1500323
16 T Y Cath , A E Childress , M Elimelech . Forward osmosis: principles, applications, and recent developments. Journal of Membrane Science, 2006, 281(1-2): 70–87
https://doi.org/10.1016/j.memsci.2006.05.048
17 E Aliyev , V Filiz , M M Khan , Y J Lee , C Abetz , V Abetz . Structural characterization of graphene oxide: surface functional groups and fractionated oxidative debris. Nanomaterials, 2019, 9(8): 1180
https://doi.org/10.3390/nano9081180
18 L Zhang , Y Lu , Y L Liu , M Li , H Y Zhao , L A Hou . High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater. Journal of Hazardous Materials, 2016, 320: 187–193
https://doi.org/10.1016/j.jhazmat.2016.08.020
19 D Jiang , V R Cooper , S Dai . Porous graphene as the ultimate membrane for gas separation. Nano Letters, 2009, 9(12): 4019–4024
https://doi.org/10.1021/nl9021946
20 Z C Xiong , R L Yang , Y J Zhu , F F Chen , L Y Dong . Flexible hydroxyapatite ultralong nanowire-based paper for highly efficient and multifunctional air filtration. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(33): 17482–17491
https://doi.org/10.1039/C7TA03870D
21 H Li , Y Zhu , Y Jiang , Y Yu , F Chen , L Dong , J Wu . Hierarchical assembly of monodisperse hydroxyapatite nanowires and construction of high-strength fire-resistant inorganic paper with high-temperature flexibility. Chem Nano Mat: Chemistry of Nanomaterials for Energy, Biology and More, 2017, 3(4): 259–268
https://doi.org/10.1002/cnma.201700027
22 Y Wang , R Ou , H Wang , T Xu . Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane. Journal of Membrane Science, 2015, 475: 281–289
https://doi.org/10.1016/j.memsci.2014.10.028
23 W S Jr Hummers , R E Offeman . Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339
https://doi.org/10.1021/ja01539a017
24 X Song , Y Zhang , H M Abdel-Ghafar , E A Abdel-Aal , M Huang , S Gul , H Jiang . Polyamide membrane with an ultrathin GO interlayer on macroporous substrate for minimizing internal concentration polarization in forward osmosis. Chemical Engineering Journal, 2021, 412: 128607
https://doi.org/10.1016/j.cej.2021.128607
25 P H H Duong , J Zuo , T S Chung . Highly crosslinked layer-by-layer polyelectrolyte FO membranes: understanding effects of salt concentration and deposition time on FO performance. Journal of Membrane Science, 2013, 427: 411–421
https://doi.org/10.1016/j.memsci.2012.10.014
26 Q Q Zhang , Y J Zhu , J Wu , L Y Dong . Nanofiltration filter paper based on ultralong hydroxyapatite nanowires and cellulose fibers/nanofibers. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17198–17209
https://doi.org/10.1021/acssuschemeng.9b03793
27 X Qiao , S Liao , C You , R Chen . Phosphorus and nitrogen dual doped and simultaneously reduced graphene oxide with high surface area as efficient metal-free electrocatalyst for oxygen reduction. Catalysts, 2015, 5(2): 981–991
https://doi.org/10.3390/catal5020981
28 B Flora , R Kumar , P Tiwari , A Kumar , J Ruokolainen , A K Narasimhan , K K Kesari , P K Gupta , A Singh . Development of chemically synthesized hydroxyapatite composite with reduced graphene oxide for enhanced mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142: 105845
https://doi.org/10.1016/j.jmbbm.2023.105845
29 M A Ceniceros-Reyes , K S Marín-Hernández , U Sierra , E M Saucedo-Salazar , R Mendoza-Resendez , C Luna , P J Hernández-Belmares , O S Rodríguez-Fernández , S Fernández-Tavizón , E Hernández-Hernández . et al.. Reduction of graphene oxide by in-situ heating experiments in the transmission electron microscope. Surfaces and Interfaces, 2022, 35: 102448
https://doi.org/10.1016/j.surfin.2022.102448
30 J Wang , Z Yu , X Xiao , Z Chen , J Huang , Y Liu . Xiao X, Chen Z, Huang J, Liu Y. A novel hydroxyapatite super-hydrophilic membrane for efficient separation of oil-water emulsions, desalting and removal of metal ions. Desalination, 2023, 565: 116864
https://doi.org/10.1016/j.desal.2023.116864
31 Z C Xiong , Y J Zhu , F F Chen , T W Sun , Y Q Shen . One-step synthesis of silver nanoparticle-decorated hydroxyapatite nanowires for the construction of highly flexible free-standing paper with high antibacterial activity. Chemistry, 2016, 22(32): 11224–11231
https://doi.org/10.1002/chem.201601438
32 Z C Xiong , Y J Zhu , D D Qin , R L Yang . Flexible salt-rejecting photothermal paper based on reduced graphene oxide and hydroxyapatite nanowires for high-efficiency solar energy-driven vapor generation and stable desalination. ACS Applied Materials & Interfaces, 2020, 12(29): 32556–32565
https://doi.org/10.1021/acsami.0c05986
33 B Q Lu , Y J Zhu , F Chen . Highly flexible and nonflammable inorganic hydroxyapatite paper. Chemistry, 2014, 20(5): 1242–1246
https://doi.org/10.1002/chem.201304439
34 R Atchudan , S Perumal , J Joo , Y R Lee . Synthesis and characterization of monodispersed spherical calcium oxide and calcium carbonate nanoparticles via simple pyrolysis. Nanomaterials, 2022, 12(14): 2424
https://doi.org/10.3390/nano12142424
35 G Bharath , B S Latha , E H Alsharaeh , P Prakash , N Ponpandian . Enhanced hydroxyapatite nanorods formation on graphene oxide nanocomposite as a potential candidate for protein adsorption, pH controlled release and an effective drug delivery platform for cancer therapy. Analytical Methods, 2017, 9(2): 240–252
https://doi.org/10.1039/C6AY02348G
36 F F Chen , Y J Zhu , Y G Zhang , R L Yang , H P Yu , D D Qin , Z C Xiong . Portable and writable photoluminescent chalk for on-site information protection on arbitrary substrates. Chemical Engineering Journal, 2019, 369: 766–774
https://doi.org/10.1016/j.cej.2019.03.153
37 Z Huang , T Gengenbach , J Tian , W Shen , G Garnier . The role of polyaminoamide-epichlorohydrin (PAE) on antibody longevity in bioactive paper. Colloids and Surfaces. B, Biointerfaces, 2017, 158: 197–202
https://doi.org/10.1016/j.colsurfb.2017.07.005
38 F Niu , M Huang , T Cai , L Meng . Effect of membrane thickness on properties of FO membranes with nanofibrous substrate. IOP Conference Series. Earth and Environmental Science, 2018, 170(5): 052005
https://doi.org/10.1088/1755-1315/170/5/052005
39 X Song , W Dong , Y Zhang , H M Abdel-Ghafar , A Toghan , H Jiang . Coupling solar-driven interfacial evaporation with forward osmosis for continuous water treatment. Exploration, 2022, 2(4): 20220054
https://doi.org/10.1002/EXP.20220054
40 Z Zhou , Y Hu , C Boo , Z Liu , J Li , L Deng , X An . High-performance thin-film composite membrane with an ultrathin spray-coated carbon nanotube interlayer. Environmental Science & Technology Letters, 2018, 5(5): 243–248
https://doi.org/10.1021/acs.estlett.8b00169
41 X Song , Q Zhou , T Zhang , H Xu , Z Wang . Pressure-assisted preparation of graphene oxide quantum dot-incorporated reverse osmosis membranes: antifouling and chlorine resistance potentials. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(43): 16896–16905
https://doi.org/10.1039/C6TA06636D
42 Q Wang , Z Zhou , J Li , Q Tang , Y Hu . Modeling and measurement of temperature and draw solution concentration induced water flux increment efficiencies in the forward osmosis membrane process. Desalination, 2019, 452: 75–86
https://doi.org/10.1016/j.desal.2018.11.001
43 J Huang , S Xiong , Q Long , L Shen , Y Wang . Evaluation of food additive sodium phytate as a novel draw solute for forward osmosis. Desalination, 2018, 448: 87–92
https://doi.org/10.1016/j.desal.2018.10.004
44 W Zhao , H Liu , Y Liu , M Jian , L Gao , H Wang , X Zhang . Thin-film nanocomposite forward-osmosis membranes on hydrophilic microfiltration support with an intermediate layer of graphene oxide and multiwall carbon nanotube. ACS Applied Materials & Interfaces, 2018, 10(40): 34464–34474
https://doi.org/10.1021/acsami.8b10550
45 J C Han , S F Wang , R Deng , Q Y Wu . Polydopamine/imogolite nanotubes (PDA/INTs) interlayer modulated thin film composite forward osmosis membrane for minimizing internal concentration polarization. Chinese Journal of Polymer Science, 2022, 40(10): 1233–1241
https://doi.org/10.1007/s10118-022-2776-3
46 R Alfahel , R S Azzam , M Hafiz , A H Hawari , R P Pandey , K A Mahmoud , M K Hassan , A A Elzatahry . Fabrication of fouling-resistant Ti3C2Tx (MXene)/cellulose acetate nanocomposite membrane for forward osmosis application. Journal of Water Process Engineering, 2020, 38: 101551
https://doi.org/10.1016/j.jwpe.2020.101551
47 G Liu , K Han , H Ye , C Zhu , Y Gao , Y Liu , Y Zhou . Graphene oxide/triethanolamine modified titanate nanowires as photocatalytic membrane for water treatment. Chemical Engineering Journal, 2017, 320: 74–80
https://doi.org/10.1016/j.cej.2017.03.024
48 Y Huang , H Jin , P Yu , Y Luo . Polyamide thin-film composite membrane based on nano-silica modified polysulfone microporous support layer for forward osmosis. Desalination and Water Treatment, 2016, 57(43): 20177–20187
https://doi.org/10.1080/19443994.2015.1108874
49 A L Ohland , V M M Salim , C P Borges . Plasma functionalized hydroxyapatite incorporated in membranes for improved performance of osmotic processes. Desalination, 2019, 452: 87–93
https://doi.org/10.1016/j.desal.2018.11.008
50 N Niksefat , M Jahanshahi , A Rahimpour . The effect of SiO2 nanoparticles on morphology and performance of thin film composite membranes for forward osmosis application. Desalination, 2014, 343: 140–146
https://doi.org/10.1016/j.desal.2014.03.031
51 D Emadzadeh , W J Lau , T Matsuura , A F Ismail , M Rahbari-Sisakht . Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization. Journal of Membrane Science, 2014, 449: 74–85
https://doi.org/10.1016/j.memsci.2013.08.014
52 M Ghanbari , D Emadzadeh , W J Lau , S O Lai , T Matsuura , A F Ismail . Synthesis and characterization of novel thin film nanocomposite (TFN) membranes embedded with halloysite nanotubes (HNTs) for water desalination. Desalination, 2015, 358: 33–41
https://doi.org/10.1016/j.desal.2014.11.035
53 A Zirehpour , A Rahimpour , F Seyedpour , M Jahanshahi . Developing new CTA/CA-based membrane containing hydrophilic nanoparticles to enhance the forward osmosis desalination. Desalination, 2015, 371: 46–57
https://doi.org/10.1016/j.desal.2015.05.026
[1] FCE-24006-OF-GGM_suppl_1 Download
[1] Lin Wang, Yinjie Kuang, Qian Cui, Junyu Shi, Liubin Song, Qionghua Li, Tianjian Peng. Multi-effect anthraquinone-based polyimide enclosed SnO2/reduced graphene oxide composite as high-performance anode for lithium-ion battery[J]. Front. Chem. Sci. Eng., 2023, 17(9): 1231-1243.
[2] Yili Liu, Guoliang Che, Weizhong Cui, Beili Pang, Qiong Sun, Liyan Yu, Lifeng Dong. Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified TiO2 layer[J]. Front. Chem. Sci. Eng., 2023, 17(5): 516-524.
[3] Nan Li, Yumeng Zhang, Peng Li, Bo Zhu, Wei Wang, Zhiwei Xu. Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantum dots[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1470-1483.
[4] Rongzhen Chen, Xinfei Dong, Qingchun Ge. Lithium-based draw solute for forward osmosis to treat wastewater discharged from lithium-ion battery manufacturing[J]. Front. Chem. Sci. Eng., 2022, 16(5): 755-763.
[5] Linwei Zhu, Chun Ding, Tengyang Zhu, Yan Wang. A review on the forward osmosis applications and fouling control strategies for wastewater treatment[J]. Front. Chem. Sci. Eng., 2022, 16(5): 661-680.
[6] Shuyao Wu, Chengquan Sui, Chong Wang, Yulu Wang, Dongqing He, Ying Sun, Yu Zhang, Qingbo Meng, Tianyi Ma, Xi-Ming Song. Gold nanoparticles/single-stranded DNA-reduced graphene oxide nanocomposites based electrochemical biosensor for highly sensitive detection of cholesterol[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1572-1582.
[7] Quan Liu, Mingqiang Chen, Yangyang Mao, Gongping Liu. Theoretical study on Janus graphene oxide membrane for water transport[J]. Front. Chem. Sci. Eng., 2021, 15(4): 913-921.
[8] Qian Wu, Jincheng Zhang, Shengpeng Wang, Bajin Chen, Yijun Feng, Yongbing Pei, Yue Yan, Longcheng Tang, Huayu Qiu, Lianbin Wu. Exceptionally flame-retardant flexible polyurethane foam composites: synergistic effect of the silicone resin/graphene oxide coating[J]. Front. Chem. Sci. Eng., 2021, 15(4): 969-983.
[9] Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri. Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: role of support and metal nanoparticle size on catalyst activity and products selectivity[J]. Front. Chem. Sci. Eng., 2021, 15(2): 299-309.
[10] Krishnaveni Kalaiappan, Subadevi Rengapillai, Sivakumar Marimuthu, Raja Murugan, Premkumar Thiru. Kombucha SCOBY-based carbon and graphene oxide wrapped sulfur/polyacrylonitrile as a high-capacity cathode in lithium-sulfur batteries[J]. Front. Chem. Sci. Eng., 2020, 14(6): 976-987.
[11] Chi Him Alpha Tsang, Adilet Zhakeyev, Dennis Y.C. Leung, Jin Xuan. GO-modified flexible polymer nanocomposites fabricated via 3D stereolithography[J]. Front. Chem. Sci. Eng., 2019, 13(4): 736-743.
[12] Abdolhamid Hatefi-Mehrjardi, Amirkhosro Beheshti-Marnani, Zarrin Es'haghi. Signal promoting role of a p-type transition metal dichalcogenide used for the detection of ultra-trace amounts of diclofenac via a labeled aptasensor[J]. Front. Chem. Sci. Eng., 2019, 13(4): 823-831.
[13] Peizhen Duan, Juan Shen, Guohong Zou, Xu Xia, Bo Jin. Biomimetic mineralization and cytocompatibility of nanorod hydroxyapatite/graphene oxide composites[J]. Front. Chem. Sci. Eng., 2018, 12(4): 798-805.
[14] Lijuan Qiu, Ruiyang Zhang, Ying Zhang, Chengjin Li, Qian Zhang, Ying Zhou. Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly efficient oil/water separation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 390-399.
[15] Kai Wang, Jinbo Pang, Liwei Li, Shengzhe Zhou, Yuhao Li, Tiezhu Zhang. Synthesis of hydrophobic carbon nanotubes/reduced graphene oxide composite films by flash light irradiation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 376-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed