. State Key Laboratory of Pulp and Paper Engineering, School of Chemistry & Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China . Guangzhou Academy of Special Equipment Inspection & Testing, Guangzhou 510000, China . Quzhou Membrane Material Innovation Institute, Quzhou 324000, China
Metal-organic frameworks have a wide range of applications in the field of membrane separation, but the inherent flexible structure and the difficulty for scale-up hinder their further applications. Herein, the relatively rigid zeolitic imidazolate framework-8 particles prepared under an electric field (E-ZIF-8) were used as the fillers in polysulfone (PSF) to form series of mixed matrix membranes. It was found that the introduction of E-ZIF-8 improves both the C3H6 permeability and C3H6/C3H8 selectivity of the membranes. Compared with the bare PSF membrane, the C3H6/C3H8 selectivity of the 30 wt % E-ZIF-8@PSF membrane increased by ~230%, while the C3H6 permeability was enhanced by ~830%. In addition, time and pressure dependence analysis demonstrated that such E-ZIF-8@PSF membranes also exhibited good long-term stability and pressure resistance, offering significant industrialization advantages.
Fig.1 Diagram of a home-made Wicke-Kallenbach permeation cell for gas separation.
Fig.2 SEM images of the E-ZIF-8 crystals prepared with different Zn2+/2-methylimidazole ratios of (a) 1:1, (b) 1:2 and (c) 1:4.
Fig.3 XRD refinement results of the E-ZIF-8 synthesized by different Zn2+/2-methylimidazole ratios of (a) 1:1, (b) 1:2 and (c) 1:4 (Rwp: weighted profile R factor; Rexp: excepted profile R factor; GOF: goodness of fit); (d) ZIF-8_I 3m, ZIF-8_Cm, and ZIF-8_R3m proportion of E-ZIF-8-1:1, E-ZIF-8-1:2 and E-ZIF-8-1:4 particles.
Fig.4 The SEM images of (a, b) the top view surface and (c, d) the cross-sectional view of the MMMs prepared using the E-ZIF-8 particles with a relatively big size of 100 nm as the fillers.
Fig.5 SEM images of (a, b) the top view surface and (c, d) the cross-sectional view of the MMMs prepared using the E-ZIF-8 with a relatively big size of 5 μm.
Fig.6 (a) TGA results of the E-ZIF-8 particles, bare PSF membrane and E-ZIF-8@PSF MMMs. The inset shows DCS of the bare PSF membrane and E-ZIF-8@PSF MMMs. (b) XRD patterns of the E-ZIF-8 particles, E-ZIF-8@PSF MMMs and bare PSF membrane, (c, d) FTIR results of the E-ZIF-8@PSF MMMs and bare PSF membrane.
Fig.7 The SEM images of (a, c, d, e, f) the top view surface of the bare PSF membrane and the E-ZIF-8@PSF MMMs with various loadings and (b) the cross-sectional view of the bare PSF membrane.
Fig.8 Single gas permeation through the (a) 30 wt % E-ZIF-8@PSF MMMs and the bare PSF membrane. The gas selectivity for H2 over other gases and C3H6/C3H8 selectivity of (b) the 30 wt % E-ZIF-8@PSF MMMs and (c) bare PSF membrane.
Fig.9 (a) C3H6/C3H8 mixed-gas permeation results through the E-ZIF-8@PSF MMMs with different loadings and the bare PSF membrane. Feed pressure-dependent gas permeability and selectivity of (b) the bare PSF membrane and (c) the 30 wt % E-ZIF-8@PSF MMMs at 298 K for mixed C3H6/C3H8 separation.
Fig.10 (a) Long-term stability of the 9 wt % E-ZIF-8/PSF MMMs at 298?K and 100 kPa applied in C3H6/C3H8 separation, (b) comparison of the perm-selectivity of our E-ZIF-8@PSF MMMs with other polymer membranes and MMMs in the literatures for C3H6/C3H8 separation.
Membrane
C3H6 permeability /Barrer
C3H6/C3H8 selectivity
Ref.
Polymeric membranes
Matrimid
0.1
10
[10]
6FDA/BPDA-DAM
12
14
PPO
6
3.5
[44]
EC
52
3.25
[45]
CA
15.2
2.6
6FDA-6FPDA
0.89
16
[46]
PI-β-CD
81
13.9
[47]
PDMS
6600
1.1
[48]
MMMs
ZIF-8/6FDA-DAM
56.2
31
[49]
X-PI(370)/ZIF-8
2.3
43
[50]
ZIF-8@Ag3pz3/PIM-1
3708
9.5
[51]
DpyNhBt COF-Cu/6FDA-DAM
44.7
28.1
[52]
ZIF-67@Ag4tz4/6FDA-TMPDA
99
39
[53]
SBS/Cu@MIL-101(Cr)
80
5.2
[54]
EC/C60
60
4.9
[55]
PSF-S25
0.15
3.58
[56]
CC3/6FDA-DAM
390
12.1
[57]
QD-FCTF-1/PIM-1
1100
9.5
[58]
30 wt % ZIF-8@PSF
0.75a)
14.7a)
[16]
This work
PSF
0.53
1.62
-
9 wt % E-ZIF-8@PSF
1.00
5.25
-
18 wt % E-ZIF-8@PSF
1.37
9.09
-
30 wt % E-ZIF-8@PSF
1.75
15.03
-
30 wt % E-ZIF-8@PSF
4.2a)
50a)
-
Tab.1 Detailed data comparison of the separation performance of the E-ZIF-8@PSF MMMs and many other membranes, including other polymeric membranes and MMMs in the literatures for C3H6/C3H8 separation as shown in Fig.10(b)
1
M Azhin , T Kaghazchi , M Rahmani . A review on olefin/paraffin separation using reversible chemical complexation technology. Journal of Industrial and Engineering Chemistry, 2008, 14(5): 622–638 https://doi.org/10.1016/j.jiec.2008.04.014
2
P F Bryan . Removal of propylene from fuel-grade propane. Separation and Purification Reviews, 2004, 33(2): 157–182 https://doi.org/10.1081/SPM-200042095
3
M Fallanza , A Ortiz , D Gorri , I Ortiz . Experimental study of the separation of propane/propylene mixtures by supported ionic liquid membranes containing Ag+-rtils as carrier. Separation and Purification Technology, 2012, 97: 83–89 https://doi.org/10.1016/j.seppur.2012.01.044
4
Y PanT LiG LestariZ Lai. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. Journal of Membrane Science, 2012, 390–391: 93–98
5
J Deng , Z Lu , L Ding , Z K Li , Y Wei , J Caro , H Wang . Fast electrophoretic preparation of large-area two-dimensional titanium carbide membranes for ion sieving. Chemical Engineering Journal, 2021, 408: 127806 https://doi.org/10.1016/j.cej.2020.127806
6
H Liu , Y Chen , Y Wei , H Wang . CO2-tolerant U-shaped hollow fiber membranes for hydrogen separation. International Journal of Hydrogen Energy, 2017, 42(7): 4208–4215 https://doi.org/10.1016/j.ijhydene.2016.09.132
7
L Li , Y Duan , S Liao , Q Ke , Z Qiao , Y Wei . Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: insights from GCMC simulations and the ideal adsorbed solution theory (IAST). Chemical Engineering Journal, 2020, 386: 123945 https://doi.org/10.1016/j.cej.2019.123945
8
Y Zhou , Y Zhang , J Xue , R Wang , Z Yin , L Ding , H Wang . Graphene oxide-modified g-C3N4 nanosheet membranes for efficient hydrogen purification. Chemical Engineering Journal, 2021, 420(1): 129574 https://doi.org/10.1016/j.cej.2021.129574
9
R L Burns , W J Koros . Defining the challenges for C3H6/C3H8 separation using polymeric membranes. Journal of Membrane Science, 2003, 211(2): 299–309 https://doi.org/10.1016/S0376-7388(02)00430-1
10
K M Steel , W J Koros . An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials. Carbon, 2005, 43(9): 1843–1856 https://doi.org/10.1016/j.carbon.2005.02.028
11
L Xu , M Rungta , W J Koros . Matrimid derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. Journal of Membrane Science, 2011, 380(1–2): 138–147 https://doi.org/10.1016/j.memsci.2011.06.037
12
X Ma , Y S Lin , X Wei , J Kniep . Ultrathin carbon molecular sieve membrane for propylene/propane separation. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(2): 491–499 https://doi.org/10.1002/aic.15005
13
N Kosinov , J Gascon , F Kapteijn , E J Hensen . Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 2016, 499: 65–79 https://doi.org/10.1016/j.memsci.2015.10.049
14
J Gascon , F Kapteijn , B Zornoza , V Sebastian , C Casado , J Coronas . Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives. Chemistry of Materials, 2012, 24(15): 2829–2844 https://doi.org/10.1021/cm301435j
15
X Zhou , G Miao , G Xu , J Luo , C Yang , J Xiao . Mixed (Ag+, Ca2+)-LTA zeolite with suitable pore feature for effective separation of C3H6/C3H8. Chemical Engineering Journal, 2022, 450(1): 137913 https://doi.org/10.1016/j.cej.2022.137913
16
H An , K Cho , S Back , X Do , J D Jeon , H Lee , K Y Baek , J Lee . The significance of the interfacial interaction in mixed matrix membranes for enhanced propylene/propane separation performance and plasticization resistance. Separation and Purification Technology, 2021, 261: 118279 https://doi.org/10.1016/j.seppur.2020.118279
17
Y Chen , Z Qiao , D Lv , C Duan , X Sun , H Wu , R Shi , Q Xia , Z Li . Efficient adsorptive separation of C3H6 over C3H8 on flexible and thermoresponsive CPL-1. Chemical Engineering Journal, 2017, 328: 360–367 https://doi.org/10.1016/j.cej.2017.07.044
18
Y Yuan , H Wu , Y Xu , D Lv , S Tu , Y Wu , Z Li , Q Xia . Selective extraction of methane from C1/C2/C3 on moisture-resistant MIL-142A with interpenetrated networks. Chemical Engineering Journal, 2020, 395: 125057 https://doi.org/10.1016/j.cej.2020.125057
19
Y Chen , H Wu , L Yu , S Tu , Y Wu , Z Li , Q Xia . Separation of propylene and propane with pillar-layer metal-organic frameworks by exploiting thermodynamic-kinetic synergetic effect. Chemical Engineering Journal, 2022, 431(4): 133284 https://doi.org/10.1016/j.cej.2021.133284
20
K Li , D H Olson , J Seidel , T J Emge , H Gong , H Zeng , J Li . Zeolitic imidazolate frameworks for kinetic separation of propane and propene. Journal of the American Chemical Society, 2009, 131(30): 10368–10369 https://doi.org/10.1021/ja9039983
21
C Zhang , R P Lively , K Zhang , J R Johnson , O Karvan , W J Koros . Unexpected molecular sieving properties of zeolitic imidazolate framework-8. Journal of Physical Chemistry Letters, 2012, 3(16): 2130–2134 https://doi.org/10.1021/jz300855a
22
H T Kwon , H K Jeong , A S Lee , H S An , J S Lee . Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. Journal of the American Chemical Society, 2015, 137(38): 12304–12311 https://doi.org/10.1021/jacs.5b06730
23
A Knebel , B Geppert , K Volgmann , D I Kolokolov , A G Stepanov , J Twiefel , P Heitjans , D Volkmer , J Caro . Defibrillation of soft porous metal-organic frameworks with electric fields. Science, 2017, 358(6361): 347–351 https://doi.org/10.1126/science.aal2456
24
S Zhou , Y Wei , L Li , Y Duan , Q Hou , L Zhang , L X Ding , J Xue , H Wang , J Caro . Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Science Advances, 2018, 4(10): eaau1393 https://doi.org/10.1126/sciadv.aau1393
25
F Hillman , J M Zimmerman , S M Paek , M R A Hamid , W T Lim , H K Jeong . Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(13): 6090–6099 https://doi.org/10.1039/C6TA11170J
26
W Fan , Y Ying , S B Peh , H Yuan , Z Yang , Y D Yuan , D Shi , X Yu , C Kang , D Zhao . Multivariate polycrystalline metal-organic framework membranes for CO2/CH4 separation. Journal of the American Chemical Society, 2021, 143(42): 17716–17723 https://doi.org/10.1021/jacs.1c08404
27
M J Lee , H T Kwon , H K Jeong . High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. Angewandte Chemie International Edition, 2018, 57(1): 156–161 https://doi.org/10.1002/anie.201708924
28
Q Hou , S Zhou , Y Wei , J Caro , H Wang . Balancing the grain boundary structure and the framework flexibility through bimetallic MOF membranes for gas separation. Journal of the American Chemical Society, 2020, 142(21): 9582–9586 https://doi.org/10.1021/jacs.0c02181
29
E Choi , J I Choi , Y J Kim , Y J Kim , K Eum , Y Choi , O Kwon , M Kim , W Choi , H Ji . et al.. Graphene nanoribbon hybridization of zeolitic imidazolate framework membranes for intrinsic molecular separation. Angewandte Chemie International Edition, 2022, 61(49): e202214269 https://doi.org/10.1002/anie.202214269
30
D J Babu , G He , J Hao , M T Vahdat , P A Schouwink , M Mensi , K V Agrawal . Restricting lattice flexibility in polycrystalline metal-organic framework membranes for carbon capture. Advanced Materials, 2019, 31(28): 1900855 https://doi.org/10.1002/adma.201900855
31
S Zhou , O Shekhah , A Ramírez , P Lyu , E Abou-Hamad , J Jia , J Li , P M Bhatt , Z Huang , H Jiang . et al.. Asymmetric pore windows in MOF membranes for natural gas valorization. Nature, 2022, 606(7915): 706–712 https://doi.org/10.1038/s41586-022-04763-5
32
Y Zhao , X Yang , J Luo , Y Wei , H Wang . Fast-current-driven synthesis of ultrathin ZIF-8 membrane on ceramic tube for propene/propane separation. AIChE Journal. American Institute of Chemical Engineers, 2023, 69(4): e17934 https://doi.org/10.1002/aic.17934
33
Y Zhao , X Yang , J Luo , Y Wei , H Wang . Porous stainless steel hollow fiber-supported ZIF-8 membranes via FCDS for hydrogen/carbon dioxide separation. Separation and Purification Technology, 2022, 295: 121365 https://doi.org/10.1016/j.seppur.2022.121365
34
Y Zhao , Y Wei , L Lyu , Q Hou , J Caro , H Wang . Flexible polypropylene-supported ZIF-8 membranes for highly efficient propene/propane separation. Journal of the American Chemical Society, 2020, 142(50): 20915–20919 https://doi.org/10.1021/jacs.0c07481
35
E M FlanigenR W BroachS T Wilson. Zeolites in Industrial Separation and Catalysis. 1st ed. Berlin: Wiley-VCH Verlag GmbH & Co. KGaA, 2010, 329–353
36
C Zhang , K Zhang , L Xu , Y LaBreche , B Kraftschik , W J Koros . Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(7): 2625–2635 https://doi.org/10.1002/aic.14496
37
X Ma , R J Swaidan , Y Wang , C E Hsiung , Y Han , I Pinnau . Highly compatible hydroxyl-functionalized microporous polyimide-ZIF-8 mixed matrix membranes for energy efficient propylene/propane separation. ACS Applied Nano Materials, 2018, 1(7): 3541–3547 https://doi.org/10.1021/acsanm.8b00682
38
S Park , M R Abdul Hamid , H K Jeong . Highly propylene-selective mixed-matrix membranes by in situ metal-organic framework formation using a polymer-modification strategy. ACS Applied Materials & Interfaces, 2019, 11(29): 25949–25957 https://doi.org/10.1021/acsami.9b07106
39
L Lyu , H Wu , L Li , Y Wei , H C Wang . 3H6/C3H8 adsorption behavior study of stiffened ZIF-8 prepared under an electric field. Chemieingenieurtechnik, 2022, 94(1–2): 119–127 https://doi.org/10.1002/cite.202000259
40
Y Zhang , Y Jia , M Li , L Hou . Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Scientific Reports, 2018, 8(1): 9597 https://doi.org/10.1038/s41598-018-28015-7
41
D Saliba , M Ammar , M Rammal , M Al-Ghoul , M Hmadeh . Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. Journal of the American Chemical Society, 2018, 140(5): 1812–1823 https://doi.org/10.1021/jacs.7b11589
42
N C Su , D T Sun , C M Beavers , D K Britt , W L Queen , J J Urban . Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes. Energy & Environmental Science, 2016, 9(3): 922–931 https://doi.org/10.1039/C5EE02660A
43
N N Rupiasih , H Suyanto , M Sumadiyasa , N Wendri . Study of effects of low doses UV radiation on microporous polysulfone membranes in sterilization process. Open Journal of Organic Polymer Materials, 2013, 3(1): 12–18 https://doi.org/10.4236/ojopm.2013.31003
44
S Bai , S Sridhar , A A Khan . Metal-ion mediated separation of propylene from propane using PPO membranes. Journal of Membrane Science, 1998, 147(1): 131–139 https://doi.org/10.1016/S0376-7388(98)00140-9
45
S Sridhar , A A Khan . Simulation studies for the separation of propylene and propane byepthylcellulose membrane. Journal of Membrane Science, 1999, 159(1–2): 209–219 https://doi.org/10.1016/S0376-7388(99)00061-7
46
C Staudt-Bickel , W J Koros . Olefin/paraffin gas separations with 6FDA-based polyimide membranes. Journal of Membrane Science, 2000, 170(2): 205–214 https://doi.org/10.1016/S0376-7388(99)00351-8
47
M AskariY XiaoP LiT S Chung. Natural gas purification and olefin/paraffin separation using cross-linkable 6FDA-Durene/DABA co-polyimides grafted with α, β, and γ-cyclodextrin. Journal of Membrane Science, 2012, 390–391: 141–151
48
K Tanaka , A Taguchi , J Q Hao , H Kita , K Okamoto . Permeation and separation properties of polyimide membranes to olefins and paraffins. Journal of Membrane Science, 1996, 121(2): 197–207 https://doi.org/10.1016/S0376-7388(96)00182-2
49
C Zhang , Y Dai , J R Johnson , O Karvan , W J Koros . High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. Journal of Membrane Science, 2012, 389: 34–42 https://doi.org/10.1016/j.memsci.2011.10.003
50
S Park , H K Jeong . Cross-linked polyimide/ZIF-8 mixed-matrix membranes by in situ formation of ZIF-8: effect of cross-linking on their propylene/propane separation. Membranes, 2022, 12(10): 964 https://doi.org/10.3390/membranes12100964
51
D Peng , X Feng , G Yang , X Niu , Z Liu , Y Zhang . In-situ growth of silver complex on ZIF-8 towards mixed matrix membranes for propylene/propane separation. Journal of Membrane Science, 2023, 668: 121267 https://doi.org/10.1016/j.memsci.2022.121267
52
Z Cheng , P Zhang , Z Wang , H Jiang , W Wang , D Liu , L Wang , G Zhu , X Zou . A bipyridyl covalent organic framework with coordinated Cu(I) for membrane C3H6/C3H8 separation. Small, 2023, 19(30): 2300438 https://doi.org/10.1002/smll.202300438
53
Y Su , D Li , M Shan , X Feng , J Gascon , Y Wang , Y Zhang . Uniformly distributed mixed matrix membranes via a solution processable strategy for propylene/propane separation. Angewandte Chemie International Edition, 2024, 63(7): e202316093 https://doi.org/10.1002/anie.202316093
54
J P Jung , M J Kim , Y S Bae , J H Kim . Facile preparation of Cu(I) impregnated MIL-101(Cr) and its use in a mixed matrix membrane for olefin/paraffin separation. Journal of Applied Polymer Science, 2018, 135(31): 46545 https://doi.org/10.1002/app.46545
55
H Sun , C Ma , T Wang , Y Xu , B Yuan , P Li , Y Kong . Preparation and characterization of C60-filled ethyl cellulose mixed-matrix membranes for gas separation of propylene/propane. Chemical Engineering & Technology, 2014, 37(4): 611–619 https://doi.org/10.1002/ceat.201300667
56
N Gholamipour , M Sadeghi , M Shafiei . Effect of silica nanoparticles on the performance of polysulfone membranes for olefin-paraffin separation. Chemical Engineering & Technology, 2019, 42(11): 2292–2301 https://doi.org/10.1002/ceat.201800147
57
Q Zhang , H Li , S Chen , J Duan , W Jin . Mixed-matrix membranes with soluble porous organic molecular cage for highly efficient C3H6/C3H8 separation. Journal of Membrane Science, 2020, 611: 118288 https://doi.org/10.1016/j.memsci.2020.118288
58
H Jiang , Z Guo , H Wang , X Liu , Y Ren , T Huang , J Xue , H Wu , J Zhang , Y Yin . et al.. Solvent-processable 0D covalent organic framework quantum dot engineered composite membranes for biogas upgrading. Journal of Membrane Science, 2021, 640: 119803 https://doi.org/10.1016/j.memsci.2021.119803