|
|
Advanced membrane separation based on two-dimensional porous nanosheets |
Yanli Zhang, Shurui Han, Fengkai Wang, Hui Ye( ), Qingping Xin( ), Xiaoli Ding, Lizhi Zhao, Ligang Lin, Hong Li, Yuzhong Zhang( ) |
State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China |
|
|
Abstract Two-dimensional porous nanosheets such as metal-organic frameworks, covalent organic frameworks, fluorides of light lanthanide, and perforated graphene oxide are a class of nanomaterials with sheet-like morphologies and defined pore structures. Due to their porous structure and large lateral sizes, these materials exhibit excellent molecular transport properties in separation processes. This review focuses on the pore formation strategies for two-dimensional porous nanosheets and applications of these nanosheets and their constructed membranes in gas separation processes and separation processes applicable to water treatment and the humidity control of gas permeation. A brief discussion of challenges and future developments of separation applications with two-dimensional porous nanosheets and their constructed membranes is included in this review.
|
Keywords
two-dimensional porous nanosheets
membranes
gas separation
water treatment
humidity control
|
Corresponding Author(s):
Hui Ye,Qingping Xin,Yuzhong Zhang
|
About author: #These authors contributed equally to this work. |
Just Accepted Date: 24 May 2024
Issue Date: 13 August 2024
|
|
1 |
Z Ahmed , F Rehman , U Ali , A Ali , M Iqbal , K H Thebo , A Ali , M Iqbal , K H Thebo . Recent advances in MXene-based separation membranes. ChemBioEng Reviews, 2021, 8(2): 110–120
https://doi.org/10.1002/cben.202000026
|
2 |
S P Kaldis , G C Kapantaidakis , G P Sakellaropoulos . Polymer membrane conditioning and design for enhanced CO2-N2 separation. Coal Science and Technology, 1995, 24: 1927–1930
https://doi.org/10.1016/S0167-9449(06)80197-7
|
3 |
J R Werber , C O Osuji , M Elimelech . Materials for next-generation desalination and water purification membranes. Nature Reviews. Materials, 2016, 1(5): 16018–16034
https://doi.org/10.1038/natrevmats.2016.18
|
4 |
L Wang , M S H Boutilier , P R Kidambi , D Jang , N Hadjiconstantinou , R Karnik . Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotechnology, 2017, 12(6): 509–522
https://doi.org/10.1038/nnano.2017.72
|
5 |
W J Koros , C Zhang . Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297
https://doi.org/10.1038/nmat4805
|
6 |
D S Sholl , R P Lively . Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
https://doi.org/10.1038/532435a
|
7 |
W Wang , Y Y Wei , J Fan , J H Cai , Z Lu , L Ding , H H Wang . Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications. Frontiers of Chemical Science and Engineering, 2021, 15(4): 793–819
https://doi.org/10.1007/s11705-020-2016-8
|
8 |
A Giwa , M Ahmed , S W Hasan . Polymers for membrane filtration in water purification. Polymeric Materials for Clean Water, 2019, 16: 167–190
https://doi.org/10.1007/978-3-030-00743-0_8
|
9 |
H B Park , J Kamcev , L M Robeson , M Elimelech , B D Freeman . Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530–0540
|
10 |
Y Cheng , Y Pu , D Zhao . Two-dimensional membranes: new paradigms for high-performance separation membranes. Chemistry, an Asian Journal, 2020, 15(15): 2241–2270
https://doi.org/10.1002/asia.202000013
|
11 |
K S Novoselov , A K Geim , S V Morozov , D Jiang , Y Zhang , S V Dubonos , I V Grigorieva , A A Firsov . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896
|
12 |
H Bux , F Liang , Y Li , J Cravillon , M Wiebcke , J Caro . Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001
https://doi.org/10.1021/ja907359t
|
13 |
Y T Qin , Y Wan , J Guo , M T Zhao . Two-dimensional metal-organic framework nanosheet composites: preparations and applications. Chinese Chemical Letters, 2022, 33(2): 693–702
https://doi.org/10.1016/j.cclet.2021.07.013
|
14 |
A P Côté , A I Benin , N W Ockwig , M O’keeffe , A J Matzger , O M. Matzger A J Yaghi , O M Yaghi . Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751): 1166–1170
https://doi.org/10.1126/science.1120411
|
15 |
M Alhabeb , K Maleski , B Anasori , P Lelyukh , L Clark , S Sin , Y Gogotsi . Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chemistry of Materials, 2017, 29(18): 7633–7644
https://doi.org/10.1021/acs.chemmater.7b02847
|
16 |
X Zhang , X Xie , H Wang , J Zhang , B Pan , Y Xie . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of the American Chemical Society, 2013, 135(1): 18–21
https://doi.org/10.1021/ja308249k
|
17 |
Q Wang , D O’hare . Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155
https://doi.org/10.1021/cr200434v
|
18 |
H Zhang . Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469
https://doi.org/10.1021/acsnano.5b05040
|
19 |
L Ding , Y Y Wei , Y J Wang , H B Chen , J Caro , H H Wang . A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 56(7): 1825–1829
https://doi.org/10.1002/anie.201609306
|
20 |
T F Ajibade , H L Tian , K H Lasisi , K S Zhang . Bio-inspired PDA@WS2 polyacrylonitrile ultrafiltration membrane for the effective separation of saline oily wastewater and the removal of soluble dye. Separation and Purification Technology, 2022, 299: 12711–12722
https://doi.org/10.1016/j.seppur.2022.121711
|
21 |
S Q Han , W H You , S H Lv , C J Du , X Zhang , E Zhang , J Y Zhu , Y T Zhang . Ionic liquid modified COF nanosheet interlayered polyamide membranes for elevated nanofiltration performance. Desalination, 2023, 548: 116300–116311
https://doi.org/10.1016/j.desal.2022.116300
|
22 |
M Kunimatsu , K Nakagawa , T Yoshioka , T Shintani , T Yasui , E Kamio , S C E Tsang , J X Li , H Matsuyama . Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. Journal of Membrane Science, 2020, 595: 117579–117608
https://doi.org/10.1016/j.memsci.2019.117598
|
23 |
Y Liu , X P Wang , Z A Zong , R J Lin , X Y Zhang , F S Chen , W D Ding , L L Zhang , X M Meng , J W Hou . Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. Journal of Membrane Science, 2022, 653: 120520–120531
https://doi.org/10.1016/j.memsci.2022.120520
|
24 |
H Liu , B Li , P Zhao , R M Xu , C Y Tang , W L Song , Z A Habib , X H Wang . Fabrication of novel thin-film composite membrane based on ultrathin metal-organic framework interlayer for enhancing forward osmosis performance. Chinese Chemical Letters, 2023, 34(12): 108369–108379
https://doi.org/10.1016/j.cclet.2023.108369
|
25 |
M Liu , P A Gurr , Q Fu , P A Webley , G G Qiao . Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(46): 23169–23196
https://doi.org/10.1039/C8TA09070J
|
26 |
P Y Wang , Y Peng , C Y Zhu , R Yao , H L Song , L Kun , W S Yang . Single-phase covalent organic framework staggered stacking nanosheet membrane for CO2-selective separation. Angewandte Chemie International Edition, 2021, 60(35): 19047–19052
https://doi.org/10.1002/anie.202106346
|
27 |
P Manchanda , S Chisca , L Upadhyaya , V E Musteata , M Carrington , S P Nunes . Diffusion-induced in situ growth of covalent organic frameworks for composite membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(45): 25802–25807
https://doi.org/10.1039/C9TA11191C
|
28 |
F Wang , S Han , Y Zhang , L Gao , X Li , L Zhao , H Ye , H Li , Q Xin , Y Zhang . Constructing rapid water vapor transport channels within mixed matrix membranes based on two-dimensional mesoporous nanosheets. Communications Chemistry, 2022, 5(1): 2065–2075
https://doi.org/10.1038/s42004-022-00681-9
|
29 |
J Wang , P Yang , L Liu , B Zheng , J Jiang , J Ma , Y Yan , S Yang , L Yang , Q K Liu . et al.. Facile exfoliation of two-dimensional crystalline monolayer nanosheets from an amorphous metal-organic framework. Chinese Chemical Society Chemistry, 2022, 4(6): 1879–1888
https://doi.org/10.31635/ccschem.021.202101208
|
30 |
K Zhang , Z B Fang , Q Q Huang , A A Zhang , J L Li , J Y Li , Y Zhang , T Zhang , R Cao . Exfoliation of a two-dimensional metal-organic framework for enhanced photocatalytic CO2 reduction. Inorganic Chemistry, 2023, 62(22): 8472–8477
https://doi.org/10.1021/acs.inorgchem.3c01142
|
31 |
B Shao , X L He , D Huang , Y L Xiang , Y Luo , Y M Wei , L B Jiang , R K Huang , M Dong , J Huang . Oriented exfoliating 3D metal-organic frameworks into ultrathin metal-organic nanosheets with different crystal faces. Advanced Functional Materials, 2024, 2315911
https://doi.org/10.1002/adfm.202315911
|
32 |
H N Abdelhamid . High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks. Journal of Environmental Chemical Engineering, 2021, 9(1): 104404–104415
https://doi.org/10.1016/j.jece.2020.104404
|
33 |
M Yin , Z Li , L Wang , S K Tang . Preparation of hierarchically porous PVP/ZIF-8 in supercritical CO2 by PVP-induced defect-formation method for high-efficiency gas adsorption. Separation and Purification Technology, 2023, 314: 123550–123559
https://doi.org/10.1016/j.seppur.2023.123550
|
34 |
S K Jeong , J Y Jeong , S Lim , W S Kim , H T Kwon , J Kim . Mixed matrix membranes incorporating two-dimensional ZIF-8 nanosheets for enhanced CO2/N2 separation. Chemical Engineering Journal, 2024, 481: 148294–148305
https://doi.org/10.1016/j.cej.2023.148294
|
35 |
J Yang , L Kong , C Huang , C C Wang , S H Wei , L Zhou . Liquid-liquid interfacial approach for rapid synthesis of well-crystalline two-dimensional metal-organic frameworks for nitro reduction. Chemical Engineering Journal, 2024, 485: 149969–149979
https://doi.org/10.1016/j.cej.2024.149969
|
36 |
H Lu , S Zhu . Interfacial synthesis of free-standing metal-organic framework membranes. European Journal of Inorganic Chemistry, 2013, 2013(8): 1294–1300
https://doi.org/10.1002/ejic.201201009
|
37 |
L A Cao , M Wei , X Guo , D L Wang , L Chen , J Guo . Conductive Ni3(HITP)2 nanofilm with asymmetrical morphology prepared by gas-liquid interface self-assembly for glucose sensing. Ionics, 2024, 30(4): 2375–2385
https://doi.org/10.1007/s11581-024-05406-7
|
38 |
Y Y Guo , Q Zhang , S Q Gao , H Y Wang , Z Y Li , J K Qiu , Y Zhao , Z M Liu , J J Wang . Bi-functional ionic liquids facilitate liquid-phase exfoliation of porphyrin-based covalent organic frameworks in water for highly efficient CO2 photoreduction. Green Chemistry, 2022, 24(24): 9530–9541
https://doi.org/10.1039/D2GC03194A
|
39 |
J Yao , C Liu , X Liu , J Guo , S Zhang , J Zheng , S Li . Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. Journal of Membrane Science, 2020, 601: 117864–117875
https://doi.org/10.1016/j.memsci.2020.117864
|
40 |
T Wang , R J Zhang , P D Zhai , M J Li , X Y Liu , C X Li . Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(2): 1292–1299
https://doi.org/10.1039/D3TA06312G
|
41 |
R Liu , Q Yan , Y Tang , R Liu , L Huang , Q Shuai . NaCl template-assisted synthesis of self-floating COFs foams for the efficient removal of sulfamerazine. Journal of Hazardous Materials, 2022, 421: 126702–126714
https://doi.org/10.1016/j.jhazmat.2021.126702
|
42 |
C Ding , M Breunig , J Timm , R Marschall , J Senker , S Agarwal . Flexible, mechanically stable, porous self-standing microfiber network membranes of covalent organic frameworks: preparation method and characterization. Advanced Functional Materials, 2021, 31(49): 2106507–2106515
https://doi.org/10.1002/adfm.202106507
|
43 |
J Chen , R Li , S Liu , J Zhang , X Wu , J Wang . Surfactant-assisted interfacial polymerization towards high-crystallinity COF membranes for organic solvent nanofiltration. Journal of Membrane Science, 2024, 694: 122404–122415
https://doi.org/10.1016/j.memsci.2023.122404
|
44 |
A Ortega-Guerrero , H Sahabudeen , A Croy , A Dianat , R Dong , X Feng , G Cuniberti . Multiscale modeling strategy of 2D covalent organic frameworks confined at an air-water interface. ACS Applied Materials & Interfaces, 2021, 13(22): 26411–26420
https://doi.org/10.1021/acsami.1c05967
|
45 |
Z W Ou , Z H Liang , X Dong , F L Tan , L Gong , P Zhao , H L Wang , W Liu , Z K Zheng . Surfactants mediated synthesis of highly crystalline thin films of imine-linked covalent organic frameworks on water surface. Chinese Journal of Chemistry, 2021, 39(12): 3322–3328
https://doi.org/10.1002/cjoc.202100493
|
46 |
X Shi , D Ma , F Xu , Z Zhang , Y Wang . Table-salt enabled interface-confined synthesis of covalent organic framework (COF) nanosheets. Chemical Science, 2020, 11(4): 989–996
https://doi.org/10.1039/C9SC05082E
|
47 |
H Yu , J Guan , Y Chen , Y X Sun , S Y Zhou , J F Zheng , Q F Zhang , S H Li , S B Zhang . Large-area soluble covalent organic framework oligomer coating for organic solution nanofiltration membranes. Nano Micro Small, 2023, 20(4): 2305613–2305624
|
48 |
L Zhang , W Kang , Q Ma , Y Xie , Y Jia , N Deng , Y Zhang , J Ju , B Cheng . Two-dimensional acetate-based light lanthanide fluoride nanomaterials (F-Ln, Ln = La, Ce, Pr, and Nd): morphology, structure, growth mechanism, and stability. Journal of the American Chemical Society, 2019, 141(33): 13134–13142
https://doi.org/10.1021/jacs.9b05355
|
49 |
S Y Wang , L Y Wang , H Cong , R Wang , J Yang , X Li , Y Zhao , H. Cong H J Wang , R Wang . et al.. A review: g-C3N4 as a new membrane material. Journal of Environmental Chemical Engineering, 2022, 10(4): 108189–108211
https://doi.org/10.1016/j.jece.2022.108189
|
50 |
F He , Z X Wang , Y X Li , S Q Peng , B Liu . The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Applied Catalysis B: Environmental, 2020, 269(15): 118828–118839
https://doi.org/10.1016/j.apcatb.2020.118828
|
51 |
C C Chen , M Xie , L S Kong , W H Lu , Z Y Feng , J H Zhan . Mn3O4 nanodots loaded g-C3N4 nanosheets for catalytic membrane degradation of organic contaminants. Journal of Hazardous Materials, 2020, 390(15): 122146–122157
https://doi.org/10.1016/j.jhazmat.2020.122146
|
52 |
B Lin , M Y Xia , B R Xu , B Chong , Z H Chen , G D Yang . Bio-inspired nanostructured g-C3N4-based photocatalysts: a comprehensive review. Chinese Journal of Catalysis, 2022, 43(8): 2141–2172
https://doi.org/10.1016/S1872-2067(22)64110-X
|
53 |
J Q Dong , Y Zhang , M I Hussain , W J Zhou , Y Z Chen , L N Wang . g-C3N4: properties, pore modifications, and photocatalytic applications. Nanomaterials, 2021, 12(1): 121–134
https://doi.org/10.3390/nano12010121
|
54 |
X Zhang , X Xie , H Wang , J J Zhang , B C Pan , Y Xie . Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. Journal of American Chemical Society, 2013, 135(1): 18–21
https://doi.org/10.1021/ja308249k
|
55 |
J Xu , L Zhang , R Shi , Y Zhu . Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(46): 14766–14772
https://doi.org/10.1039/c3ta13188b
|
56 |
F Dong , Y H Li , Z Y Wang , W K Ho . Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Applied Surface Science, 2015, 358(PARTA): 393–403
|
57 |
Y H Chen , Z M Wang , Y G Li , J Guo , L Dai , J F Zheng , S H Li , S B Zhang . Incorporating 2D porous organic polymer nanosheets into high-temperature proton-exchange membranes for low H3PO4 loss. Journal of Membrane Science, 2024, 693: 122344–122350
https://doi.org/10.1016/j.memsci.2023.122344
|
58 |
M Verma , G Bahuguna , S Singh , A Kumari , D Ghosh , H Haick , R Gupta . Porous SnO2 nanosheets for room temperature ammonia sensing in extreme humidity. Materials Horizons, 2024, 11(1): 184–195
https://doi.org/10.1039/D3MH01078C
|
59 |
Z T Li , P Zhou , Y X Zhao , W Y Jiang , B X Zhao , X S Chen , J P Wang , R Yang , C L Zuo . Ultrathin and porous CoP nanosheets as an efficient electrocatalyst for boosting hydrogen evolution behavior at a broad range of pH. International Journal of Hydrogen Energy, 2024, 51: 1279–1286
https://doi.org/10.1016/j.ijhydene.2023.09.181
|
60 |
X Y M Dong , H Y Xia , R Y Pang , E Wang , J Li . Urea with trifunctional effects: an assistant for high exposure of single-atom active sites on 2D nanosheets viastructural transformation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2024, 12(9): 5422–5428
https://doi.org/10.1039/D3TA07606G
|
61 |
H B Li , C N Zhang , Q Lin , F Lin , T S Xiao , K X Yan , B Shen , H B Zhang , Y Tang , Z Z Sun . Epitaxial growth of two-dimensional MWW zeolite. Journal of the American Chemical Society, 2024, 146(12): 8520–8527
https://doi.org/10.1021/jacs.4c00162
|
62 |
Z X Zhao , J Yang , C L Wang , Y T Xue , H Wu , W L Xie , P P Wu , C Z Wang , W Xing , Y Wang . et al.. Template-free synthesis of highly porous silica-doped alumina with exceptional stability via intercalation-exfoliation of boehmite into two-dimensional nanosheets. Science China Materials, 2024, 67(1): 261–271
https://doi.org/10.1007/s40843-023-2686-y
|
63 |
H B Huang , H D Shi , P Das , J Q Qin , Y G Li , X Wang , F Su , P C Wen , S Y Li , P F Lu . et al.. The chemistry and promising applications of graphene and porous graphene materials. Advanced Functional Materials, 2020, 30(41): 1909035–1909046
https://doi.org/10.1002/adfm.201909035
|
64 |
S P Surwade , S N Smirnov , I V Vlassiouk , R R Unocic , G M Veith , S Dai , S M Mahurin . Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464
https://doi.org/10.1038/nnano.2015.37
|
65 |
S L Li , W Gu , Y Q Sun , D Zou , W H Jing . Perforative pore formation on nanoplates for 2D porous MXene membranes via H2O2 mild etching. Ceramics International, 2021, 47(21): 29930–29940
https://doi.org/10.1016/j.ceramint.2021.07.166
|
66 |
S Hong , J K El-Demellawi , Y Lei , Z Liu , F A Marzooqi , H A Arafat , H N Alshareef . Porous Ti3C2Tx MXene membranes for highly efficient salinity gradient energy harvesting. ACS Nano, 2022, 16(1): 792–800
https://doi.org/10.1021/acsnano.1c08347
|
67 |
J Kim , J Kang , J P Kim , J Y Kim , O Kwon , D W Kim . Scalable fabrication of nanoporous multilayer graphene oxide membrane for organic solvent nanofiltration. Carbon, 2023, 207: 162–171
https://doi.org/10.1016/j.carbon.2023.03.008
|
68 |
M Kang , D H Lee , Y M Kang , H Jung . Electron beam irradiation dose dependent physico-chemical and electrochemical properties of reduced graphene oxide for supercapacitor. Electrochimica Acta, 2015, 184: 427–435
https://doi.org/10.1016/j.electacta.2015.10.053
|
69 |
Y B Wei , Z Pastuovic , T Murphy , D B Gore . Precise tuning chemistry and tailoring defects of graphene oxide films by low energy ion beam irradiation. Applied Surface Science, 2020, 505: 144651–144660
https://doi.org/10.1016/j.apsusc.2019.144651
|
70 |
H N Yang , G N Chen , L Cheng , Y Liu , Y X Cheng , H J Yao , Y Liu , G P Liu , W Q Jin . Manipulating gas transport channels in graphene oxide membrane with swift heavy ion irradiation. Separation and Purification Technology, 2023, 320: 124136–124147
https://doi.org/10.1016/j.seppur.2023.124136
|
71 |
S L Li , J Lu , D Zou , L L Cui , B Chen , F Wang , J Qiu , T X Yu , Y Q Sun , W H Jing . Constructing reduced porous graphene oxide for tailoring mass-transfer channels in ultrathin MXene (Ti3C2Tx) membranes for efficient dye/salt separation. Chemical Engineering Journal, 2023, 457: 141217–141228
https://doi.org/10.1016/j.cej.2022.141217
|
72 |
L M Robeson . The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400
https://doi.org/10.1016/j.memsci.2008.04.030
|
73 |
B Comesaña-Gándara , J Chen , C G Bezzu , M L Carta , I Rose , M C Ferrari , E Esposito , A Fuoco , J N Jansen , N B Mckeown . Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy & Environmental Science, 2019, 12(9): 2733–2740
https://doi.org/10.1039/C9EE01384A
|
74 |
L M Robeson . Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185
https://doi.org/10.1016/0376-7388(91)80060-J
|
75 |
Y Zhang , M Zhao , X Li , Q Xin , X Ding , L Zhao , H Ye , L Lin , H Li , Y Zhang . Constructing mixed matrix membranes for CO2 separation based on light lanthanide fluoride nanosheets with mesoporous structure. Journal of Industrial and Engineering Chemistry, 2023, 125: 200–210
https://doi.org/10.1016/j.jiec.2023.05.029
|
76 |
Q Xin , W Shao , Q Ma , X Ye , Z Huang , B Li , S Wang , H Li , Y Zhang . Efficient CO2 separation of multi-permselective mixed matrix membranes with a unique interfacial structure regulated by mesoporous nanosheets. ACS Applied Materials & Interfaces, 2020, 12(42): 48067–48076
https://doi.org/10.1021/acsami.0c10895
|
77 |
M Zhao , J Guo , Q Xin , Y Zhang , X Li , X Ding , L Zhang , L Zhao , H Ye , H Li . et al.. Novel aminated F-Ce nanosheet mixed matrix membranes with controllable channels for CO2 capture. Separation and Purification Technology, 2023, 324: 124512–124523
https://doi.org/10.1016/j.seppur.2023.124512
|
78 |
H W Kim , H W Yoon , S M Yoon , B M Yoo , B K Ahn , Y H Cho , H J Shin , H Yang , U Paik , S Kwon . et al.. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95
https://doi.org/10.1126/science.1236098
|
79 |
S P Koenig , L D Wang , J Pellegrino , S J Bunch . Selective molecular sieving through porous graphene. Nature Nanotechnology, 2012, 7(11): 728–732
https://doi.org/10.1038/nnano.2012.162
|
80 |
M S H Boutilier , D J Jang , J C Idrobo , P R Kidambi , N G Hadjiconstantinou , R Karnik . Molecular sieving across centimeter-scale single-layer nanoporous graphene membranes. ACS Nano, 2017, 11(6): 5726–5736
https://doi.org/10.1021/acsnano.7b01231
|
81 |
T Ashirov , A O Yazaydin , A Coskun . Tuning the transport properties of gases in porous graphene membranes with controlled pore size and thickness. Advanced Materials, 2022, 34(5): 2106785–2106798
https://doi.org/10.1002/adma.202106785
|
82 |
C Van Goethem , Y Shen , H Y Chi , M Mensi , K Zhao , A Nijmeijer , P E Just , K V Agrawal . Advancing molecular sieving via Å-scale pore tuning in bottom-up graphene synthesis. ACS Nano, 2024, 18(7): 5730–5740
https://doi.org/10.1021/acsnano.3c11885
|
83 |
T Rodenas , I Luz , G Prieto , B Seoane , H Miro , A Corma , F Kapte , X Francesc . Llabrés i X, Gascon J. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2015, 14(1): 48–55
https://doi.org/10.1038/nmat4113
|
84 |
J M Wan , M J Nian , C Yang , K Ge , J J Liu , Z Q Chen , J G Duan , W Q Jin . Interface regulation of mixed matrix membranes by ultrathin MOF nanosheet for faster CO2 transfer. Journal of Membrane Science, 2022, 642: 119991–120002
https://doi.org/10.1016/j.memsci.2021.119991
|
85 |
X Bi , Y Zhang , F Zhang , S Zhang , Z Wang , J Jin . MOF nanosheet-based mixed matrix membranes with metal-organic coordination interfacial interaction for gas separation. ACS Applied Materials & Interfaces, 2020, 12(43): 49101–49110
https://doi.org/10.1021/acsami.0c14639
|
86 |
Z Yang , Y Belmabkhout , L N Mchugh , D Ao , Y Sun , S Li , Z Qiao , T D Bennett , M D Guiver , C Zhong . ZIF-62 glass foam self-supported membranes to address CH4/N2 separations. Nature Materials, 2023, 22(7): 888–894
https://doi.org/10.1038/s41563-023-01545-w
|
87 |
M Carta , R Malpass-Evans , M Croad , Y Rogan , J C Jansen , P Bernardo , F Bazzarelli , N B Mckeown . An efficient polymer molecular sieve for membrane gas separations. Science, 2013, 339(6117): 303–307
https://doi.org/10.1126/science.1228032
|
88 |
Y Peng , Y S Li , Y J Ban , H Jin , W M Jiao , X L Liu , W S Yang . Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
https://doi.org/10.1126/science.1254227
|
89 |
Y Peng , Y Li , Y Ban , W S Yang . Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie, 2017, 129(33): 9889–9893
https://doi.org/10.1002/ange.201703959
|
90 |
C C Ma , G S Gao , H O Liu , Y Liu , X F Zhang . Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts. Journal of Membrane Science, 2022, 644: 120167–120177
https://doi.org/10.1016/j.memsci.2021.120167
|
91 |
H Song , Y Peng , C Wang , L Shu , C Y Zhu , Y L Wang , H Y He , W S Yang . Structure regulation of MOF nanosheet membrane for accurate H2/CO2 separation. Angewandte Chemie International Edition, 2023, 62(17): e202218472–202218480
https://doi.org/10.1002/anie.202218472
|
92 |
B P Biswal , H D Chaudhari , R Banerjee , U K Kharul . Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation. Chemistry, 2016, 22(14): 4695–4699
https://doi.org/10.1002/chem.201504836
|
93 |
X Chang , H Guo , Q Chang , Z H Tian , Y W Zhang , D Y Li , J Wang , Y T Zhang . Mixed-matrix membranes composed of dopamine modified covalent organic framework and PIM-1 for efficient CO2/N2 separation. Journal of Membrane Science, 2023, 686: 122017–122028
https://doi.org/10.1016/j.memsci.2023.122017
|
94 |
Q Xin , X Zhang , W Shao , H Li , Y Z Zhang . COF-based MMMs with light-responsive properties generating unexpected surface segregation for efficient SO2/N2 separation. Journal of Membrane Science, 2023, 665: 121109–121120
https://doi.org/10.1016/j.memsci.2022.121109
|
95 |
H Fan , A Mundstock , A Feldhoff , A Knebel , J Gu , H Meng , J Caro . Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. Journal of the American Chemical Society, 2018, 140(32): 10094–10098
https://doi.org/10.1021/jacs.8b05136
|
96 |
Y Ying , M Tong , S C Ning , S K Ravi , S B Peh , S C Tan , S J Pennycook , D Zhao . Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. Journal of the American Chemical Society, 2020, 142(9): 4472–4480
https://doi.org/10.1021/jacs.9b13825
|
97 |
S Wang , Y Yang , X Liang , Y Ren , H Ma , Z Zhu , J Wang , S Zeng , S Song , X Wang . et al.. Ultrathin ionic COF Membrane via polyelectrolyte-mediated assembly for efficient CO2 separation. Advanced Functional Materials, 2023, 33(24): 2300386–2300392
https://doi.org/10.1002/adfm.202300386
|
98 |
J Fu , J Y Liu , G H Zhang , Q H Zhu , S L Wang , S Qin , L He , G H Tao . Boost of gas adsorption kinetics of covalent organic frameworks via ionic liquid solution process. Small, 2023, 19(39): 2302570–2302579
https://doi.org/10.1002/smll.202302570
|
99 |
J Y Liu , L Zhang , J Fu , S L Wang , Y R Zhou , Y H Wang , S Qin , G H Tao , L He . Mobile hydrogen-bonding donor in covalent organic framework for efficient iodine capture. Separation and Purification Technology, 2024, 331: 125664
https://doi.org/10.1016/j.seppur.2023.125664
|
100 |
Y Ying , S B Peh , H Yang , Z Q Yang , D Zhao . Ultrathin covalent organic framework membranes via a multi-interfacial engineering strategy for gas separation. Advanced Materials, 2022, 34(25): 2104946–2104952
https://doi.org/10.1002/adma.202104946
|
101 |
J R Du , L Liu , A Chakma , X S Feng . Using poly(N,N-dimethylaminoethyl methacrylate)/polyacrylonitrile composite membranes for gas dehydration and humidification. Chemical Engineering Science, 2010, 65(16): 4672–4681
https://doi.org/10.1016/j.ces.2010.05.005
|
102 |
T M H Le , R Wang , S Sairiam . Self-protecting PVDF-PDA-TiO2 membranes towards highly efficient and prolonged dye wastewater treatment by photocatalytic membranes. Journal of Membrane Science, 2023, 683: 121789–121798
https://doi.org/10.1016/j.memsci.2023.121789
|
103 |
D I Petukhov , E A Chernova , O O Kapitanova , O V Boytsova , R G Valeev , A P Chumakov , O V Konovalov , A A Eliseev . Thin graphene oxide membranes for gas dehumidification. Journal of Membrane Science, 2019, 577: 184–194
https://doi.org/10.1016/j.memsci.2019.01.041
|
104 |
R Takenaka , N Moriyama , H K Nagasawa , M K Kanezashi , T N Tsuru . Permeation properties of water vapor through graphene oxide/polymer substrate composite membranes. Membranes, 2023, 13(5): 533–544
https://doi.org/10.3390/membranes13050533
|
105 |
J Yu , K Ruengkajorn , D G Crivoi , C P Chen , J C Buffet , D O’Hare . High gas barrier coating using non-toxic nanosheet dispersions for flexible food packaging film. Nature Communications, 2019, 10(1): 2398–2408
https://doi.org/10.1038/s41467-019-10362-2
|
106 |
J J Wang , X Z Xu , J Zhang , M T Chen , S Y Dong , J B Han , M Wei . Moisture-permeable, humidity-enhanced gas barrier films based on organic/inorganic multilayers. ACS Applied Materials & Interfaces, 2018, 10(33): 28130–28138
https://doi.org/10.1021/acsami.8b09740
|
107 |
H J Lee , Y M Shirke , J Kim , H J Yu , C H Yoo , S Back , J D Jeon , J S Lee . Tailoring molecular structures of UiO-66-NH2 for high performance H2O/N2 separation membranes: a synergistic effect of hydrophilic modification and defect engineering. Journal of Membrane Science, 2023, 665: 121096–121105
https://doi.org/10.1016/j.memsci.2022.121096
|
108 |
R Deng , W Han , K L Yeung . Confined PFSA/MOF composite membranes in fuel cells for promoted water management and performance. Catalysis Today, 2019, 331: 12–17
https://doi.org/10.1016/j.cattod.2018.05.016
|
109 |
D Cohen-Tanugi , J C Grossman . Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608
https://doi.org/10.1021/nl3012853
|
110 |
K Celebi , J Buchheim , R M Wyss , A Droudian , P Gasser , I Shorubalko , J I Kye , C Lee , H G Park . Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292
https://doi.org/10.1126/science.1249097
|
111 |
S C O’Hern , M S H Boutilier , J C Idrobo , Y Song , J Kong , T Laoui , M Atieh , R Karnik . Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 2014, 14(3): 1234–1241
https://doi.org/10.1021/nl404118f
|
112 |
O Akhavan . Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano, 2010, 4(7): 4174–4180
https://doi.org/10.1021/nn1007429
|
113 |
Y Yang , X Yang , L Liang , Y Y Gao , H N Cheng , X M Li , M C Zou , R Z Ma , Q Yuan , X F Duan . Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 2019, 364(6445): 1057–1062
https://doi.org/10.1126/science.aau5321
|
114 |
J Guan , X You , B Shi , Y Liu , J Yuan , C Yang , X Pang , H Wu , J Shen , C Fan . et al.. Engineering multi-pathway graphene oxide membranes toward ultrafast water purification. Journal of Membrane Science, 2021, 638: 119706–119716
https://doi.org/10.1016/j.memsci.2021.119706
|
115 |
Y Wang , L Li , Y Wei , J Xue , H Chen , L Ding , J Caro , H Wang . Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angewandte Chemie International Edition, 2017, 56(31): 8974–8980
https://doi.org/10.1002/anie.201701288
|
116 |
Y C Liu , D Q Xie , M R Song , L Z Jiang , G Fu , B Liu , J Y Li . Water desalination across multilayer graphitic carbon nitride membrane: insights from non-equilibrium molecular dynamics simulations. Carbon, 2018, 140: 131–138
https://doi.org/10.1016/j.carbon.2018.08.043
|
117 |
J Ran , T Pan , Y Y Wu , C Q Chu , P Cui , P P Zhang , X Y Ai , C F Fu , Z J Yang , T W Xu . Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers. Angewandte Chemie International Edition, 2019, 58(46): 16463–16468
https://doi.org/10.1002/anie.201908786
|
118 |
Y Y Wu , C F Fu , Q Huang , P P Zhang , P Cui , J Ran , J L Yang , T W Xu . 2D heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes. ACS Nano, 2021, 15(4): 7586–7595
https://doi.org/10.1021/acsnano.1c01105
|
119 |
S Yuan , X Li , J Zhu , G Zhang , P Van Puyvelde , B Van der Bruggen . Covalent organic frameworks for membrane separation. Chemical Society Reviews, 2019, 48(10): 2665–2681
https://doi.org/10.1039/C8CS00919H
|
120 |
X Xu , X Wu , K Xu , H Xu , H Z Chen , N Huang . Pore partition in two-dimensional covalent organic frameworks. Nature Communications, 2023, 14(1): 3360–3368
https://doi.org/10.1038/s41467-023-39126-9
|
121 |
Y Li , Q X Wu , X H Guo , M C Zhang , B Chen , G Y Wei , X Li , X F Li , S J Li , L J Ma . Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nature Communications, 2020, 11(1): 599–609
https://doi.org/10.1038/s41467-019-14056-7
|
122 |
F M Sheng , B Wu , X Y Li , T T Xu , M A Shehzad , X X Wang , L Ge , H T Wang , T W Xu . Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels. Advanced Materials, 2021, 33(44): 2104404–2104409
https://doi.org/10.1002/adma.202104404
|
123 |
A K Xiao , X S Shi , Z Zhang , C C Yin , S Xiong , Y Wang . Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. Journal of Membrane Science, 2021, 624: 119122–119132
https://doi.org/10.1016/j.memsci.2021.119122
|
124 |
Y Q Zhang , J Guo , G Han , Y P Bai , Q H Ge , J Ma , C H Lau , L Shao . Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Science Advances, 2021, 7(13): 8706–8712
https://doi.org/10.1126/sciadv.abe8706
|
125 |
B Sapkota , W T Liang , A Vahidmohammadi , R Karnik , A Noy , M Wanunu . High permeability sub-nanometre sieve composite MoS2 membranes. Nature Communications, 2020, 11(1): 2247–2255
|
126 |
C Kim , D Y Koh , Y J Lee , J Choi , H S Cho , M Choi . Bottom-up synthesis of two-dimensional carbon with vertically aligned ordered micropores for ultrafast nanofiltration. Science Advances, 2023, 9(6): 7871–7879
https://doi.org/10.1126/sciadv.ade7871
|
127 |
S R Han , Y F Xie , Q P Xin , J Lv , Y L Zhang , F K Wang , X J Fu , H Li , L Z Zhao , H Ye . et al.. High permeability dual-channel membranes based on porous fluorine-cerium nanosheets for molecular sieving. Journal of Membrane Science, 2023, 666: 121126–121136
https://doi.org/10.1016/j.memsci.2022.121126
|
128 |
Y Yu , X J Wu , M Zhao , Q Ma , J Chen , B Chen , M Sindoro , J Yang , S Han , Q Lu . et al.. Anodized aluminum oxide templated synthesis of metal-organic frameworks used as membrane reactors. Angewandte Chemie International Edition, 2017, 56(2): 578–581
https://doi.org/10.1002/anie.201610291
|
129 |
J Xue , J M Gao , M J Xu , Y Q Zong , M X Wang , S S Ma . Super wetting porous g-C3N4 nanosheets coated PVDF membrane for emulsified oil/water separation and aqueous organic pollutant elimination. Advanced Materials Interfaces, 2021, 8(19): 2100962–2100970
https://doi.org/10.1002/admi.202100962
|
130 |
R Li , Y Ren , P Zhao , J Wang , J D Liu , Y T Zhang . Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. Journal of Hazardous Materials, 2019, 365: 606–614
https://doi.org/10.1016/j.jhazmat.2018.11.033
|
131 |
K G Zhou , D Mcmanus , E Prestat , X Zhong , Y Y Shin , H L Zhang , S J Haigh , C Casiraghi . Self-catalytic membrane photo-reactor made of carbon nitride nanosheets. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(30): 11666–11671
https://doi.org/10.1039/C5TA09152G
|
132 |
X J Li , Y Liu , Q H Liu , Z L Zheng , H X Guo . Single-layer membranes for organic solvent nanofiltration: a molecular dynamics simulation and comparative experimental study. RSC Advances, 2022, 12(12): 7189–7198
https://doi.org/10.1039/D1RA09061E
|
133 |
E G Ajebe , C C Hu , G Lugito , C P Hu , W S Hung , K R Lee , J Y Lai . Investigating the impact of metal ion variations in terephthalate metal-organic frameworks on the organic solvent nanofiltration performance of mixed matrix membranes. Journal of Membrane Science, 2024, 700: 122715–122725
https://doi.org/10.1016/j.memsci.2024.122715
|
134 |
M Wu , X X Fu , J Li , W Q Zhao , X B Li . SWCNTs-channeled MOF nanosheet membrane for high-efficient organic solvent nanofiltration. Separation and Purification Technology, 2024, 338: 126328–126339
https://doi.org/10.1016/j.seppur.2024.126328
|
135 |
L Chen , X Zhou , R Meng , D Li , D Li , X Li , K Zhang , Q Ji , Y Li , Y Xia , L Ci . Stable antifouling membranes based on graphene oxide nanosheets for organic solvent nanofiltration. ACS Applied Nano Materials, 2024, 7(2): 1929–1939
https://doi.org/10.1021/acsanm.3c05197
|
136 |
G Li , Y Liu , Z He , K Shi , F Liu . Retrievable ultrafast covalent triazine framework membranes for organic solvent nanofiltration. Chemical Engineering Journal, 2024, 484: 149488–149499
https://doi.org/10.1016/j.cej.2024.149488
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|