Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2025, Vol. 19 Issue (1) : 4    https://doi.org/10.1007/s11705-024-2504-3
Enhanced C3H6/C3H8 separation performance in polysulfone membrane blended with rigid ZIF-8 crystals
Jiayu Luo1, Luxi Lyu1, Zongjie Yin2, Yanying Wei1,3()
. State Key Laboratory of Pulp and Paper Engineering, School of Chemistry & Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
. Guangzhou Academy of Special Equipment Inspection & Testing, Guangzhou 510000, China
. Quzhou Membrane Material Innovation Institute, Quzhou 324000, China
 Download: PDF(1336 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Metal-organic frameworks have a wide range of applications in the field of membrane separation, but the inherent flexible structure and the difficulty for scale-up hinder their further applications. Herein, the relatively rigid zeolitic imidazolate framework-8 particles prepared under an electric field (E-ZIF-8) were used as the fillers in polysulfone (PSF) to form series of mixed matrix membranes. It was found that the introduction of E-ZIF-8 improves both the C3H6 permeability and C3H6/C3H8 selectivity of the membranes. Compared with the bare PSF membrane, the C3H6/C3H8 selectivity of the 30 wt % E-ZIF-8@PSF membrane increased by ~230%, while the C3H6 permeability was enhanced by ~830%. In addition, time and pressure dependence analysis demonstrated that such E-ZIF-8@PSF membranes also exhibited good long-term stability and pressure resistance, offering significant industrialization advantages.

Keywords gas separation      metal-organic frameworks      mixed matrix membranes     
Corresponding Author(s): Yanying Wei   
Just Accepted Date: 05 July 2024   Issue Date: 28 November 2024
 Cite this article:   
Jiayu Luo,Luxi Lyu,Zongjie Yin, et al. Enhanced C3H6/C3H8 separation performance in polysulfone membrane blended with rigid ZIF-8 crystals[J]. Front. Chem. Sci. Eng., 2025, 19(1): 4.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2504-3
https://academic.hep.com.cn/fcse/EN/Y2025/V19/I1/4
Fig.1  Diagram of a home-made Wicke-Kallenbach permeation cell for gas separation.
Fig.2  SEM images of the E-ZIF-8 crystals prepared with different Zn2+/2-methylimidazole ratios of (a) 1:1, (b) 1:2 and (c) 1:4.
Fig.3  XRD refinement results of the E-ZIF-8 synthesized by different Zn2+/2-methylimidazole ratios of (a) 1:1, (b) 1:2 and (c) 1:4 (Rwp: weighted profile R factor; Rexp: excepted profile R factor; GOF: goodness of fit); (d) ZIF-8_I 4ˉ3m, ZIF-8_Cm, and ZIF-8_R3m proportion of E-ZIF-8-1:1, E-ZIF-8-1:2 and E-ZIF-8-1:4 particles.
Fig.4  The SEM images of (a, b) the top view surface and (c, d) the cross-sectional view of the MMMs prepared using the E-ZIF-8 particles with a relatively big size of 100 nm as the fillers.
Fig.5  SEM images of (a, b) the top view surface and (c, d) the cross-sectional view of the MMMs prepared using the E-ZIF-8 with a relatively big size of 5 μm.
Fig.6  (a) TGA results of the E-ZIF-8 particles, bare PSF membrane and E-ZIF-8@PSF MMMs. The inset shows DCS of the bare PSF membrane and E-ZIF-8@PSF MMMs. (b) XRD patterns of the E-ZIF-8 particles, E-ZIF-8@PSF MMMs and bare PSF membrane, (c, d) FTIR results of the E-ZIF-8@PSF MMMs and bare PSF membrane.
Fig.7  The SEM images of (a, c, d, e, f) the top view surface of the bare PSF membrane and the E-ZIF-8@PSF MMMs with various loadings and (b) the cross-sectional view of the bare PSF membrane.
Fig.8  Single gas permeation through the (a) 30 wt % E-ZIF-8@PSF MMMs and the bare PSF membrane. The gas selectivity for H2 over other gases and C3H6/C3H8 selectivity of (b) the 30 wt % E-ZIF-8@PSF MMMs and (c) bare PSF membrane.
Fig.9  (a) C3H6/C3H8 mixed-gas permeation results through the E-ZIF-8@PSF MMMs with different loadings and the bare PSF membrane. Feed pressure-dependent gas permeability and selectivity of (b) the bare PSF membrane and (c) the 30 wt % E-ZIF-8@PSF MMMs at 298 K for mixed C3H6/C3H8 separation.
Fig.10  (a) Long-term stability of the 9 wt % E-ZIF-8/PSF MMMs at 298?K and 100 kPa applied in C3H6/C3H8 separation, (b) comparison of the perm-selectivity of our E-ZIF-8@PSF MMMs with other polymer membranes and MMMs in the literatures for C3H6/C3H8 separation.
Membrane C3H6 permeability /Barrer C3H6/C3H8 selectivity Ref.
Polymeric membranes Matrimid 0.1 10 [10]
6FDA/BPDA-DAM 12 14
PPO 6 3.5 [44]
EC 52 3.25 [45]
CA 15.2 2.6
6FDA-6FPDA 0.89 16 [46]
PI-β-CD 81 13.9 [47]
PDMS 6600 1.1 [48]
MMMs ZIF-8/6FDA-DAM 56.2 31 [49]
X-PI(370)/ZIF-8 2.3 43 [50]
ZIF-8@Ag3pz3/PIM-1 3708 9.5 [51]
DpyNhBt COF-Cu/6FDA-DAM 44.7 28.1 [52]
ZIF-67@Ag4tz4/6FDA-TMPDA 99 39 [53]
SBS/Cu@MIL-101(Cr) 80 5.2 [54]
EC/C60 60 4.9 [55]
PSF-S25 0.15 3.58 [56]
CC3/6FDA-DAM 390 12.1 [57]
QD-FCTF-1/PIM-1 1100 9.5 [58]
30 wt % ZIF-8@PSF 0.75a) 14.7a) [16]
This work PSF 0.53 1.62
9 wt % E-ZIF-8@PSF 1.00 5.25
18 wt % E-ZIF-8@PSF 1.37 9.09
30 wt % E-ZIF-8@PSF 1.75 15.03
30 wt % E-ZIF-8@PSF 4.2a) 50a)
Tab.1  Detailed data comparison of the separation performance of the E-ZIF-8@PSF MMMs and many other membranes, including other polymeric membranes and MMMs in the literatures for C3H6/C3H8 separation as shown in Fig.10(b)
1 M Azhin , T Kaghazchi , M Rahmani . A review on olefin/paraffin separation using reversible chemical complexation technology. Journal of Industrial and Engineering Chemistry, 2008, 14(5): 622–638
https://doi.org/10.1016/j.jiec.2008.04.014
2 P F Bryan . Removal of propylene from fuel-grade propane. Separation and Purification Reviews, 2004, 33(2): 157–182
https://doi.org/10.1081/SPM-200042095
3 M Fallanza , A Ortiz , D Gorri , I Ortiz . Experimental study of the separation of propane/propylene mixtures by supported ionic liquid membranes containing Ag+-rtils as carrier. Separation and Purification Technology, 2012, 97: 83–89
https://doi.org/10.1016/j.seppur.2012.01.044
4 Y PanT LiG LestariZ Lai. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. Journal of Membrane Science, 2012, 390–391: 93–98
5 J Deng , Z Lu , L Ding , Z K Li , Y Wei , J Caro , H Wang . Fast electrophoretic preparation of large-area two-dimensional titanium carbide membranes for ion sieving. Chemical Engineering Journal, 2021, 408: 127806
https://doi.org/10.1016/j.cej.2020.127806
6 H Liu , Y Chen , Y Wei , H Wang . CO2-tolerant U-shaped hollow fiber membranes for hydrogen separation. International Journal of Hydrogen Energy, 2017, 42(7): 4208–4215
https://doi.org/10.1016/j.ijhydene.2016.09.132
7 L Li , Y Duan , S Liao , Q Ke , Z Qiao , Y Wei . Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: insights from GCMC simulations and the ideal adsorbed solution theory (IAST). Chemical Engineering Journal, 2020, 386: 123945
https://doi.org/10.1016/j.cej.2019.123945
8 Y Zhou , Y Zhang , J Xue , R Wang , Z Yin , L Ding , H Wang . Graphene oxide-modified g-C3N4 nanosheet membranes for efficient hydrogen purification. Chemical Engineering Journal, 2021, 420(1): 129574
https://doi.org/10.1016/j.cej.2021.129574
9 R L Burns , W J Koros . Defining the challenges for C3H6/C3H8 separation using polymeric membranes. Journal of Membrane Science, 2003, 211(2): 299–309
https://doi.org/10.1016/S0376-7388(02)00430-1
10 K M Steel , W J Koros . An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials. Carbon, 2005, 43(9): 1843–1856
https://doi.org/10.1016/j.carbon.2005.02.028
11 L Xu , M Rungta , W J Koros . Matrimid derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. Journal of Membrane Science, 2011, 380(1–2): 138–147
https://doi.org/10.1016/j.memsci.2011.06.037
12 X Ma , Y S Lin , X Wei , J Kniep . Ultrathin carbon molecular sieve membrane for propylene/propane separation. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(2): 491–499
https://doi.org/10.1002/aic.15005
13 N Kosinov , J Gascon , F Kapteijn , E J Hensen . Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 2016, 499: 65–79
https://doi.org/10.1016/j.memsci.2015.10.049
14 J Gascon , F Kapteijn , B Zornoza , V Sebastian , C Casado , J Coronas . Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives. Chemistry of Materials, 2012, 24(15): 2829–2844
https://doi.org/10.1021/cm301435j
15 X Zhou , G Miao , G Xu , J Luo , C Yang , J Xiao . Mixed (Ag+, Ca2+)-LTA zeolite with suitable pore feature for effective separation of C3H6/C3H8. Chemical Engineering Journal, 2022, 450(1): 137913
https://doi.org/10.1016/j.cej.2022.137913
16 H An , K Cho , S Back , X Do , J D Jeon , H Lee , K Y Baek , J Lee . The significance of the interfacial interaction in mixed matrix membranes for enhanced propylene/propane separation performance and plasticization resistance. Separation and Purification Technology, 2021, 261: 118279
https://doi.org/10.1016/j.seppur.2020.118279
17 Y Chen , Z Qiao , D Lv , C Duan , X Sun , H Wu , R Shi , Q Xia , Z Li . Efficient adsorptive separation of C3H6 over C3H8 on flexible and thermoresponsive CPL-1. Chemical Engineering Journal, 2017, 328: 360–367
https://doi.org/10.1016/j.cej.2017.07.044
18 Y Yuan , H Wu , Y Xu , D Lv , S Tu , Y Wu , Z Li , Q Xia . Selective extraction of methane from C1/C2/C3 on moisture-resistant MIL-142A with interpenetrated networks. Chemical Engineering Journal, 2020, 395: 125057
https://doi.org/10.1016/j.cej.2020.125057
19 Y Chen , H Wu , L Yu , S Tu , Y Wu , Z Li , Q Xia . Separation of propylene and propane with pillar-layer metal-organic frameworks by exploiting thermodynamic-kinetic synergetic effect. Chemical Engineering Journal, 2022, 431(4): 133284
https://doi.org/10.1016/j.cej.2021.133284
20 K Li , D H Olson , J Seidel , T J Emge , H Gong , H Zeng , J Li . Zeolitic imidazolate frameworks for kinetic separation of propane and propene. Journal of the American Chemical Society, 2009, 131(30): 10368–10369
https://doi.org/10.1021/ja9039983
21 C Zhang , R P Lively , K Zhang , J R Johnson , O Karvan , W J Koros . Unexpected molecular sieving properties of zeolitic imidazolate framework-8. Journal of Physical Chemistry Letters, 2012, 3(16): 2130–2134
https://doi.org/10.1021/jz300855a
22 H T Kwon , H K Jeong , A S Lee , H S An , J S Lee . Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. Journal of the American Chemical Society, 2015, 137(38): 12304–12311
https://doi.org/10.1021/jacs.5b06730
23 A Knebel , B Geppert , K Volgmann , D I Kolokolov , A G Stepanov , J Twiefel , P Heitjans , D Volkmer , J Caro . Defibrillation of soft porous metal-organic frameworks with electric fields. Science, 2017, 358(6361): 347–351
https://doi.org/10.1126/science.aal2456
24 S Zhou , Y Wei , L Li , Y Duan , Q Hou , L Zhang , L X Ding , J Xue , H Wang , J Caro . Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Science Advances, 2018, 4(10): eaau1393
https://doi.org/10.1126/sciadv.aau1393
25 F Hillman , J M Zimmerman , S M Paek , M R A Hamid , W T Lim , H K Jeong . Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(13): 6090–6099
https://doi.org/10.1039/C6TA11170J
26 W Fan , Y Ying , S B Peh , H Yuan , Z Yang , Y D Yuan , D Shi , X Yu , C Kang , D Zhao . Multivariate polycrystalline metal-organic framework membranes for CO2/CH4 separation. Journal of the American Chemical Society, 2021, 143(42): 17716–17723
https://doi.org/10.1021/jacs.1c08404
27 M J Lee , H T Kwon , H K Jeong . High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. Angewandte Chemie International Edition, 2018, 57(1): 156–161
https://doi.org/10.1002/anie.201708924
28 Q Hou , S Zhou , Y Wei , J Caro , H Wang . Balancing the grain boundary structure and the framework flexibility through bimetallic MOF membranes for gas separation. Journal of the American Chemical Society, 2020, 142(21): 9582–9586
https://doi.org/10.1021/jacs.0c02181
29 E Choi , J I Choi , Y J Kim , Y J Kim , K Eum , Y Choi , O Kwon , M Kim , W Choi , H Ji . et al.. Graphene nanoribbon hybridization of zeolitic imidazolate framework membranes for intrinsic molecular separation. Angewandte Chemie International Edition, 2022, 61(49): e202214269
https://doi.org/10.1002/anie.202214269
30 D J Babu , G He , J Hao , M T Vahdat , P A Schouwink , M Mensi , K V Agrawal . Restricting lattice flexibility in polycrystalline metal-organic framework membranes for carbon capture. Advanced Materials, 2019, 31(28): 1900855
https://doi.org/10.1002/adma.201900855
31 S Zhou , O Shekhah , A Ramírez , P Lyu , E Abou-Hamad , J Jia , J Li , P M Bhatt , Z Huang , H Jiang . et al.. Asymmetric pore windows in MOF membranes for natural gas valorization. Nature, 2022, 606(7915): 706–712
https://doi.org/10.1038/s41586-022-04763-5
32 Y Zhao , X Yang , J Luo , Y Wei , H Wang . Fast-current-driven synthesis of ultrathin ZIF-8 membrane on ceramic tube for propene/propane separation. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(4): e17934
https://doi.org/10.1002/aic.17934
33 Y Zhao , X Yang , J Luo , Y Wei , H Wang . Porous stainless steel hollow fiber-supported ZIF-8 membranes via FCDS for hydrogen/carbon dioxide separation. Separation and Purification Technology, 2022, 295: 121365
https://doi.org/10.1016/j.seppur.2022.121365
34 Y Zhao , Y Wei , L Lyu , Q Hou , J Caro , H Wang . Flexible polypropylene-supported ZIF-8 membranes for highly efficient propene/propane separation. Journal of the American Chemical Society, 2020, 142(50): 20915–20919
https://doi.org/10.1021/jacs.0c07481
35 E M FlanigenR W BroachS T Wilson. Zeolites in Industrial Separation and Catalysis. 1st ed. Berlin: Wiley-VCH Verlag GmbH & Co. KGaA, 2010, 329–353
36 C Zhang , K Zhang , L Xu , Y LaBreche , B Kraftschik , W J Koros . Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(7): 2625–2635
https://doi.org/10.1002/aic.14496
37 X Ma , R J Swaidan , Y Wang , C E Hsiung , Y Han , I Pinnau . Highly compatible hydroxyl-functionalized microporous polyimide-ZIF-8 mixed matrix membranes for energy efficient propylene/propane separation. ACS Applied Nano Materials, 2018, 1(7): 3541–3547
https://doi.org/10.1021/acsanm.8b00682
38 S Park , M R Abdul Hamid , H K Jeong . Highly propylene-selective mixed-matrix membranes by in situ metal-organic framework formation using a polymer-modification strategy. ACS Applied Materials & Interfaces, 2019, 11(29): 25949–25957
https://doi.org/10.1021/acsami.9b07106
39 L Lyu , H Wu , L Li , Y Wei , H C Wang . 3H6/C3H8 adsorption behavior study of stiffened ZIF-8 prepared under an electric field. Chemieingenieurtechnik, 2022, 94(1–2): 119–127
https://doi.org/10.1002/cite.202000259
40 Y Zhang , Y Jia , M Li , L Hou . Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Scientific Reports, 2018, 8(1): 9597
https://doi.org/10.1038/s41598-018-28015-7
41 D Saliba , M Ammar , M Rammal , M Al-Ghoul , M Hmadeh . Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. Journal of the American Chemical Society, 2018, 140(5): 1812–1823
https://doi.org/10.1021/jacs.7b11589
42 N C Su , D T Sun , C M Beavers , D K Britt , W L Queen , J J Urban . Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes. Energy & Environmental Science, 2016, 9(3): 922–931
https://doi.org/10.1039/C5EE02660A
43 N N Rupiasih , H Suyanto , M Sumadiyasa , N Wendri . Study of effects of low doses UV radiation on microporous polysulfone membranes in sterilization process. Open Journal of Organic Polymer Materials, 2013, 3(1): 12–18
https://doi.org/10.4236/ojopm.2013.31003
44 S Bai , S Sridhar , A A Khan . Metal-ion mediated separation of propylene from propane using PPO membranes. Journal of Membrane Science, 1998, 147(1): 131–139
https://doi.org/10.1016/S0376-7388(98)00140-9
45 S Sridhar , A A Khan . Simulation studies for the separation of propylene and propane byepthylcellulose membrane. Journal of Membrane Science, 1999, 159(1–2): 209–219
https://doi.org/10.1016/S0376-7388(99)00061-7
46 C Staudt-Bickel , W J Koros . Olefin/paraffin gas separations with 6FDA-based polyimide membranes. Journal of Membrane Science, 2000, 170(2): 205–214
https://doi.org/10.1016/S0376-7388(99)00351-8
47 M AskariY XiaoP LiT S Chung. Natural gas purification and olefin/paraffin separation using cross-linkable 6FDA-Durene/DABA co-polyimides grafted with α, β, and γ-cyclodextrin. Journal of Membrane Science, 2012, 390–391: 141–151
48 K Tanaka , A Taguchi , J Q Hao , H Kita , K Okamoto . Permeation and separation properties of polyimide membranes to olefins and paraffins. Journal of Membrane Science, 1996, 121(2): 197–207
https://doi.org/10.1016/S0376-7388(96)00182-2
49 C Zhang , Y Dai , J R Johnson , O Karvan , W J Koros . High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. Journal of Membrane Science, 2012, 389: 34–42
https://doi.org/10.1016/j.memsci.2011.10.003
50 S Park , H K Jeong . Cross-linked polyimide/ZIF-8 mixed-matrix membranes by in situ formation of ZIF-8: effect of cross-linking on their propylene/propane separation. Membranes, 2022, 12(10): 964
https://doi.org/10.3390/membranes12100964
51 D Peng , X Feng , G Yang , X Niu , Z Liu , Y Zhang . In-situ growth of silver complex on ZIF-8 towards mixed matrix membranes for propylene/propane separation. Journal of Membrane Science, 2023, 668: 121267
https://doi.org/10.1016/j.memsci.2022.121267
52 Z Cheng , P Zhang , Z Wang , H Jiang , W Wang , D Liu , L Wang , G Zhu , X Zou . A bipyridyl covalent organic framework with coordinated Cu(I) for membrane C3H6/C3H8 separation. Small, 2023, 19(30): 2300438
https://doi.org/10.1002/smll.202300438
53 Y Su , D Li , M Shan , X Feng , J Gascon , Y Wang , Y Zhang . Uniformly distributed mixed matrix membranes via a solution processable strategy for propylene/propane separation. Angewandte Chemie International Edition, 2024, 63(7): e202316093
https://doi.org/10.1002/anie.202316093
54 J P Jung , M J Kim , Y S Bae , J H Kim . Facile preparation of Cu(I) impregnated MIL-101(Cr) and its use in a mixed matrix membrane for olefin/paraffin separation. Journal of Applied Polymer Science, 2018, 135(31): 46545
https://doi.org/10.1002/app.46545
55 H Sun , C Ma , T Wang , Y Xu , B Yuan , P Li , Y Kong . Preparation and characterization of C60-filled ethyl cellulose mixed-matrix membranes for gas separation of propylene/propane. Chemical Engineering & Technology, 2014, 37(4): 611–619
https://doi.org/10.1002/ceat.201300667
56 N Gholamipour , M Sadeghi , M Shafiei . Effect of silica nanoparticles on the performance of polysulfone membranes for olefin-paraffin separation. Chemical Engineering & Technology, 2019, 42(11): 2292–2301
https://doi.org/10.1002/ceat.201800147
57 Q Zhang , H Li , S Chen , J Duan , W Jin . Mixed-matrix membranes with soluble porous organic molecular cage for highly efficient C3H6/C3H8 separation. Journal of Membrane Science, 2020, 611: 118288
https://doi.org/10.1016/j.memsci.2020.118288
58 H Jiang , Z Guo , H Wang , X Liu , Y Ren , T Huang , J Xue , H Wu , J Zhang , Y Yin . et al.. Solvent-processable 0D covalent organic framework quantum dot engineered composite membranes for biogas upgrading. Journal of Membrane Science, 2021, 640: 119803
https://doi.org/10.1016/j.memsci.2021.119803
[1] Yanli Zhang, Shurui Han, Fengkai Wang, Hui Ye, Qingping Xin, Xiaoli Ding, Lizhi Zhao, Ligang Lin, Hong Li, Yuzhong Zhang. Advanced membrane separation based on two-dimensional porous nanosheets[J]. Front. Chem. Sci. Eng., 2024, 18(11): 128-.
[2] Yuke Zhang, Hongxue Xu, Haonan Wu, Lijuan Shi, Jiancheng Wang, Qun Yi. Controllable construction of ionic frameworks for multi-site synergetic enhancement of CO2 capture[J]. Front. Chem. Sci. Eng., 2024, 18(1): 4-.
[3] Faiz Almansour, Monica Alberto, Rupesh S. Bhavsar, Xiaolei Fan, Peter M. Budd, Patricia Gorgojo. Recovery of free volume in PIM-1 membranes through alcohol vapor treatment[J]. Front. Chem. Sci. Eng., 2021, 15(4): 872-881.
[4] Chenkai Gu, Yang Liu, Weizhou Wang, Jing Liu, Jianbo Hu. Effects of functional groups for CO2 capture using metal organic frameworks[J]. Front. Chem. Sci. Eng., 2021, 15(2): 437-449.
[5] Huaiwei Shi, Teng Zhou. Computational design of heterogeneous catalysts and gas separation materials for advanced chemical processing[J]. Front. Chem. Sci. Eng., 2021, 15(1): 49-59.
[6] Colin A. Scholes. Pilot plants of membrane technology in industry: Challenges and key learnings[J]. Front. Chem. Sci. Eng., 2020, 14(3): 305-316.
[7] Yinlong Hu,Shuang Zheng,Fumin Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol[J]. Front. Chem. Sci. Eng., 2016, 10(4): 534-541.
[8] Guozhao JI, Guoxiong WANG, Kamel HOOMAN, Suresh BHATIA, Jo?o C. DINIZ da COSTA. Computational fluid dynamics applied to high temperature hydrogen separation membranes[J]. Front Chem Sci Eng, 2012, 6(1): 3-12.
[9] S. A. A. MANSOORI, M. PAKIZEH, A. JOMEKIAN. CO2 and H2 selectivity properties of PDMS/PSf membrane prepared at different conditions[J]. Front Chem Sci Eng, 2011, 5(4): 500-513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed