Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (11) : 128    https://doi.org/10.1007/s11705-024-2479-0
Advanced membrane separation based on two-dimensional porous nanosheets
Yanli Zhang, Shurui Han, Fengkai Wang, Hui Ye(), Qingping Xin(), Xiaoli Ding, Lizhi Zhao, Ligang Lin, Hong Li, Yuzhong Zhang()
State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
 Download: PDF(28291 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-dimensional porous nanosheets such as metal-organic frameworks, covalent organic frameworks, fluorides of light lanthanide, and perforated graphene oxide are a class of nanomaterials with sheet-like morphologies and defined pore structures. Due to their porous structure and large lateral sizes, these materials exhibit excellent molecular transport properties in separation processes. This review focuses on the pore formation strategies for two-dimensional porous nanosheets and applications of these nanosheets and their constructed membranes in gas separation processes and separation processes applicable to water treatment and the humidity control of gas permeation. A brief discussion of challenges and future developments of separation applications with two-dimensional porous nanosheets and their constructed membranes is included in this review.

Keywords two-dimensional porous nanosheets      membranes      gas separation      water treatment      humidity control     
Corresponding Author(s): Hui Ye,Qingping Xin,Yuzhong Zhang   
About author:

#These authors contributed equally to this work.

Just Accepted Date: 24 May 2024   Issue Date: 13 August 2024
 Cite this article:   
Yuzhong Zhang,Hong Li,Ligang Lin, et al. Advanced membrane separation based on two-dimensional porous nanosheets[J]. Front. Chem. Sci. Eng., 2024, 18(11): 128.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2479-0
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I11/128
  Scheme1 The method to synthesize the 2D porous MOF.
Fig.1  (a) Schematic of the fabrication process of IPM-1 nanosheet, atomic force microscope (AFM) and pore-size distribution of IPM-1. Reprinted with permission from Ref. [29], copyright 2022, Chinese Chemical Society. (b) AFM images and X-ray diffraction (XRD) patterns of FICN-12-MONs and FICN-12. Reprinted with permission from Ref. [30], copyright 2023, American Chemical Society. (c) Schematic of the fabrication process of Co-NH2 MOF nanosheet; scanning electron microscope (SEM), energy dispersive spectrometer mapping, selected area electron diffraction (SAED) and AFM images of Co-NH2. Reprinted with permission from Ref. [31], copyright 2024, Wiley-Blackwell.
Fig.2  (a) Surfactant-assisted solvothermal synthesis of CuBDC·DMF. Reprinted with permission from Ref. [32], copyright 2020, Elsevier. (b) Illustration of the preparation of ZIF-8. Reprinted with permission from Ref. [33], copyright 2023, Elsevier. (c) Illustration of 4 mol·L–1 window of ZIF-8, SEM and AFM images of ZIF-8. Reprinted with permission from Ref. [34], copyright 2024, Elsevier.
Fig.3  (a) Illustration of Cu-TCPP synthesis via the interfacial method and AFM image of Cu-TCPP. Reprinted with permission from Ref. [35], copyright 2024, Elsevier. (b) Surface and cross-section SEM images of particles obtained at different concentrations. Reprinted with permission from Ref. [36], copyright 2013, Wiley-VCH Verlag GmbH. (c) Illustration of the assembly process of Ni3(HITP)2 and its transmission electron microscope (TEM) images. Reprinted with permission from Ref. [37], copyright 2024, Springer.
  Scheme2 The method to synthesize the 2D porous COFs.
Fig.4  (a) SEM and TEM images of DhaTph and DhaTph CONs. Reprinted with permission from Ref. [38], copyright 2022, Royal Society of Chemistry. (b) Morphostructural characterization images of Tp-AD-50, Tp-Pa-50, and Tp-BD-50. Reprinted with permission from Ref. [39], copyright 2020, Elsevier. (c) Schematic illustration of the exfoliation procedure and AFM images. Reprinted with permission from Ref. [40], copyright 2024, Royal Society of Chemistry.
Fig.5  (a) Schematic process of porous COF synthesis via the template technique. Reprinted with permission from Ref. [41], copyright 2022, Elsevier. (b) Three-step fabrication procedure of porous COF membranes. Reprinted with permission from Ref. [42], copyright 2021, Wiley-VCH Verlag.
Fig.6  (a) Preparation of COFs via different methods and their pore size distributions. Reprinted with permission from Ref. [43], copyright 2024, Elsevier. (b) Illustration of 2D COF preparation at air-water interfaces via different methods. Reprinted with permission from Ref. [44], copyright 2021, American Chemical Society. (c) Illustration of COF at air-water interface and AMF images. Reprinted with permission from Ref. [45], copyright 2021, Wiley-Blackwell.
Fig.7  (a) Illustration of sNaCl@TpBD and released TpBD CONs. Reprinted with permission from Ref. [46], copyright 2020, Royal Society of Chemistry. (b) Illustration of COF growth at the liquid-solid interface. Reprinted with permission from Ref. [47], copyright 2023, Wiley-VCH Verlag.
Fig.8  (a) The structure of 2D porous inorganic F-Ln nanosheets. (b) microstructural analysis of F-Ln: a single disk-like TEM image, the corresponding SADE image, and the fast Fourier transform pattern. (c) SEM and AFM image of F-Ln. Reprinted with permission from Ref. [48], copyright 2019, American Chemical Society.
Fig.9  Exfoliation method for g-C3N4. (a) Ultrasonic exfoliation. Reprinted with permission from Ref. [54], copyright 2012, American Chemical Society. (b) Strong acid exfoliation. Reprinted with permission from Ref. [55], copyright 2013, Royal Society of Chemistry. (c) Thermal exfoliation. Reprinted with permission from Ref. [56], copyright 2015, Elsevier.
Fig.10  (a) Illustration of the preparation of NS-POPs and their SEM and TEM images. Reprinted with permission from Ref. [57], copyright 2024, Elsevier. (b) SEM and TEM images and pore size distribution of SnO2 synthesized at different pH. Reprinted with permission from Ref. [58], copyright 2024, Royal Society of Chemistry. (c) Illustration of the preparation of CoP and its SEM images. Reprinted with permission from Ref. [59], copyright 2024, Elsevier.
Fig.11  (a) Illustration of the preparation of SAFe-NMPC and its SEM TEM images. Reprinted with permission from Ref. [60], copyright 2024, Royal Society of Chemistry. (b) Illustration of the preparation of Epi-MWW and its TEM images. Reprinted with permission from Ref. [61], copyright 2024, American Chemical Society. (c) Illustration of the preparation of PAM and its TEM images. Reprinted with permission from Ref. [62], copyright 2024, Science China Press.
Fig.12  (a) Illustration of a graphene monolayer suspended over a pore with a diameter of 5 μm. Reprinted with permission from Ref. [64], copyright 2015, Springer Nature. (b) TEM images of the fabrication procedure of porous MXene nanosheets. Reprinted with permission from Ref. [65], copyright 2021, Elsevier. (c) Illustration of ion transmission by chemical-etched nanoaperture and 2D slit pathways in layered MXene membranes. Reprinted with permission from Ref. [66], copyright 2022, American Chemical Society. (d) Schematic of the membrane fabrication procedure by combining slot die-coating and hot pressing processes. Reprinted with permission from Ref. [67], copyright 2023, Elsevier.
Fig.13  (a) SEM, TEM, and AFM images and pore size distribution of rGO. Reprinted with permission from Ref. [68], copyright 2015, Elsevier. (b) Illustration of nanoporous GO preparation by ion beam irradiation. Reprinted with permission from Ref. [69], copyright 2020, Elsevier. (c) Illustration of the fabrication procedure of porous GO. Reprinted with permission from Ref. [70], copyright 2023, Elsevier. (d) Illustration of rPGO synthesis, and its TEM images and AFM images. PDA, polydopamine. Reprinted with permission from Ref. [71], copyright 2023, Elsevier.
Fig.14  (a) Preparation process of F-Ln nanosheets and SEM images of Pebax/F-Ln MMMs. Reprinted with permission from Ref. [75], copyright 2023, Elsevier. (b) Morphostructures of f-F-Ce at different scales and Pebax/f-F-Ce MMMs incorporating 4%, 8%, 12% and 16%. Reprinted with permission from Ref. [76], copyright 2020, American Chemical Society. (c) Illustration of PEI-F-Ce nanosheet; TEM image, SAED pattern, and high-intensity diffraction spot of PEI-F-Ce-2.5. Reprinted with permission from Ref. [77], copyright 2023, Elsevier.
Fig.15  (a) Illustration of UV etching on suspended graphene. Reprinted with permission from Ref. [79], copyright 2012, American Association for the Advancement of Science. (b) Isolation of smaller defects of the support hole diameter and flow resistance. Reprinted with permission from Ref. [80], copyright 2017, American Chemical Society.
Fig.16  (a) TEM images of graphene modified via gold deposition. Reprinted with permission from Ref. [81], copyright 2022, Wiley-Blackwell. (b) Schematic of PNG membrane fabrication. Reprinted with permission from Ref. [82], copyright 2024, American Chemical Society.
Fig.17  (a) Picture showing the spatial arrangement of CuBDC MOF nanosheets. Reprinted with permission from Ref. [83], copyright 2015, American Association for the Advancement of Science. (b) Schematic of the production of MMMs through the formation of H-bonds by finely designed MOF nanosheets. Reprinted with permission from Ref. [84], copyright 2022, Elsevier. (c) The structure of interfacial coordination interaction. Reprinted with permission from Ref. [85], copyright 2020, American Chemical Society. (d) Fabrication process and pore size distribution of agfZIF-62. Reprinted with permission from Ref. [86], copyright 2023, Springer Nature.
Fig.18  (a) SEM and TEM images of as-synthesized Zn2(bim)4 crystals and MSNs; pore size distribution of Zn2(bim)4 nanosheet. Reprinted with permission from Ref. [88], copyright 2014, American Association for the Advancement of Science. (b) Schematic of the exfoliation and Zn2(Bim)3 assembly procedure. Reprinted with permission from Ref. [89], copyright 2017, John Wiley and Sons Ltd. (c) Schematic representation of bimetallic (Zn/Co)2(bim)4 nanosheet membranes prepared by transforming a layer of Zn/Co-HDS through the vapor phase transformation method. Reprinted with permission from Ref. [90], copyright 2022, Elsevier. (d) Schematic cross-sections of pure Zn2(bim)4 nanosheet membrane and N-Zn2(bim)4 nanosheet membrane. Reprinted with permission from Ref. [91], copyright 2023, John Wiley and Sons Ltd.
Fig.19  (a) Illustration of COF preparation and its stacking models. Reprinted with permission from Ref. [92], copyright 2016, Wiley-VCH Verlag. (b) Pore size distribution and cross-sectional SEM images of nanosheets and PDA@TD-COF/PIM-1 MMMs. Reprinted with permission from Ref. [93], copyright 2023, Elsevier. (c) SEM and TEM images of TpPa-1 nanosheets and MMMs. Reprinted with permission from Ref. [94], copyright 2023, Elsevier.
Fig.20  (a) Schematic of the fabrication of COF-LZU1-ACOF-1 membranes via variable-temperature solvothermal method. Reprinted with permission from Ref. [95], copyright 2018, American Chemical Society. (b) Schematic of the staggered stacking of CON membranes. Reprinted with permission from Ref. [96], copyright 2020, American Chemical Society. (c) Illustration of TpPa-1, TpPa-2, and TpHz nanosheets. Reprinted with permission from Ref. [26], copyright 2021, John Wiley and Sons Ltd.
Membranes Gas permeability Selectivity Ref.
Pebax 1657/F-Nd-6% PCO2 1265 Barrer αCO2/CH4 35.7 [75]
Pebax 1657/f-F-Ce-8% PCO2 1823 Barrer αCO2/CH4 35 [76]
XLPEO/PEI-F-Ce-2% PCO2 641 Barrer αCO2/N2 70.1 [77]
GO membrane PO2 29 Barrer αO2/N2 6 [78]
Au-coated double-layer graphene PH2 2.23 × 105 GPU αH2/CO2 31.3 [81]
6FDA-durene-DABA/CBMN MMMs PCO2 400 Barrer αCO2/CH4 23 [85]
Amino-functionalized Zn2(bim)4 nanosheet membranes PH2 1417 GPU αH2/CO2 1158 [91]
3% PDA@TD-COF PCO2 9750.6 Barrer αCO2/N2 26.4 [93]
TpPa-2 nanosheet membranes PCO2 328 GPU αCO2/H2 22 [26]
Tab.1  Gas separation performance of various membranes published in literature
Fig.21  (a) Schematic of the polyelectrolyte-mediated assembling technique for preparing an ultrathin COF membrane. Reprinted with permission from Ref. [97], copyright 2023, Wiley-VCH Verlag. (b) Schematic of AC4tirmTpPaSO3 preparation and TEM images of AC4tirmTpPaSO3 COF. Reprinted with permission from Ref. [98], copyright 2023, Wiley-VCH Verlag. (c) Schematic of ionic COFs preparation and TEM images of ionic COFs. Reprinted with permission from Ref. [99], copyright 2024, Elsevier. (d) Synthesis of ultrathin COF membranes of narrow aperture by multi-interfacial techniques. Reprinted with permission from Ref. [100], copyright 2022, Wiley-Blackwell.
Fig.22  (a) Illustration of COF-polymer membrane application; (b) evolution of the morphology and crystallinity of COF composite membranes. Reprinted with permission from Ref. [27], copyright 2019, Royal Society of Chemistry.
Fig.23  (a) Illustration of water vapor transport channels in MMMs. (b) Comparison of permeability and H2O/N2 selectivity of various materials. Reprinted with permission from Ref. [28], copyright 2022, Springer Nature.
Fig.24  (a) Illustration of GO coating routes and humidity dependence of water vapor permeability. Reprinted with permission from Ref. [103], copyright 2019, Elsevier. (b) Illustration of filtration and casting of GO layers. Reprinted with permission from Ref. [104], copyright 2023, Multidisciplinary Digital Publishing Institute.
Fig.25  (a) Illustration of calcination and reconstruction processes. (b) Illustration of the coating process and tortuous pathway. (c) Error bars indicate the standard deviation of two or more measurements. Reprinted with permission from Ref. [105], copyright 2019, Springer Nature.
Fig.26  (a) Fabrication process of (LDH/CMC)n membranes. (b) XRD patterns and SEM image of LDH nanosheets. (c) Diagram of gas transport mechanism. (d) Water vapor selectivity and percentage of gas transmission of (LDH/CMC)n membranes (n = 0–30). Reprinted with permission from Ref. [106], copyright 2018, American Chemical Society.
Membranes Water vapor permeance Water vapor/N2 selectivity Ref.
COF-XPAN 2973 GPU [27]
PEBAX/IL@F-Ce MMM 4.53?×?105 Barrer 1.69?×?105 [28]
GO membranes 1.4 m3·m–2·h–1 13000 [103]
UiO-66-NH2 TFN 2370 GPU 769 [107]
Tab.2  Humidity control of various membranes published in literature
Fig.27  (a) Fabrication process of UiO-66-NH2 derived hollow fiber membranes and their water adsorption isotherms. Reprinted with permission from Ref. [107], copyright 2023, Elsevier. (b) Illustration of PFSA/MOF membrane fabrication and temperature curves of different membranes. Reprinted with permission from Ref. [108], copyright 2019, Elsevier.
Fig.28  (a) Schematic of graphene pore preparation and computer simulation results of water and salt passing through the membrane. Reprinted with permission from Ref. [109], copyright 2012, American Chemical Society. (b) Fabrication of the membrane. Reprinted with permission from Ref. [110], copyright 2014, American Association for the Advancement of Science. (c) Observation of pore formation processes and comparison of experimental and computational diffusion permeabilities. Reprinted with permission from Ref. [111], copyright 2014, American Chemical Society. (d) Water transport measurements and desalination experiments. Reprinted with permission from Ref. [64], copyright 2015, Springer Nature.
Fig.29  (a) Morphology and formation process of nanomesh. Reprinted with permission from Ref.[112], copyright 2010, American Chemical Society. (b) Schematic representation of the water permeability of GNM/SWCNT membrane and its salt separation properties. Reprinted with permission from Ref. [113], copyright 2019, American Association for the Advancement of Science. (c) Separation performance of GO, pGO, H/GO and H/pGO membranes and the paths of water across these membranes. Reprinted with permission from Ref. [114], copyright 2021, Elsevier.
Fig.30  (a) g-C3N4 nanosheet and its membrane separation performance. Reprinted with permission from Ref. [115], copyright 2017, John Wiley and Sons Ltd. (b) Simulation plots and radial distribution function of water in nanoporous g-C3N4 membrane in the presence of different cations. Reprinted with permission from Ref. [116], copyright 2018, Elsevier Ltd. (c) Images of g-C3N4 nanosheet and MB/g-C3N4 membrane and its separation performance. Reprinted with permission from Ref. [117], copyright 2019, John Wiley and Sons Ltd. (d) Schematic of 2D heterostructured nanofluidic channels and the desalination properties of the membrane. Reprinted with permission from Ref. [118], copyright 2021, American Chemical Society.
Fig.31  (a) Route to smaller pores in membrane and their separation performance. Reprinted with permission from Ref. [121], copyright 2020, Springer Nature. (b) Membrane construction process and ion transport properties. AAO, anodized aluminum oxide. Reprinted with permission from Ref. [122], copyright 2021, Wiley-Blackwell.
Fig.32  (a) Secondary growth of ACOF-1 composite membrane and its flux and rejection. Reprinted with permission from Ref. [123], copyright 2021, Elsevier. (b) Morphology and separation performance of TpPa-COF membrane. Reprinted with permission from Ref. [124], copyright 2021, American Association for the Advancement of Science.
Fig.33  (a) Porous MoS2 nanosheets, nanodisks and their laminated membrane. Reprinted with permission from Ref. [125], copyright 2020, Springer Nature. (b) Nanofiltration performance of o-2DZTC membrane. Reprinted with permission from Ref. [126], copyright 2023, American Association for the Advancement of Science. (c) Schematic of F-Ce nanosheets membrane formation and its separation properties. Reprinted with permission from Ref. [127], copyright 2022, Elsevier.
Fig.34  (a) Schematic of the in situ growth of MIL-53-NH2 MOFs, the measured flux of AAO and AAO/MIL-53-NH2 membrane. Reprinted with permission from Ref. [128], copyright 2017, John Wiley and Sons Ltd. (b) Characterization of g-C3N4 sheets and g-C3N4 nanosheets and the separation performance of g-C3N4 nanosheets/SA/PVDF membrane for oil-in-water emulsions. Reprinted with permission from Ref. [129], copyright 2021, John Wiley and Sons Ltd.
Fig.35  (a) Characterization of g-C3N4 nanosheet, SEM image of the surface and cross-sectional SEM images of g-C3N4 membrane. Reprinted with permission from Ref. [131], copyright 2019, Elsevier. (b) Illustration of the preparation of g-C3N4 bulks and their liquid phase exfoliation and conversion efficiency of three different types of g-C3N4. Reprinted with permission from Ref. [131], copyright 2016, Royal Society of Chemistry.
MMMs Fluxes Rejections Ref.
Single-layer porous graphene membrane Water flux 106?g·m–2·s–1 [64]
GO membrane Water permeance 206.7 L·m–2·h–1·bar–1 Dye rejections > 98.5% [114]
g-C3N4 membrane Water permeance 29?L·m–2·h–1·bar–1 87% for 3?nm molecules [115]
Bi-layered COF nanofilms Na2SO4 rejection 95.8% [123]
F-Ce/PES membrane Water permeance 400–500 L·m–2·h–1·bar–1 [127]
Tab.3  Water treatment application of various membranes in literature
Fig.36  (a) Solvent permeation simulation system and the solvent flow through MoS2 membrane. Reprinted with permission from Ref. [132], copyright 2022, Royal Society of Chemistry. (b) SEM and TEM images of Zr-BDC and Cu-BDC and the molecular weight cutoff of MZr-10 and MCu-10. Reprinted with permission from Ref. [133], copyright 2024, Elsevier. (c) Illustration of the fabrication of Cu-BDC/CNT composite membranes and their methanol permeance and chronic rejection. Reprinted with permission from Ref. [134], copyright 2024, Elsevier.
Fig.37  (a) Illustration of the fabrication of GO hybrid membrane and its rejection performance. Reprinted with permission from Ref. [135], copyright 2024, American Chemical Society. (b) Illustration of the preparation of CTF membrane, its separation performance for different dye molecules, and comparison with other membranes published in literature. Reprinted with permission from Ref. [136], copyright 2024, Elsevier.
1 Z Ahmed , F Rehman , U Ali , A Ali , M Iqbal , K H Thebo , A Ali , M Iqbal , K H Thebo . Recent advances in MXene-based separation membranes. ChemBioEng Reviews, 2021, 8(2): 110–120
https://doi.org/10.1002/cben.202000026
2 S P Kaldis , G C Kapantaidakis , G P Sakellaropoulos . Polymer membrane conditioning and design for enhanced CO2-N2 separation. Coal Science and Technology, 1995, 24: 1927–1930
https://doi.org/10.1016/S0167-9449(06)80197-7
3 J R Werber , C O Osuji , M Elimelech . Materials for next-generation desalination and water purification membranes. Nature Reviews. Materials, 2016, 1(5): 16018–16034
https://doi.org/10.1038/natrevmats.2016.18
4 L Wang , M S H Boutilier , P R Kidambi , D Jang , N Hadjiconstantinou , R Karnik . Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotechnology, 2017, 12(6): 509–522
https://doi.org/10.1038/nnano.2017.72
5 W J Koros , C Zhang . Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297
https://doi.org/10.1038/nmat4805
6 D S Sholl , R P Lively . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
https://doi.org/10.1038/532435a
7 W Wang , Y Y Wei , J Fan , J H Cai , Z Lu , L Ding , H H Wang . Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Frontiers of Chemical Science and Engineering, 2021, 15(4): 793–819
https://doi.org/10.1007/s11705-020-2016-8
8 A Giwa , M Ahmed , S W Hasan . Polymers for membrane filtration in water purification. Polymeric Materials for Clean Water, 2019, 16: 167–190
https://doi.org/10.1007/978-3-030-00743-0_8
9 H B Park , J Kamcev , L M Robeson , M Elimelech , B D Freeman . Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530–0540
10 Y Cheng , Y Pu , D Zhao . Two-dimensional membranes: new paradigms for high-performance separation membranes. Chemistry, an Asian Journal, 2020, 15(15): 2241–2270
https://doi.org/10.1002/asia.202000013
11 K S Novoselov , A K Geim , S V Morozov , D Jiang , Y Zhang , S V Dubonos , I V Grigorieva , A A Firsov . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896
12 H Bux , F Liang , Y Li , J Cravillon , M Wiebcke , J Caro . Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001
https://doi.org/10.1021/ja907359t
13 Y T Qin , Y Wan , J Guo , M T Zhao . Two-dimensional metal-organic framework nanosheet composites: preparations and applications. Chinese Chemical Letters, 2022, 33(2): 693–702
https://doi.org/10.1016/j.cclet.2021.07.013
14 A P Côté , A I Benin , N W Ockwig , M O’keeffe , A J Matzger , O M. Matzger A J Yaghi , O M Yaghi . Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170
https://doi.org/10.1126/science.1120411
15 M Alhabeb , K Maleski , B Anasori , P Lelyukh , L Clark , S Sin , Y Gogotsi . Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644
https://doi.org/10.1021/acs.chemmater.7b02847
16 X Zhang , X Xie , H Wang , J Zhang , B Pan , Y Xie . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of the American Chemical Society, 2013, 135(1): 18–21
https://doi.org/10.1021/ja308249k
17 Q Wang , D O’hare . Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155
https://doi.org/10.1021/cr200434v
18 H Zhang . Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469
https://doi.org/10.1021/acsnano.5b05040
19 L Ding , Y Y Wei , Y J Wang , H B Chen , J Caro , H H Wang . A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829
https://doi.org/10.1002/anie.201609306
20 T F Ajibade , H L Tian , K H Lasisi , K S Zhang . Bio-inspired PDA@WS2 polyacrylonitrile ultrafiltration membrane for the effective separation of saline oily wastewater and the removal of soluble dye. Separation and Purification Technology, 2022, 299: 12711–12722
https://doi.org/10.1016/j.seppur.2022.121711
21 S Q Han , W H You , S H Lv , C J Du , X Zhang , E Zhang , J Y Zhu , Y T Zhang . Ionic liquid modified COF nanosheet interlayered polyamide membranes for elevated nanofiltration performance. Desalination, 2023, 548: 116300–116311
https://doi.org/10.1016/j.desal.2022.116300
22 M Kunimatsu , K Nakagawa , T Yoshioka , T Shintani , T Yasui , E Kamio , S C E Tsang , J X Li , H Matsuyama . Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. Journal of Membrane Science, 2020, 595: 117579–117608
https://doi.org/10.1016/j.memsci.2019.117598
23 Y Liu , X P Wang , Z A Zong , R J Lin , X Y Zhang , F S Chen , W D Ding , L L Zhang , X M Meng , J W Hou . Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. Journal of Membrane Science, 2022, 653: 120520–120531
https://doi.org/10.1016/j.memsci.2022.120520
24 H Liu , B Li , P Zhao , R M Xu , C Y Tang , W L Song , Z A Habib , X H Wang . Fabrication of novel thin-film composite membrane based on ultrathin metal-organic framework interlayer for enhancing forward osmosis performance. Chinese Chemical Letters, 2023, 34(12): 108369–108379
https://doi.org/10.1016/j.cclet.2023.108369
25 M Liu , P A Gurr , Q Fu , P A Webley , G G Qiao . Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(46): 23169–23196
https://doi.org/10.1039/C8TA09070J
26 P Y Wang , Y Peng , C Y Zhu , R Yao , H L Song , L Kun , W S Yang . Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2-selective separation. Angewandte Chemie International Edition, 2021, 60(35): 19047–19052
https://doi.org/10.1002/anie.202106346
27 P Manchanda , S Chisca , L Upadhyaya , V E Musteata , M Carrington , S P Nunes . Diffusion-induced in situ growth of covalent organic frameworks for composite membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(45): 25802–25807
https://doi.org/10.1039/C9TA11191C
28 F Wang , S Han , Y Zhang , L Gao , X Li , L Zhao , H Ye , H Li , Q Xin , Y Zhang . Constructing rapid water vapor transport channels within mixed matrix membranes based on two-dimensional mesoporous nanosheets. Communications Chemistry, 2022, 5(1): 2065–2075
https://doi.org/10.1038/s42004-022-00681-9
29 J Wang , P Yang , L Liu , B Zheng , J Jiang , J Ma , Y Yan , S Yang , L Yang , Q K Liu . et al.. Facile exfoliation of two-dimensional crystalline monolayer nanosheets from an amorphous metal-organic framework. Chinese Chemical Society Chemistry, 2022, 4(6): 1879–1888
https://doi.org/10.31635/ccschem.021.202101208
30 K Zhang , Z B Fang , Q Q Huang , A A Zhang , J L Li , J Y Li , Y Zhang , T Zhang , R Cao . Exfoliation of a two-dimensional metal-organic framework for enhanced photocatalytic CO2 reduction. Inorganic Chemistry, 2023, 62(22): 8472–8477
https://doi.org/10.1021/acs.inorgchem.3c01142
31 B Shao , X L He , D Huang , Y L Xiang , Y Luo , Y M Wei , L B Jiang , R K Huang , M Dong , J Huang . Oriented exfoliating 3D metal-organic frameworks into ultrathin metal-organic nanosheets with different crystal faces. Advanced Functional Materials, 2024, 2315911
https://doi.org/10.1002/adfm.202315911
32 H N Abdelhamid . High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks. Journal of Environmental Chemical Engineering, 2021, 9(1): 104404–104415
https://doi.org/10.1016/j.jece.2020.104404
33 M Yin , Z Li , L Wang , S K Tang . Preparation of hierarchically porous PVP/ZIF-8 in supercritical CO2 by PVP-induced defect-formation method for high-efficiency gas adsorption. Separation and Purification Technology, 2023, 314: 123550–123559
https://doi.org/10.1016/j.seppur.2023.123550
34 S K Jeong , J Y Jeong , S Lim , W S Kim , H T Kwon , J Kim . Mixed matrix membranes incorporating two-dimensional ZIF-8 nanosheets for enhanced CO2/N2 separation. Chemical Engineering Journal, 2024, 481: 148294–148305
https://doi.org/10.1016/j.cej.2023.148294
35 J Yang , L Kong , C Huang , C C Wang , S H Wei , L Zhou . Liquid-liquid interfacial approach for rapid synthesis of well-crystalline two-dimensional metal-organic frameworks for nitro reduction. Chemical Engineering Journal, 2024, 485: 149969–149979
https://doi.org/10.1016/j.cej.2024.149969
36 H Lu , S Zhu . Interfacial synthesis of free-standing metal-organic framework membranes. European Journal of Inorganic Chemistry, 2013, 2013(8): 1294–1300
https://doi.org/10.1002/ejic.201201009
37 L A Cao , M Wei , X Guo , D L Wang , L Chen , J Guo . Conductive Ni3(HITP)2 nanofilm with asymmetrical morphology prepared by gas-liquid interface self-assembly for glucose sensing. Ionics, 2024, 30(4): 2375–2385
https://doi.org/10.1007/s11581-024-05406-7
38 Y Y Guo , Q Zhang , S Q Gao , H Y Wang , Z Y Li , J K Qiu , Y Zhao , Z M Liu , J J Wang . Bi-functional ionic liquids facilitate liquid-phase exfoliation of porphyrin-based covalent organic frameworks in water for highly efficient CO2 photoreduction. Green Chemistry, 2022, 24(24): 9530–9541
https://doi.org/10.1039/D2GC03194A
39 J Yao , C Liu , X Liu , J Guo , S Zhang , J Zheng , S Li . Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. Journal of Membrane Science, 2020, 601: 117864–117875
https://doi.org/10.1016/j.memsci.2020.117864
40 T Wang , R J Zhang , P D Zhai , M J Li , X Y Liu , C X Li . Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(2): 1292–1299
https://doi.org/10.1039/D3TA06312G
41 R Liu , Q Yan , Y Tang , R Liu , L Huang , Q Shuai . NaCl template-assisted synthesis of self-floating COFs foams for the efficient removal of sulfamerazine. Journal of Hazardous Materials, 2022, 421: 126702–126714
https://doi.org/10.1016/j.jhazmat.2021.126702
42 C Ding , M Breunig , J Timm , R Marschall , J Senker , S Agarwal . Flexible, mechanically stable, porous self-standing microfiber network membranes of covalent organic frameworks: preparation method and characterization. Advanced Functional Materials, 2021, 31(49): 2106507–2106515
https://doi.org/10.1002/adfm.202106507
43 J Chen , R Li , S Liu , J Zhang , X Wu , J Wang . Surfactant-assisted interfacial polymerization towards high-crystallinity COF membranes for organic solvent nanofiltration. Journal of Membrane Science, 2024, 694: 122404–122415
https://doi.org/10.1016/j.memsci.2023.122404
44 A Ortega-Guerrero , H Sahabudeen , A Croy , A Dianat , R Dong , X Feng , G Cuniberti . Multiscale modeling strategy of 2D covalent organic frameworks confined at an air-water interface. ACS Applied Materials & Interfaces, 2021, 13(22): 26411–26420
https://doi.org/10.1021/acsami.1c05967
45 Z W Ou , Z H Liang , X Dong , F L Tan , L Gong , P Zhao , H L Wang , W Liu , Z K Zheng . Surfactants mediated synthesis of highly crystalline thin films of imine-linked covalent organic frameworks on water surface. Chinese Journal of Chemistry, 2021, 39(12): 3322–3328
https://doi.org/10.1002/cjoc.202100493
46 X Shi , D Ma , F Xu , Z Zhang , Y Wang . Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chemical Science, 2020, 11(4): 989–996
https://doi.org/10.1039/C9SC05082E
47 H Yu , J Guan , Y Chen , Y X Sun , S Y Zhou , J F Zheng , Q F Zhang , S H Li , S B Zhang . Large-area soluble covalent organic framework oligomer coating for organic solution nanofiltration membranes. Nano Micro Small, 2023, 20(4): 2305613–2305624
48 L Zhang , W Kang , Q Ma , Y Xie , Y Jia , N Deng , Y Zhang , J Ju , B Cheng . Two-dimensional acetate-based light lanthanide fluoride nanomaterials (F-Ln, Ln = La, Ce, Pr, and Nd): morphology, structure, growth mechanism, and stability. Journal of the American Chemical Society, 2019, 141(33): 13134–13142
https://doi.org/10.1021/jacs.9b05355
49 S Y Wang , L Y Wang , H Cong , R Wang , J Yang , X Li , Y Zhao , H. Cong H J Wang , R Wang . et al.. A review: g-C3N4 as a new membrane material. Journal of Environmental Chemical Engineering, 2022, 10(4): 108189–108211
https://doi.org/10.1016/j.jece.2022.108189
50 F He , Z X Wang , Y X Li , S Q Peng , B Liu . The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Applied Catalysis B: Environmental, 2020, 269(15): 118828–118839
https://doi.org/10.1016/j.apcatb.2020.118828
51 C C Chen , M Xie , L S Kong , W H Lu , Z Y Feng , J H Zhan . Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants. Journal of Hazardous Materials, 2020, 390(15): 122146–122157
https://doi.org/10.1016/j.jhazmat.2020.122146
52 B Lin , M Y Xia , B R Xu , B Chong , Z H Chen , G D Yang . Bio-inspired nanostructured g-C3N4-based photocatalysts: a comprehensive review. Chinese Journal of Catalysis, 2022, 43(8): 2141–2172
https://doi.org/10.1016/S1872-2067(22)64110-X
53 J Q Dong , Y Zhang , M I Hussain , W J Zhou , Y Z Chen , L N Wang . g-C3N4: properties, pore modifications, and photocatalytic applications. Nanomaterials, 2021, 12(1): 121–134
https://doi.org/10.3390/nano12010121
54 X Zhang , X Xie , H Wang , J J Zhang , B C Pan , Y Xie . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of American Chemical Society, 2013, 135(1): 18–21
https://doi.org/10.1021/ja308249k
55 J Xu , L Zhang , R Shi , Y Zhu . Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(46): 14766–14772
https://doi.org/10.1039/c3ta13188b
56 F Dong , Y H Li , Z Y Wang , W K Ho . Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Applied Surface Science, 2015, 358(PARTA): 393–403
57 Y H Chen , Z M Wang , Y G Li , J Guo , L Dai , J F Zheng , S H Li , S B Zhang . Incorporating 2D porous organic polymer nanosheets into high-temperature proton-exchange membranes for low H3PO4 loss. Journal of Membrane Science, 2024, 693: 122344–122350
https://doi.org/10.1016/j.memsci.2023.122344
58 M Verma , G Bahuguna , S Singh , A Kumari , D Ghosh , H Haick , R Gupta . Porous SnO2 nanosheets for room temperature ammonia sensing in extreme humidity. Materials Horizons, 2024, 11(1): 184–195
https://doi.org/10.1039/D3MH01078C
59 Z T Li , P Zhou , Y X Zhao , W Y Jiang , B X Zhao , X S Chen , J P Wang , R Yang , C L Zuo . Ultrathin and porous CoP nanosheets as an efficient electrocatalyst for boosting hydrogen evolution behavior at a broad range of pH. International Journal of Hydrogen Energy, 2024, 51: 1279–1286
https://doi.org/10.1016/j.ijhydene.2023.09.181
60 X Y M Dong , H Y Xia , R Y Pang , E Wang , J Li . Urea with trifunctional effects: an assistant for high exposure of single-atom active sites on 2D nanosheets viastructural transformation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(9): 5422–5428
https://doi.org/10.1039/D3TA07606G
61 H B Li , C N Zhang , Q Lin , F Lin , T S Xiao , K X Yan , B Shen , H B Zhang , Y Tang , Z Z Sun . Epitaxial growth of two-dimensional MWW zeolite. Journal of the American Chemical Society, 2024, 146(12): 8520–8527
https://doi.org/10.1021/jacs.4c00162
62 Z X Zhao , J Yang , C L Wang , Y T Xue , H Wu , W L Xie , P P Wu , C Z Wang , W Xing , Y Wang . et al.. Template-free synthesis of highly porous silica-doped alumina with exceptional stability via intercalation-exfoliation of boehmite into two-dimensional nanosheets. Science China Materials, 2024, 67(1): 261–271
https://doi.org/10.1007/s40843-023-2686-y
63 H B Huang , H D Shi , P Das , J Q Qin , Y G Li , X Wang , F Su , P C Wen , S Y Li , P F Lu . et al.. The chemistry and promising applications of graphene and porous graphene materials. Advanced Functional Materials, 2020, 30(41): 1909035–1909046
https://doi.org/10.1002/adfm.201909035
64 S P Surwade , S N Smirnov , I V Vlassiouk , R R Unocic , G M Veith , S Dai , S M Mahurin . Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464
https://doi.org/10.1038/nnano.2015.37
65 S L Li , W Gu , Y Q Sun , D Zou , W H Jing . Perforative pore formation on nanoplates for 2D porous MXene membranes via H2O2 mild etching. Ceramics International, 2021, 47(21): 29930–29940
https://doi.org/10.1016/j.ceramint.2021.07.166
66 S Hong , J K El-Demellawi , Y Lei , Z Liu , F A Marzooqi , H A Arafat , H N Alshareef . Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting. ACS Nano, 2022, 16(1): 792–800
https://doi.org/10.1021/acsnano.1c08347
67 J Kim , J Kang , J P Kim , J Y Kim , O Kwon , D W Kim . Scalable fabrication of nanoporous multilayer graphene oxide membrane for organic solvent nanofiltration. Carbon, 2023, 207: 162–171
https://doi.org/10.1016/j.carbon.2023.03.008
68 M Kang , D H Lee , Y M Kang , H Jung . Electron beam irradiation dose dependent physico-chemical and electrochemical properties of reduced graphene oxide for supercapacitor. Electrochimica Acta, 2015, 184: 427–435
https://doi.org/10.1016/j.electacta.2015.10.053
69 Y B Wei , Z Pastuovic , T Murphy , D B Gore . Precise tuning chemistry and tailoring defects of graphene oxide films by low energy ion beam irradiation. Applied Surface Science, 2020, 505: 144651–144660
https://doi.org/10.1016/j.apsusc.2019.144651
70 H N Yang , G N Chen , L Cheng , Y Liu , Y X Cheng , H J Yao , Y Liu , G P Liu , W Q Jin . Manipulating gas transport channels in graphene oxide membrane with swift heavy ion irradiation. Separation and Purification Technology, 2023, 320: 124136–124147
https://doi.org/10.1016/j.seppur.2023.124136
71 S L Li , J Lu , D Zou , L L Cui , B Chen , F Wang , J Qiu , T X Yu , Y Q Sun , W H Jing . Constructing reduced porous graphene oxide for tailoring mass-transfer channels in ultrathin MXene (Ti3C2Tx) membranes for efficient dye/salt separation. Chemical Engineering Journal, 2023, 457: 141217–141228
https://doi.org/10.1016/j.cej.2022.141217
72 L M Robeson . The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400
https://doi.org/10.1016/j.memsci.2008.04.030
73 B Comesaña-Gándara , J Chen , C G Bezzu , M L Carta , I Rose , M C Ferrari , E Esposito , A Fuoco , J N Jansen , N B Mckeown . Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 2019, 12(9): 2733–2740
https://doi.org/10.1039/C9EE01384A
74 L M Robeson . Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185
https://doi.org/10.1016/0376-7388(91)80060-J
75 Y Zhang , M Zhao , X Li , Q Xin , X Ding , L Zhao , H Ye , L Lin , H Li , Y Zhang . Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure. Journal of Industrial and Engineering Chemistry, 2023, 125: 200–210
https://doi.org/10.1016/j.jiec.2023.05.029
76 Q Xin , W Shao , Q Ma , X Ye , Z Huang , B Li , S Wang , H Li , Y Zhang . Efficient CO2 separation of multi-permselective mixed matrix membranes with a unique interfacial structure regulated by mesoporous nanosheets. ACS Applied Materials & Interfaces, 2020, 12(42): 48067–48076
https://doi.org/10.1021/acsami.0c10895
77 M Zhao , J Guo , Q Xin , Y Zhang , X Li , X Ding , L Zhang , L Zhao , H Ye , H Li . et al.. Novel aminated F-Ce nanosheet mixed matrix membranes with controllable channels for CO2 capture. Separation and Purification Technology, 2023, 324: 124512–124523
https://doi.org/10.1016/j.seppur.2023.124512
78 H W Kim , H W Yoon , S M Yoon , B M Yoo , B K Ahn , Y H Cho , H J Shin , H Yang , U Paik , S Kwon . et al.. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95
https://doi.org/10.1126/science.1236098
79 S P Koenig , L D Wang , J Pellegrino , S J Bunch . Selective molecular sieving through porous graphene. Nature Nanotechnology, 2012, 7(11): 728–732
https://doi.org/10.1038/nnano.2012.162
80 M S H Boutilier , D J Jang , J C Idrobo , P R Kidambi , N G Hadjiconstantinou , R Karnik . Molecular sieving across centimeter-scale single-layer nanoporous graphene membranes. ACS Nano, 2017, 11(6): 5726–5736
https://doi.org/10.1021/acsnano.7b01231
81 T Ashirov , A O Yazaydin , A Coskun . Tuning the transport properties of gases in porous graphene membranes with controlled pore size and thickness. Advanced Materials, 2022, 34(5): 2106785–2106798
https://doi.org/10.1002/adma.202106785
82 C Van Goethem , Y Shen , H Y Chi , M Mensi , K Zhao , A Nijmeijer , P E Just , K V Agrawal . Advancing molecular sieving via Å-scale pore tuning in bottom-up graphene synthesis. ACS Nano, 2024, 18(7): 5730–5740
https://doi.org/10.1021/acsnano.3c11885
83 T Rodenas , I Luz , G Prieto , B Seoane , H Miro , A Corma , F Kapte , X Francesc . Llabrés i X, Gascon J. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2015, 14(1): 48–55
https://doi.org/10.1038/nmat4113
84 J M Wan , M J Nian , C Yang , K Ge , J J Liu , Z Q Chen , J G Duan , W Q Jin . Interface regulation of mixed matrix membranes by ultrathin MOF nanosheet for faster CO2 transfer. Journal of Membrane Science, 2022, 642: 119991–120002
https://doi.org/10.1016/j.memsci.2021.119991
85 X Bi , Y Zhang , F Zhang , S Zhang , Z Wang , J Jin . MOF nanosheet-based mixed matrix membranes with metal-organic coordination interfacial interaction for gas separation. ACS Applied Materials & Interfaces, 2020, 12(43): 49101–49110
https://doi.org/10.1021/acsami.0c14639
86 Z Yang , Y Belmabkhout , L N Mchugh , D Ao , Y Sun , S Li , Z Qiao , T D Bennett , M D Guiver , C Zhong . ZIF-62 glass foam self-supported membranes to address CH4/N2 separations. Nature Materials, 2023, 22(7): 888–894
https://doi.org/10.1038/s41563-023-01545-w
87 M Carta , R Malpass-Evans , M Croad , Y Rogan , J C Jansen , P Bernardo , F Bazzarelli , N B Mckeown . An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339(6117): 303–307
https://doi.org/10.1126/science.1228032
88 Y Peng , Y S Li , Y J Ban , H Jin , W M Jiao , X L Liu , W S Yang . Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
https://doi.org/10.1126/science.1254227
89 Y Peng , Y Li , Y Ban , W S Yang . Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie, 2017, 129(33): 9889–9893
https://doi.org/10.1002/ange.201703959
90 C C Ma , G S Gao , H O Liu , Y Liu , X F Zhang . Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts. Journal of Membrane Science, 2022, 644: 120167–120177
https://doi.org/10.1016/j.memsci.2021.120167
91 H Song , Y Peng , C Wang , L Shu , C Y Zhu , Y L Wang , H Y He , W S Yang . Structure regulation of MOF nanosheet membrane for accurate H2/CO2 separation. Angewandte Chemie International Edition, 2023, 62(17): e202218472–202218480
https://doi.org/10.1002/anie.202218472
92 B P Biswal , H D Chaudhari , R Banerjee , U K Kharul . Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation. Chemistry, 2016, 22(14): 4695–4699
https://doi.org/10.1002/chem.201504836
93 X Chang , H Guo , Q Chang , Z H Tian , Y W Zhang , D Y Li , J Wang , Y T Zhang . Mixed-matrix membranes composed of dopamine modified covalent organic framework and PIM-1 for efficient CO2/N2 separation. Journal of Membrane Science, 2023, 686: 122017–122028
https://doi.org/10.1016/j.memsci.2023.122017
94 Q Xin , X Zhang , W Shao , H Li , Y Z Zhang . COF-based MMMs with light-responsive properties generating unexpected surface segregation for efficient SO2/N2 separation. Journal of Membrane Science, 2023, 665: 121109–121120
https://doi.org/10.1016/j.memsci.2022.121109
95 H Fan , A Mundstock , A Feldhoff , A Knebel , J Gu , H Meng , J Caro . Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. Journal of the American Chemical Society, 2018, 140(32): 10094–10098
https://doi.org/10.1021/jacs.8b05136
96 Y Ying , M Tong , S C Ning , S K Ravi , S B Peh , S C Tan , S J Pennycook , D Zhao . Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. Journal of the American Chemical Society, 2020, 142(9): 4472–4480
https://doi.org/10.1021/jacs.9b13825
97 S Wang , Y Yang , X Liang , Y Ren , H Ma , Z Zhu , J Wang , S Zeng , S Song , X Wang . et al.. Ultrathin ionic COF Membrane via polyelectrolyte-mediated assembly for efficient CO2 separation. Advanced Functional Materials, 2023, 33(24): 2300386–2300392
https://doi.org/10.1002/adfm.202300386
98 J Fu , J Y Liu , G H Zhang , Q H Zhu , S L Wang , S Qin , L He , G H Tao . Boost of gas adsorption kinetics of covalent organic frameworks via ionic liquid solution process. Small, 2023, 19(39): 2302570–2302579
https://doi.org/10.1002/smll.202302570
99 J Y Liu , L Zhang , J Fu , S L Wang , Y R Zhou , Y H Wang , S Qin , G H Tao , L He . Mobile hydrogen-bonding donor in covalent organic framework for efficient iodine capture. Separation and Purification Technology, 2024, 331: 125664
https://doi.org/10.1016/j.seppur.2023.125664
100 Y Ying , S B Peh , H Yang , Z Q Yang , D Zhao . Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation. Advanced Materials, 2022, 34(25): 2104946–2104952
https://doi.org/10.1002/adma.202104946
101 J R Du , L Liu , A Chakma , X S Feng . Using poly(N,N-dimethylaminoethyl methacrylate)/polyacrylonitrile composite membranes for gas dehydration and humidification. Chemical Engineering Science, 2010, 65(16): 4672–4681
https://doi.org/10.1016/j.ces.2010.05.005
102 T M H Le , R Wang , S Sairiam . Self-protecting PVDF-PDA-TiO2 membranes towards highly efficient and prolonged dye wastewater treatment by photocatalytic membranes. Journal of Membrane Science, 2023, 683: 121789–121798
https://doi.org/10.1016/j.memsci.2023.121789
103 D I Petukhov , E A Chernova , O O Kapitanova , O V Boytsova , R G Valeev , A P Chumakov , O V Konovalov , A A Eliseev . Thin graphene oxide membranes for gas dehumidification. Journal of Membrane Science, 2019, 577: 184–194
https://doi.org/10.1016/j.memsci.2019.01.041
104 R Takenaka , N Moriyama , H K Nagasawa , M K Kanezashi , T N Tsuru . Permeation properties of water vapor through graphene oxide/polymer substrate composite membranes. Membranes, 2023, 13(5): 533–544
https://doi.org/10.3390/membranes13050533
105 J Yu , K Ruengkajorn , D G Crivoi , C P Chen , J C Buffet , D O’Hare . High gas barrier coating using non-toxic nanosheet dispersions for flexible food packaging film. Nature Communications, 2019, 10(1): 2398–2408
https://doi.org/10.1038/s41467-019-10362-2
106 J J Wang , X Z Xu , J Zhang , M T Chen , S Y Dong , J B Han , M Wei . Moisture-permeable, humidity-enhanced gas barrier films based on organic/inorganic multilayers. ACS Applied Materials & Interfaces, 2018, 10(33): 28130–28138
https://doi.org/10.1021/acsami.8b09740
107 H J Lee , Y M Shirke , J Kim , H J Yu , C H Yoo , S Back , J D Jeon , J S Lee . Tailoring molecular structures of UiO-66-NH2 for high performance H2O/N2 separation membranes: a synergistic effect of hydrophilic modification and defect engineering. Journal of Membrane Science, 2023, 665: 121096–121105
https://doi.org/10.1016/j.memsci.2022.121096
108 R Deng , W Han , K L Yeung . Confined PFSA/MOF composite membranes in fuel cells for promoted water management and performance. Catalysis Today, 2019, 331: 12–17
https://doi.org/10.1016/j.cattod.2018.05.016
109 D Cohen-Tanugi , J C Grossman . Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608
https://doi.org/10.1021/nl3012853
110 K Celebi , J Buchheim , R M Wyss , A Droudian , P Gasser , I Shorubalko , J I Kye , C Lee , H G Park . Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292
https://doi.org/10.1126/science.1249097
111 S C O’Hern , M S H Boutilier , J C Idrobo , Y Song , J Kong , T Laoui , M Atieh , R Karnik . Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 2014, 14(3): 1234–1241
https://doi.org/10.1021/nl404118f
112 O Akhavan . Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano, 2010, 4(7): 4174–4180
https://doi.org/10.1021/nn1007429
113 Y Yang , X Yang , L Liang , Y Y Gao , H N Cheng , X M Li , M C Zou , R Z Ma , Q Yuan , X F Duan . Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 2019, 364(6445): 1057–1062
https://doi.org/10.1126/science.aau5321
114 J Guan , X You , B Shi , Y Liu , J Yuan , C Yang , X Pang , H Wu , J Shen , C Fan . et al.. Engineering multi-pathway graphene oxide membranes toward ultrafast water purification. Journal of Membrane Science, 2021, 638: 119706–119716
https://doi.org/10.1016/j.memsci.2021.119706
115 Y Wang , L Li , Y Wei , J Xue , H Chen , L Ding , J Caro , H Wang . Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angewandte Chemie International Edition, 2017, 56(31): 8974–8980
https://doi.org/10.1002/anie.201701288
116 Y C Liu , D Q Xie , M R Song , L Z Jiang , G Fu , B Liu , J Y Li . Water desalination across multilayer graphitic carbon nitride membrane: insights from non-equilibrium molecular dynamics simulations. Carbon, 2018, 140: 131–138
https://doi.org/10.1016/j.carbon.2018.08.043
117 J Ran , T Pan , Y Y Wu , C Q Chu , P Cui , P P Zhang , X Y Ai , C F Fu , Z J Yang , T W Xu . Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers. Angewandte Chemie International Edition, 2019, 58(46): 16463–16468
https://doi.org/10.1002/anie.201908786
118 Y Y Wu , C F Fu , Q Huang , P P Zhang , P Cui , J Ran , J L Yang , T W Xu . 2D heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes. ACS Nano, 2021, 15(4): 7586–7595
https://doi.org/10.1021/acsnano.1c01105
119 S Yuan , X Li , J Zhu , G Zhang , P Van Puyvelde , B Van der Bruggen . Covalent organic frameworks for membrane separation. Chemical Society Reviews, 2019, 48(10): 2665–2681
https://doi.org/10.1039/C8CS00919H
120 X Xu , X Wu , K Xu , H Xu , H Z Chen , N Huang . Pore partition in two-dimensional covalent organic frameworks. Nature Communications, 2023, 14(1): 3360–3368
https://doi.org/10.1038/s41467-023-39126-9
121 Y Li , Q X Wu , X H Guo , M C Zhang , B Chen , G Y Wei , X Li , X F Li , S J Li , L J Ma . Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nature Communications, 2020, 11(1): 599–609
https://doi.org/10.1038/s41467-019-14056-7
122 F M Sheng , B Wu , X Y Li , T T Xu , M A Shehzad , X X Wang , L Ge , H T Wang , T W Xu . Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Advanced Materials, 2021, 33(44): 2104404–2104409
https://doi.org/10.1002/adma.202104404
123 A K Xiao , X S Shi , Z Zhang , C C Yin , S Xiong , Y Wang . Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. Journal of Membrane Science, 2021, 624: 119122–119132
https://doi.org/10.1016/j.memsci.2021.119122
124 Y Q Zhang , J Guo , G Han , Y P Bai , Q H Ge , J Ma , C H Lau , L Shao . Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Science Advances, 2021, 7(13): 8706–8712
https://doi.org/10.1126/sciadv.abe8706
125 B Sapkota , W T Liang , A Vahidmohammadi , R Karnik , A Noy , M Wanunu . High permeability sub-nanometre sieve composite MoS2 membranes. Nature Communications, 2020, 11(1): 2247–2255
126 C Kim , D Y Koh , Y J Lee , J Choi , H S Cho , M Choi . Bottom-up synthesis of two-dimensional carbon with vertically aligned ordered micropores for ultrafast nanofiltration. Science Advances, 2023, 9(6): 7871–7879
https://doi.org/10.1126/sciadv.ade7871
127 S R Han , Y F Xie , Q P Xin , J Lv , Y L Zhang , F K Wang , X J Fu , H Li , L Z Zhao , H Ye . et al.. High permeability dual-channel membranes based on porous fluorine-cerium nanosheets for molecular sieving. Journal of Membrane Science, 2023, 666: 121126–121136
https://doi.org/10.1016/j.memsci.2022.121126
128 Y Yu , X J Wu , M Zhao , Q Ma , J Chen , B Chen , M Sindoro , J Yang , S Han , Q Lu . et al.. Anodized aluminum oxide templated synthesis of metal-organic frameworks used as membrane reactors. Angewandte Chemie International Edition, 2017, 56(2): 578–581
https://doi.org/10.1002/anie.201610291
129 J Xue , J M Gao , M J Xu , Y Q Zong , M X Wang , S S Ma . Super wetting porous g-C3N4 nanosheets coated PVDF membrane for emulsified oil/water separation and aqueous organic pollutant elimination. Advanced Materials Interfaces, 2021, 8(19): 2100962–2100970
https://doi.org/10.1002/admi.202100962
130 R Li , Y Ren , P Zhao , J Wang , J D Liu , Y T Zhang . Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. Journal of Hazardous Materials, 2019, 365: 606–614
https://doi.org/10.1016/j.jhazmat.2018.11.033
131 K G Zhou , D Mcmanus , E Prestat , X Zhong , Y Y Shin , H L Zhang , S J Haigh , C Casiraghi . Self-catalytic membrane photo-reactor made of carbon nitride nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(30): 11666–11671
https://doi.org/10.1039/C5TA09152G
132 X J Li , Y Liu , Q H Liu , Z L Zheng , H X Guo . Single-layer membranes for organic solvent nanofiltration: a molecular dynamics simulation and comparative experimental study. RSC Advances, 2022, 12(12): 7189–7198
https://doi.org/10.1039/D1RA09061E
133 E G Ajebe , C C Hu , G Lugito , C P Hu , W S Hung , K R Lee , J Y Lai . Investigating the impact of metal ion variations in terephthalate metal-organic frameworks on the organic solvent nanofiltration performance of mixed matrix membranes. Journal of Membrane Science, 2024, 700: 122715–122725
https://doi.org/10.1016/j.memsci.2024.122715
134 M Wu , X X Fu , J Li , W Q Zhao , X B Li . SWCNTs-channeled MOF nanosheet membrane for high-efficient organic solvent nanofiltration. Separation and Purification Technology, 2024, 338: 126328–126339
https://doi.org/10.1016/j.seppur.2024.126328
135 L Chen , X Zhou , R Meng , D Li , D Li , X Li , K Zhang , Q Ji , Y Li , Y Xia , L Ci . Stable antifouling membranes based on graphene oxide nanosheets for organic solvent nanofiltration. ACS Applied Nano Materials, 2024, 7(2): 1929–1939
https://doi.org/10.1021/acsanm.3c05197
136 G Li , Y Liu , Z He , K Shi , F Liu . Retrievable ultrafast covalent triazine framework membranes for organic solvent nanofiltration. Chemical Engineering Journal, 2024, 484: 149488–149499
https://doi.org/10.1016/j.cej.2024.149488
[1] Anurag Panda, Anuradha Upadhyaya, Ramesh Kumar, Argha Acooli, Shirsendu Banerjee, Amrita Mishra, Moonis Ali Khan, Somnath Chowdhury, Byong-Hun Jeon, Sankha Chakrabortty, Suraj K. Tripathy. Chemical activation of phosphogypsum exhibits enhanced adsorption of malachite green from aqueous solution due to porosity refinement[J]. Front. Chem. Sci. Eng., 2024, 18(11): 124-.
[2] Shan Jiang, Jianfeng Xi, Hongqi Dai, Huining Xiao, Weibing Wu. Easily-manufactured paper-based materials with high porosity for adsorption/separation applications in complex wastewater[J]. Front. Chem. Sci. Eng., 2023, 17(7): 830-839.
[3] Farah Abuhatab, Omar Khalifa, Husam Al Araj, Shadi W. Hasan. From plasma to plasmonics: toward sustainable and clean water production through membranes[J]. Front. Chem. Sci. Eng., 2023, 17(12): 1809-1836.
[4] Jamilu Usman, Abdul Waheed, Umair Baig, Isam H. Aljundi. The effect of altering crosslinker chemistry during interfacial polymerization on the performance of nanofiltration membranes for desalination, organic, and micropollutants removal[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2025-2036.
[5] Fadina Amran, Muhammad Abbas Ahmad Zaini. Beta-cyclodextrin adsorbents to remove water pollutants—a commentary[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1407-1423.
[6] Rongzhen Chen, Xinfei Dong, Qingchun Ge. Lithium-based draw solute for forward osmosis to treat wastewater discharged from lithium-ion battery manufacturing[J]. Front. Chem. Sci. Eng., 2022, 16(5): 755-763.
[7] Pei Sean Goh, Kar Chun Wong, Tuck Whye Wong, Ahmad Fauzi Ismail. Surface-tailoring chlorine resistant materials and strategies for polyamide thin film composite reverse osmosis membranes[J]. Front. Chem. Sci. Eng., 2022, 16(5): 564-591.
[8] Fan Yang, Junhui Huang, Lijun Deng, Yanqiu Zhang, Guodong Dang, Lu Shao. Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmental remediation[J]. Front. Chem. Sci. Eng., 2022, 16(5): 614-633.
[9] Linwei Zhu, Chun Ding, Tengyang Zhu, Yan Wang. A review on the forward osmosis applications and fouling control strategies for wastewater treatment[J]. Front. Chem. Sci. Eng., 2022, 16(5): 661-680.
[10] Rusen Zhou, Xiaoxiang Wang, Renwu Zhou, Janith Weerasinghe, Tianqi Zhang, Yanbin Xin, Hao Wang, Patrick Cullen, Hongxia Wang, Kostya (Ken) Ostrikov. Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications[J]. Front. Chem. Sci. Eng., 2022, 16(4): 475-483.
[11] Wei Wang, Yanying Wei, Jiang Fan, Jiahao Cai, Zong Lu, Li Ding, Haihui Wang. Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications[J]. Front. Chem. Sci. Eng., 2021, 15(4): 793-819.
[12] Laura Donato, Enrico Drioli. Imprinted membranes for sustainable separation processes[J]. Front. Chem. Sci. Eng., 2021, 15(4): 775-792.
[13] Kai Qu, Kang Huang, Zhi Xu. Recent progress in the design and fabrication of MXene-based membranes[J]. Front. Chem. Sci. Eng., 2021, 15(4): 820-836.
[14] Faiz Almansour, Monica Alberto, Rupesh S. Bhavsar, Xiaolei Fan, Peter M. Budd, Patricia Gorgojo. Recovery of free volume in PIM-1 membranes through alcohol vapor treatment[J]. Front. Chem. Sci. Eng., 2021, 15(4): 872-881.
[15] Hong Li, Fang Yi, Xingang Li, Xin Gao. Numerical modeling of mass transfer processes coupling with reaction for the design of the ozone oxidation treatment of wastewater[J]. Front. Chem. Sci. Eng., 2021, 15(3): 602-614.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed