Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects
Chao Wang1, Min Hu1,2, Jun Xu1(), Feng Deng1()
. National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China . University of Chinese Academy of Sciences, Beijing 100049, China
Zeolites, with their exquisite microporous frameworks and tailorable acidities, serve as ubiquitous catalysts across a diverse spectrum of industrial applications, ranging from petroleum and coal processing to sustainable chemistry and environmental remediation. Optimizing their performance hinges on a thorough understanding of the structure-performance relationship. In situ solid-state nuclear magnetic resonance spectroscopy has emerged as a critical tool, providing unparalleled atomic-level insights into both structure and dynamic aspects of zeolite-catalyzed reactions. Herein, we review recent progress in the development and application of the in situ solid-state nuclear magnetic resonance technique to zeolite catalysis. We first review the in situ nuclear magnetic resonance techniques used in zeolite-catalyzed reaction, including batch-like and continuous-flow reaction modes. The conditions and limitations for these techniques are thoroughly summarized. Subsequently, we review the applications of in situ nuclear magnetic resonance techniques in zeolite-catalyzed reaction, focusing on some important catalytic reactions like methanol-to-hydrocarbons, ethanol dehydration, alkane activation, and beyond. Emphasis is placed on the strategies of specific in situ nuclear magnetic resonance methodologies to tackle critical challenges encountered in these fields, such as probing intermediates and unraveling reaction mechanisms. Additionally, we discuss the burgeoning opportunities and prospective challenges associated with in situ nuclear magnetic resonance studies of zeolite-catalyzed processes.
Just Accepted Date: 05 July 2024Issue Date: 28 November 2024
Cite this article:
Chao Wang,Min Hu,Jun Xu, et al. Mechanistic studies of zeolite catalysis via in situ solid-state nuclear magnetic resonance spectroscopy: progress and prospects[J]. Front. Chem. Sci. Eng.,
2025, 19(1): 1.
Pressure: < 70 barTemperature: < melting point of ampoule material
From ambient to high temperature
Suitable for reactants that are difficult to adsorb or undergo transformation;provides sufficient contact time for reactants with catalysts;capable of reheating after quenching the reaction; capable of quantifying transformation of observed species
Difficult to differentiate reactants, intermediates and products; not amenable to repeated/renewed usage; challenging to secure the tube assembly and facilitate NMR rotor rotation; difficult to maintain stable/unvarying pressure levels
Pressure: atmosphere pressureTemperature: low (i.e., liquid N2 temperature) temperature to 300 °C
From cryogenic to high temperature
Capable of reactant adsorption at low temperatures;the reaction can be rapidly quenched after a very short time; can be heated inside a MAS NMR probe; the rotor can be reloaded with the reactant
Challenging to differentiate the individual intermediate, reactant and product species; unable to withstand/tolerate elevated reaction pressures
HTHP (high-temperature and high-pressure) MAS NMR rotor [87?91]
Pressure: < 400 barTemperature: < 250 °C
< 250 °C
Can operate at high temperatures and pressures; able to maintain a constant pressure; can be used multiple times; can operate in liquid-solid, gas-liquid-solid, or other multi-phase systems
Specialized rotors are required
Continuous flow
CF MAS NMR [83,92]
Pressure: atmosphere pressureTemperature: < 400 °C
< 400 °C
Mimicking a real flow reaction in fixed-bed reactor; capable to combine with other operando spectroscopy or online chromatography/mass spectrometer
A lower MAS rate results in a reduced signal-to-noise ratio; sensitivity loss at high temperatures; hard to conduct at high pressure
Pulse-quench technique [93,94]
Pressure: atmosphere to high pressureTemperature: reaction temperature
Ambient temperature
Reaction can be quickly quenched; active species can be “frozen” on catalyst surface; facile to connect with online gas chromatography/mass spectrometer (GC/MS)
Analysis is performed on the used catalyst
Tab.1 Summary of in situ ssNMR techniques
Fig.1 Diagram of (a) HTHP MAS NMR rotors developed by Jaegers et al. Reprinted with permission from Ref. [88], copyright 2020, American Chemical Society. (b) The WHiMS rotors. Reprinted with permission from Ref. [90], copyright 2018, American Chemical Society.
Fig.2 Proposed reaction mechanism of MTH. (a) Direct reaction mechanism (Zeo represents zeolite); (b) HCP mechanism.
Fig.3 Combination of 13C-13C PDSD and 13C-1H HETCOR MAS NMR spectroscopy to identify the surface-acetate species and methyl acetate. (a) Zooms from 2D 13C-13C (blue) and 13C-1H (red) MAS ssNMR spectra, respectively, indicating surface acetate and methyl acetate resonances. (b) ssNMR signals of surface-bound formate in the 13C-1H spectra (light blue). (c) Zoom of aromatic signals from 2D 13C-13C (blue) and 13C-1H (light blue) MAS NMR spectra, respectively. The sample was prepared from 30 min 13C methanol reaction over H-SAPO-34 at 400 °C. Reprinted with permission from Ref. [152], copyright 2016, Wiley-VCH.
Fig.4 Identification of the formation of SMS-EFAL and its reactivity in MTH reaction. (a) 13C NMR spectra of trapped products obtained from reaction of 13C-methanol for 1 min, followed by co-feeding 13C-methanol and 13C-formaldehyde for another 1 min over dealuminated H-ZSM-5 at 250–350 °C. (b) 13C-{27Al} RESPDOR NMR spectra and 13C-27Al internuclear distance measurement, confirming the formation of SMS-EFAL. Theoretically optimized model of SMS-EFAL is also shown. (c) Reaction mechanism for the formation of the first C–C bond in MTH reaction. The theoretically calculated activation energy (Eact) and reaction energy (Ereact) values are given in kcal·mol–1. Reprinted with permission from Ref. [133], copyright 2018, Wiley-VCH.
Fig.5 Combination of solid-state 13C MAS NMR and solution 13C NMR to analyze the HCP from methanol conversion over H-ZSM-5. (a) The trapped products obtained from reaction of 13C methanol over H-ZSM-5 at 350 °C for 30 min. The 13C chemical shifts of both solid-state and liquid-state NMR are indicated for the observed carbocations (those from liquid-state NMR are in the parentheses). Asterisks denote spinning sidebands. For liquid-state NMR, the carbocations were regenerated and stabilized by adding concentrated sulfuric acid (98%) into the extract solution of the reacted H-ZSM-5 at room temperature. The confirmed cyclopentenyl cations are shown in the top. Reprinted with permission from Ref. [141], copyright 2015, Wiley-VCH. (b) The reaction mechanism for the formation of ethene and propene in methanol conversion over H-ZSM-5. Reprinted with permission from Ref. [140], copyright 2015, Wiley-VCH, and Ref. [141], copyright 2015, Elsevier.
Fig.6 (a) 2D 13C-13C refocused INADEQUATE spectrum of 13C enriched MTO activated H-ZSM-5. Signals corresponding to carbenium ions (black) and to other neutral carbon species (blue) are highlighted to distinguish them. The assignments of the different carbenium species are given in different colors. Asterisks (*) denote spinning sidebands. (b) Molecular structures of the carbenium ions are identified, color-coded according to their assignments. (c) Extracted horizontal traces of carbenium ion I with arrows in dashed lines indicating their positions in the 2D map. The corresponding double quantum frequency δDQ of each slice is also given in the figure. The chemical shifts of different 13C sites are given in parenthesis. Unlabelled peaks are from other carbenium ions or aromatic species. Reprinted with permission from Ref. [163], copyright 2017, the Royal Society of Chemistry.
Fig.7 Proposed reaction mechanism for the conversion of ethanol to hydrocarbons over ZSM-5 (EtOH: ethanol, DEE: diethyl ether, C2H4: ethene, C3H6: propene, C4H8: butene, C5+: olefinic hydrocarbons containing more than five carbon atoms, aromatics: hydrocarbons containing one or more aromatic rings, C2H4*: ethene surface species, C4H8*: butene surface species, C*ali: aliphatic surface species, C*aro: aromatic surface species. Route I (violet): dimerization of ethene to butene, Route II (green): formation of propene and butene via aliphatic surface intermediates, Route III (blue): formation of propene via aromatic surface intermediates). Reprinted with permission from Ref. [167], copyright 2016, Wiley-VCH.
Fig.8 Investigation of ethanol transformation over zeolites: (a) in situ flow 13C MAS NMR spectra of 13CH313CH2OH conversion over H-ZSM-5 with time on stream and at elevating temperatures; (b) proposed ethanol dehydration routes. Reprinted with permission from Ref. [169], copyright 2019, Springer Nature.
Fig.9 13C MAS NMR investigation of ethanol transformation over ZSM-5: (a) 2D 13C-13C PDSDNMR spectra of adsorbed species over ZSM-5 after 13C ethanol reaction; (b) proposed mechanism for the homologation-reaction of ethanol in ETH process. Reprinted with permission from Ref. [170], copyright 2019, Wiley-VCH.
Fig.10 (a) Advanced 2D 13C-13C INADEQUATE NMR experiment probing trapped carbocations of 13CH313CH2OH conversion. The assignments of the different carbenium ions are highlighted in different colors. (b) Ethene and propene formation via triple-cycle routes with the participation of different intermediate species in ETH over H-ZSM-5. Calculated free energy barriers at 250 °C are given in kcal·mol–1. (R the alkyl groups). Reprinted with permission from Ref. [172], copyright 2022, Elsevier.
Fig.11 Identification of surface species over Mo/H-ZSM-5 in methane transformation by ssNMR. (a) J-coupling based 2D MAS ssNMR 13C-1H correlations experiment to confirm the mobile molecules. (b) Dipolar-coupling based 2D MAS ssNMR 13C-1H correlations experiment to confirm the rigid molecules. The spectra were obtained after (13C-) MDA reaction over Mo/ZSM-5 at 725 °C for 50 min (in blue) and 2 h (in red). (c) Reaction mechanism for the formation of C–C bond from methane. Reprinted with permission from Ref. [226], copyright 2020, Wiley-VCH.
Fig.12 1H{95Mo} S-RESPDOR NMR spectra of (a) fresh Mo/ZSM-5, (b) Mo/ZSM-5 reacted for 30 min and (c) for 120 min of MDA reaction at 973 K. Normalized ΔS of (d) Br?nsted acid, (e) olefins, and (f) aromatics vs. MDA reaction time (ΔS = S0 – S). Reprinted with permission from Ref. [74], copyright 2021, Wiley-VCH.
Fig.13 13C CP/MAS NMR spectra of n-butane-1-13C adsorbed on Zn2+/H-BEA zeolite. The spectrum before sample heating at elevated temperatures is shown in (a). The sample was heated (b) at 453 K for 100 min, (c) at 523 K for 60 min, (d) at 573 K for 60 min, and (e) at 623 K for 60 min (All spectra were recorded at room temperature (about 298 K). The spectrum region from –30 to 50 ppm is highlighted in the frame for better observation of the detected signals. Asterisks denote spinning side bands). Reprinted with permission from Ref. [237], copyright 2020, Elsevier.
Fig.14 In situ solid state 13C NMR to investigate the propane aromatization over Ga/ZSM-5: (a) 13C CP/MAS NMR of the adsorbed hydrocarbon species on 1% Ga-ZSM-5 during propane aromatization reaction at 350 °C for 0–320 s; (b) propane conversion with reaction time over H-ZSM-5 and Ga/ZSM-5; (c) proposed propane direct and cyclopentenyl cations mediated aromatization routes. Reprinted with permission from Ref. [238], copyright 2021, Wiley-VCH.
Fig.15 HTHP MAS NMR to investigate the cyclohexanol dehydration over beta zeolite. (a) Concentration-time profiles of reactants and products in the alkylation of phenol by cyclohexanol and cyclohexene. The concentration was determined by 13C MAS NMR spectra. (b) Stacked plot of in situ13C MAS NMR spectra of 1-13C-phenol alkylation with 1-13C-cyclohexanol at 127 °C. Reprinted with permission from Ref. [98], copyright 2017, American Chemical Society. (c) Reaction pathways proposed on the basis of in situ13C NMR measurements of cyclohexanol dehydration. Reprinted with permission from Ref. [99], copyright 2018, Springer Nature.
1
ČEǍ KirschhockE J P FeijenP A JacobsJ A. Hydrothermal zeolite synthesis. ln: G Ertl MartensKnözinger HSchüth Fweit kamp ed J. Handbook of Heterogeneous Catalysis. Wiley, 2008
2
V R Choudhary , A K Kinage , T V Choudhary . Low-temperature nonoxidative activation of methane over H-galloaluminosilicate (MFI) zeolite. Science, 1997, 275(5304): 1286–1288 https://doi.org/10.1126/science.275.5304.1286
3
Y Xu , S Liu , X Guo , L Wang , M Xie . Methane activation without using oxidants over Mo/HZSM-5 zeolite catalysts. Catalysis Letters, 1994, 30(1): 135–149
4
Z Jin , L Wang , E Zuidema , K Mondal , M Zhang , J Zhang , C Wang , X Meng , H Yang , C Mesters . et al.. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science, 2020, 367(6474): 193–197 https://doi.org/10.1126/science.aaw1108
5
T Mole , J R Anderson , G Creer . The reaction of propane over ZSM-5-H and ZSM-5-Zn zeolite catalysts. Applied Catalysis, 1985, 17(1): 141–154 https://doi.org/10.1016/S0166-9834(00)82709-8
6
H Kitagawa , Y Sendoda , Y Ono . Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites. Journal of Catalysis, 1986, 101(1): 12–18 https://doi.org/10.1016/0021-9517(86)90223-X
7
C D Chang , A J Silvestri . The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis, 1977, 47(2): 249–259 https://doi.org/10.1016/0021-9517(77)90172-5
8
M Bjørgen , S Svelle , F Joensen , J Nerlov , S Kolboe , F Bonino , L Palumbo , S Bordiga , U Olsbye . Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: on the origin of the olefinic species. Journal of Catalysis, 2007, 249(2): 195–207 https://doi.org/10.1016/j.jcat.2007.04.006
9
U Olsbye , S Svelle , M Bjørgen , P Beato , T V W Janssens , F Joensen , S Bordiga , K P Lillerud . Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition, 2012, 51(24): 5810–5831 https://doi.org/10.1002/anie.201103657
10
M Bjørgen , F Joensen , Holm M Spangsberg , U Olsbye , K P Lillerud , S Svelle . Methanol to gasoline over zeolite H-ZSM-5: improved catalyst performance by treatment with NaOH. Applied Catalysis A, General, 2008, 345(1): 43–50 https://doi.org/10.1016/j.apcata.2008.04.020
11
S Svelle , F Joensen , J Nerlov , U Olsbye , K P Lillerud , S Kolboe , M Bjørgen . Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. Journal of the American Chemical Society, 2006, 128(46): 14770–14771 https://doi.org/10.1021/ja065810a
12
M Inaba , K Murata , M Saito , I Takahara . Ethanol conversion to aromatic hydrocarbons over several zeolite catalysts. Reaction Kinetics and Catalysis Letters, 2006, 88(1): 135–141 https://doi.org/10.1007/s11144-006-0120-5
13
E G Derouane , J B Nagy , P Dejaifve , Hooff J H C van , B P Spekman , J C Védrine , C Naccache . Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite. Journal of Catalysis, 1978, 53(1): 40–55 https://doi.org/10.1016/0021-9517(78)90006-4
14
J Schulz , F Bandermann . Conversion of ethanol over zeolite H-ZSM-5. Chemical Engineering & Technology, 1994, 17(3): 179–186 https://doi.org/10.1002/ceat.270170306
15
G A Olah . Beyond oil and gas: the methanol economy. Angewandte Chemie International Edition, 2005, 44(18): 2636–2639 https://doi.org/10.1002/anie.200462121
16
U V Mentzel , S Shunmugavel , S L Hruby , C H Christensen , M S Holm . High yield of liquid range olefins obtained by converting i-propanol over zeolite H-ZSM-5. Journal of the American Chemical Society, 2009, 131(46): 17009–17013 https://doi.org/10.1021/ja907692t
17
X Zhang , M Yang , P Tian , Z Liu . Progress in seed-assisted synthesis of (Silico)aluminophosphate molecular sieves. Chemical Research in Chinese Universities, 2022, 38(1): 1–8 https://doi.org/10.1007/s40242-022-1407-4
18
W W Kaeding , C Chu , L B Young , S A Butter . Shape-selective reactions with zeolite catalysts: II. Selective disproportionation of toluene to produce benzene and p-xylene. Journal of Catalysis, 1981, 69(2): 392–398 https://doi.org/10.1016/0021-9517(81)90174-3
19
L B Young , S A Butter , W W Kaeding . Shape selective reactions with zeolite catalysts: III. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts. Journal of Catalysis, 1982, 76(2): 418–432 https://doi.org/10.1016/0021-9517(82)90271-8
20
R A van Santen , G J Kramer . Reactivity theory of zeolitic broensted acidic sites. Chemical Reviews, 1995, 95(3): 637–660 https://doi.org/10.1021/cr00035a008
21
V B Kazanskii . The nature of adsorbed carbenium ions as active intermediates in catalysis by solid acids. Accounts of Chemical Research, 1991, 24(12): 379–383 https://doi.org/10.1021/ar00012a004
22
Y Li , J Yu . Emerging applications of zeolites in catalysis, separation and host-guest assembly. Nature Reviews. Materials, 2021, 6(12): 1156–1174 https://doi.org/10.1038/s41578-021-00347-3
23
J Liang , W Fu , C Liu , X Li , Y Wang , D Ma , Y Li , Z Wang , W Yang . Synthesis of FER zeolite using 4-(aminomethyl)pyridine as structure-directing agent. Chemical Research in Chinese Universities, 2022, 38(1): 243–249 https://doi.org/10.1007/s40242-021-1404-z
24
J D Lewis , de Vyver S Van , Y Román-Leshkov . Acid-base pairs in Lewis acidic zeolites promote direct aldol reactions by soft enolization. Angewandte Chemie International Edition, 2015, 54(34): 9835–9838 https://doi.org/10.1002/anie.201502939
25
C Perego , A Carati , P Ingallina , M A Mantegazza , G Bellussi . Production of titanium containing molecular sieves and their application in catalysis. Applied Catalysis A, General, 2001, 221(1): 63–72 https://doi.org/10.1016/S0926-860X(01)00797-9
26
C Hammond , S Conrad , I Hermans . Simple and scalable preparation of highly active Lewis acidic Sn-β. Angewandte Chemie International Edition, 2012, 51(47): 11736–11739 https://doi.org/10.1002/anie.201206193
27
V L Sushkevich , I I Ivanova , E Taarning . Ethanol conversion into butadiene over Zr-containing molecular sieves doped with silver. Green Chemistry, 2015, 17(4): 2552–2559 https://doi.org/10.1039/C4GC02202E
28
A Corma , M E Domine , L Nemeth , S Valencia . Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction). Journal of the American Chemical Society, 2002, 124(13): 3194–3195 https://doi.org/10.1021/ja012297m
29
M Ravi , V L Sushkevich , J A van Bokhoven . Towards a better understanding of Lewis acidic aluminium in zeolites. Nature Materials, 2020, 19(10): 1047–1056 https://doi.org/10.1038/s41563-020-0751-3
30
J Brus , L Kobera , W Schoefberger , M Urbanová , P Klein , P Sazama , E Tabor , S Sklenak , A V Fishchuk , J Dědeček . Structure of framework aluminum Lewis sites and perturbed aluminum atoms in zeolites as determined by 27Al{1H} REDOR (3Q) MAS NMR spectroscopy and DFT/molecular mechanics. Angewandte Chemie International Edition, 2015, 54(2): 541–545 https://doi.org/10.1002/anie.201409635
31
Z Yu , A Zheng , Q Wang , L Chen , J Xu , J P Amoureux , F Deng . Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field. Angewandte Chemie International Edition, 2010, 49(46): 8657–8661 https://doi.org/10.1002/anie.201004007
32
Campo P del , C Martínez , A Corma . Activation and conversion of alkanes in the confined space of zeolite-type materials. Chemical Society Reviews, 2021, 50(15): 8511–8595 https://doi.org/10.1039/D0CS01459A
33
J J Spivey , G Hutchings . Catalytic aromatization of methane. Chemical Society Reviews, 2014, 43(3): 792–803 https://doi.org/10.1039/C3CS60259A
34
J Shan , M Li , L F Allard , S Lee , M Flytzani-Stephanopoulos . Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature, 2017, 551(7682): 605–608 https://doi.org/10.1038/nature24640
35
B E R Snyder , P Vanelderen , M L Bols , S D Hallaert , L H Böttger , L Ungur , K Pierloot , R A Schoonheydt , B F Sels , E I Solomon . The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature, 2016, 536(7616): 317–321 https://doi.org/10.1038/nature19059
36
F Jiao , J Li , X Pan , J Xiao , H Li , H Ma , M Wei , Y Pan , Z Zhou , M Li . et al.. Selective conversion of syngas to light olefins. Science, 2016, 351(6277): 1065–1068 https://doi.org/10.1126/science.aaf1835
37
W Zhou , K Cheng , J Kang , C Zhou , V Subramanian , Q Zhang , Y Wang . New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 2019, 48(12): 3193–3228 https://doi.org/10.1039/C8CS00502H
38
K Cheng , B Gu , X Liu , J Kang , Q Zhang , Y Wang . Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling. Angewandte Chemie International Edition, 2016, 55(15): 4725–4728 https://doi.org/10.1002/anie.201601208
39
S van Donk , A H Janssen , J H Bitter , K P de Jong . Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews. Science and Engineering, 2003, 45(2): 297–319 https://doi.org/10.1081/CR-120023908
Q Zhang , J Yu , A Corma . Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities. Advanced Materials, 2020, 32(44): 2002927 https://doi.org/10.1002/adma.202002927
42
I A Fisher , A T Bell . in situ infrared study of methanol synthesis from H2/CO over Cu/SiO2 and Cu/ZrO2/SiO2. Journal of Catalysis, 1998, 178(1): 153–173 https://doi.org/10.1006/jcat.1998.2134
43
J A Lercher , V Veefkind , K Fajerwerg . in situ IR spectroscopy for developing catalysts and catalytic processes. Vibrational Spectroscopy, 1999, 19(1): 107–121 https://doi.org/10.1016/S0924-2031(98)00094-0
44
H Knözinger , G Mestl . Laser Raman spectroscopy—a powerful tool for in situ studies of catalytic materials. Topics in Catalysis, 1999, 8(1): 45–55 https://doi.org/10.1023/A:1019184321666
H An , F Zhang , Z Guan , X Liu , F Fan , C Li . Investigating the coke formation mechanism of H-ZSM-5 during methanol dehydration using operando UV-Raman spectroscopy. ACS Catalysis, 2018, 8(10): 9207–9215 https://doi.org/10.1021/acscatal.8b00928
47
E Borodina , H Sharbini Harun Kamaluddin , F Meirer , M Mokhtar , A M Asiri , S A Al-Thabaiti , S N Basahel , J Ruiz-Martinez , B M Weckhuysen . Influence of the reaction temperature on the nature of the active and deactivating species during methanol-to-olefins conversion over H-SAPO-34. ACS Catalysis, 2017, 7(8): 5268–5281 https://doi.org/10.1021/acscatal.7b01497
48
M A Bañares , M V Martínez-Huerta , X Gao , J L G Fierro , I E Wachs . Dynamic behavior of supported vanadia catalysts in the selective oxidation of ethane: in situ Raman, UV-Vis DRS and reactivity studies. Catalysis Today, 2000, 61(1): 295–301 https://doi.org/10.1016/S0920-5861(00)00388-6
49
J Singh , C Lamberti , J A van Bokhoven . Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chemical Society Reviews, 2010, 39(12): 4754–4766 https://doi.org/10.1039/c0cs00054j
50
G Sankar , J M Thomas . in situ combined X-ray absorption spectroscopic and X-ray diffractometric studies of solid catalysts. Topics in Catalysis, 1999, 8(1): 1–21 https://doi.org/10.1023/A:1019188422574
51
A Brückner . in situ electron paramagnetic resonance: a unique tool for analyzing structure-reactivity relationships in heterogeneous catalysis. Chemical Society Reviews, 2010, 39(12): 4673–4684 https://doi.org/10.1039/b919541f
52
A Brückner , B Kubias , B Lücke . in situ-electron spin resonance: a useful tool for the investigation of vanadium phosphate catalysts (VPO) under working conditions. Catalysis Today, 1996, 32(1): 215–222 https://doi.org/10.1016/S0920-5861(96)00077-6
53
A G III Palmer . NMR characterization of the dynamics of biomacromolecules. Chemical Reviews, 2004, 104(8): 3623–3640 https://doi.org/10.1021/cr030413t
54
J Keeler. Understanding NMR Spectroscopy. John Wiley & Sons, 2010
55
B A Johnson , R A Blevins . NMR view: a computer program for the visualization and analysis of NMR data. Journal of Biomolecular NMR, 1994, 4(5): 603–614 https://doi.org/10.1007/BF00404272
56
P H Chien , K J Griffith , H Liu , Z Gan , Y Y Hu . Recent advances in solid-state nuclear magnetic resonance techniques for materials research. Annual Review of Materials Research, 2020, 50(1): 493–520 https://doi.org/10.1146/annurev-matsci-091019-011049
57
S Li , O Lafon , W Wang , Q Wang , X Wang , Y Li , J Xu , F Deng . Recent advances of solid-state NMR spectroscopy for microporous materials. Advanced Materials, 2020, 32(44): 2002879 https://doi.org/10.1002/adma.202002879
58
G Qi , Q Wang , J Xu , F Deng . Solid-state NMR studies of internuclear correlations for characterizing catalytic materials. Chemical Society Reviews, 2021, 50(15): 8382–8399 https://doi.org/10.1039/D0CS01130D
59
J Xu , Q Wang , F Deng . Metal active sites and their catalytic functions in zeolites: insights from solid-state NMR spectroscopy. Accounts of Chemical Research, 2019, 52(8): 2179–2189 https://doi.org/10.1021/acs.accounts.9b00125
60
T Blasco . Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chemical Society Reviews, 2010, 39(12): 4685–4702 https://doi.org/10.1039/c0cs00033g
61
M HungerW Wang. Characterization of solid catalysts in the functioning state by nuclear magnetic resonance spectroscopy. In: Gates B C, Knzinger H, eds. Advances in Catalysis. Massachusetts: Academic Press, 2006, 149–225
62
M ZhengY ChuQ WangY WangJ XuF Deng. Advanced solid-state NMR spectroscopy and its applications in zeolite chemistry. Progress in Nuclear Magnetic Resonance Spectroscopy, 2024, 140–141: 1–41
63
J Klinowski . Solid-state NMR studies of molecular sieve catalysts. Chemical Reviews, 1991, 91(7): 1459–1479 https://doi.org/10.1021/cr00007a010
Z Yan , D Ma , J Zhuang , X Liu , X Liu , X Han , X Bao , F Chang , L Xu , Z Liu . On the acid-dealumination of USY zeolite: a solid state NMR investigation. Journal of Molecular Catalysis A Chemical, 2003, 194(1): 153–167 https://doi.org/10.1016/S1381-1169(02)00531-9
66
G EngelhardtD Michel. High-Resolution Solid-State NMR of Silicates and Zeolites. New Jersey: John Wiley & Sons, 1987
67
S M Pugh , P A Wright , D J Law , N Thompson , S E Ashbrook . Facile, room-temperature 17O enrichment of zeolite frameworks revealed by solid-state NMR spectroscopy. Journal of the American Chemical Society, 2020, 142(2): 900–906 https://doi.org/10.1021/jacs.9b10528
68
X Zhao , J Xu , F Deng . Solid-state NMR for metal-containing zeolites: from active sites to reaction mechanism. Frontiers of Chemical Science and Engineering, 2020, 14(2): 159–187 https://doi.org/10.1007/s11705-019-1885-1
69
J F Haw , W Song , D M Marcus , J B Nicholas . The mechanism of methanol to hydrocarbon catalysis. Accounts of Chemical Research, 2003, 36(5): 317–326 https://doi.org/10.1021/ar020006o
70
W Wang , M Seiler , J Weitkamp , M Hunger , I I Ivanova . Stopped-flow (SF) MAS NMR spectroscopy: a novel NMR technique applied for the study of aniline methylation on a solid base catalyst. Chemical Communications, 2001, (15): 1362–1363 https://doi.org/10.1039/b104115k
71
W Wang , A Buchholz , M Seiler , M Hunger . Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts. Journal of the American Chemical Society, 2003, 125(49): 15260–15267 https://doi.org/10.1021/ja0304244
72
W Gao , Q Wang , G Qi , J Liang , C Wang , J Xu , F Deng . Active ensembles in methane dehydroaromatization over molybdenum/ZSM-5 zeolite identified by 2D 1H-95Mo magic angle spinning nuclear magnetic resonance correlation spectroscopy. Angewandte Chemie International Edition, 2023, 62(31): e202306133 https://doi.org/10.1002/anie.202306133
73
W Wang , J Xu , F Deng . Recent advances in solid-state NMR of zeolite catalysts. National Science Review, 2022, 9(9): nwac155 https://doi.org/10.1093/nsr/nwac155
74
W Gao , G Qi , Q Wang , W Wang , S Li , I Hung , Z Gan , J Xu , F Deng . Dual active sites on molybdenum/ZSM-5 catalyst for methane dehydroaromatization: insights from solid-state NMR spectroscopy. Angewandte Chemie International Edition, 2021, 60(19): 10709–10715 https://doi.org/10.1002/anie.202017074
75
C Wang , J Xu , F Deng . Mechanism of methanol-to-hydrocarbon reaction over zeolites: a solid-state NMR perspective. ChemCatChem, 2020, 12(4): 965–980 https://doi.org/10.1002/cctc.201901937
76
X Gong , M Çağlayan , Y Ye , K Liu , J Gascon , Chowdhury A Dutta . First-generation organic reaction intermediates in zeolite chemistry and catalysis. Chemical Reviews, 2022, 122(18): 14275–14345 https://doi.org/10.1021/acs.chemrev.2c00076
77
I I Ivanova , Y G Kolyagin . Impact of in situ MAS NMR techniques to the understanding of the mechanisms of zeolite catalyzed reactions. Chemical Society Reviews, 2010, 39(12): 5018–5050 https://doi.org/10.1039/c0cs00011f
78
W Zhang , S Xu , X Han , X Bao . in situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chemical Society Reviews, 2012, 41(1): 192–210 https://doi.org/10.1039/C1CS15009J
79
W Wang , M Hunger . Reactivity of surface alkoxy species on acidic zeolite catalysts. Accounts of Chemical Research, 2008, 41(8): 895–904 https://doi.org/10.1021/ar700210f
80
E G Derouane , J P Gilson , J B Nagy . in situ characterization of carbonaceous residues from zeolite-catalysed reactions using high resolution solid state 13C-NMR spectroscopy. Zeolites, 1982, 2(1): 42–46 https://doi.org/10.1016/S0144-2449(82)80039-0
81
F Blanc , M Leskes , C P Grey . in situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Accounts of Chemical Research, 2013, 46(9): 1952–1963 https://doi.org/10.1021/ar400022u
82
D J Kubicki , S D Stranks , C P Grey , L Emsley . NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nature Reviews. Chemistry, 2021, 5(9): 624–645 https://doi.org/10.1038/s41570-021-00309-x
83
M Hunger , T Horvath . A new MAS NMR probe for in situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions. Journal of the Chemical Society. Chemical Communications, 1995, (14): 1423–1424 https://doi.org/10.1039/c39950001423
84
M W Anderson , J Klinowski . Direct observation of shape selectivity in zeolite ZSM-5 by magic-angle-spinning NMR. Nature, 1989, 339(6221): 200–203 https://doi.org/10.1038/339200a0
85
T Xu , J F Haw . The development and applications of CAVERN methods for in situ NMR studies of reactions on solid acids. Topics in Catalysis, 1997, 4(1): 109–118 https://doi.org/10.1023/A:1019163500342
86
J F Haw , B R Richardson , I S Oshiro , N D Lazo , J A Speed . Reactions of propene on zeolite HY catalyst studied by in situ variable temperature solid-state nuclear magnetic resonance spectroscopy. Journal of the American Chemical Society, 1989, 111(6): 2052–2058 https://doi.org/10.1021/ja00188a016
87
J Z Hu , M Y Hu , Z Zhao , S Xu , A Vjunov , H Shi , D M Camaioni , C H F Peden , J A Lercher . Sealed rotors for in situ high temperature high pressure MAS NMR. Chemical Communications, 2015, 51(70): 13458–13461 https://doi.org/10.1039/C5CC03910J
88
N R Jaegers , K T Mueller , Y Wang , J Z Hu . Variable temperature and pressure operando MAS NMR for catalysis science and related materials. Accounts of Chemical Research, 2020, 53(3): 611–619 https://doi.org/10.1021/acs.accounts.9b00557
89
R V F Turcu , D W Hoyt , K M Rosso , J A Sears , J S Loring , A R Felmy , J Z Hu . Rotor design for high pressure magic angle spinning nuclear magnetic resonance. Journal of Magnetic Resonance, 2013, 226: 64–69 https://doi.org/10.1016/j.jmr.2012.08.009
90
E D Walter , L Qi , A Chamas , H S Mehta , J A Sears , S L Scott , D W Hoyt . Operando MAS NMR reaction studies at high temperatures and pressures. Journal of Physical Chemistry C, 2018, 122(15): 8209–8215 https://doi.org/10.1021/acs.jpcc.7b11442
91
D W Hoyt , R V F Turcu , J A Sears , K M Rosso , S D Burton , A R Felmy , J Z Hu . High-pressure magic angle spinning nuclear magnetic resonance. Journal of Magnetic Resonance, 2011, 212(2): 378–385 https://doi.org/10.1016/j.jmr.2011.07.019
92
M Hunger , T Horvath . Conversion of propan-2-ol on zeolites LaNaY and HY investigated by gas chromatography and in situ MAS NMR spectroscopy under continuous-flow conditions. Journal of Catalysis, 1997, 167(1): 187–197 https://doi.org/10.1006/jcat.1997.1562
93
J F Haw , J B Nicholas , W Song , F Deng , Z Wang , T Xu , C S Heneghan . Roles for cyclopentenyl cations in the synthesis of hydrocarbons from methanol on zeolite catalyst HZSM-5. Journal of the American Chemical Society, 2000, 122(19): 4763–4775 https://doi.org/10.1021/ja994103x
94
W Song , J B Nicholas , J F Haw . A persistent carbenium ion on the methanol-to-olefin catalyst HSAPO-34: acetone shows the way. Journal of Physical Chemistry B, 2001, 105(19): 4317–4323 https://doi.org/10.1021/jp0041407
95
A Chamas , L Qi , H S Mehta , J A Sears , S L Scott , E D Walter , D W Hoyt . High temperature/pressure MAS-NMR for the study of dynamic processes in mixed phase systems. Magnetic Resonance Imaging, 2019, 56: 37–44 https://doi.org/10.1016/j.mri.2018.09.026
96
J Z Hu , X Zhang , N R Jaegers , C Wan , T R Graham , M Hu , C I Pearce , A R Felmy , S B Clark , K M Rosso . Transitions in Al coordination during Gibbsite crystallization using high-field 27Al and 23Na MAS NMR spectroscopy. Journal of Physical Chemistry C, 2017, 121(49): 27555–27562 https://doi.org/10.1021/acs.jpcc.7b10424
97
S Prodinger , A Vjunov , J Z Hu , J L Fulton , D M Camaioni , M A Derewinski , J A Lercher . Elementary steps of faujasite formation followed by in situ spectroscopy. Chemistry of Materials, 2018, 30(3): 888–897 https://doi.org/10.1021/acs.chemmater.7b04554
98
Z Zhao , H Shi , C Wan , M Y Hu , Y Liu , D Mei , D M Camaioni , J Z Hu , J A Lercher . Mechanism of phenol alkylation in zeolite H-BEA using in situ solid-state NMR spectroscopy. Journal of the American Chemical Society, 2017, 139(27): 9178–9185 https://doi.org/10.1021/jacs.7b02153
99
Y Liu , E Baráth , H Shi , J Hu , D M Camaioni , J A Lercher . Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nature Catalysis, 2018, 1(2): 141–147 https://doi.org/10.1038/s41929-017-0015-z
100
M Hunger , W Wang . Formation of cyclic compounds and carbenium ions by conversion of methanol on weakly dealuminated zeolite H-ZSM-5 investigated via a novel in situ CF MAS NMR/UV-Vis technique. Chemical Communications, 2004, (5): 584–585 https://doi.org/10.1039/b315779b
W Wang , P L De Cola , R Glaeser , I I Ivanova , J Weitkamp , M Hunger . Methylation of phenol by methanol on acidic zeolite H-Y investigated by in situ CF MAS NMR spectroscopy. Catalysis Letters, 2004, 94(1): 119–123 https://doi.org/10.1023/B:CATL.0000019341.67169.ac
103
W Wang , M Seiler , I I Ivanova , U Sternberg , J Weitkamp , M Hunger . Formation and decomposition of N,N,N-trimethylanilinium cations on zeolite H-Y investigated by in situ stopped-flow MAS NMR spectroscopy. Journal of the American Chemical Society, 2002, 124(25): 7548–7554 https://doi.org/10.1021/ja012675n
104
W Wang , M Seiler , M Hunger . Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy. Journal of Physical Chemistry B, 2001, 105(50): 12553–12558 https://doi.org/10.1021/jp0129784
105
P K Isbester , A Zalusky , D H Lewis , M C Douskey , M J Pomije , K R Mann , E J Munson . NMR probe for heterogeneous catalysis with isolated reagent flow and magic-angle spinning. Catalysis Today, 1999, 49(4): 363–375 https://doi.org/10.1016/S0920-5861(98)00450-7
106
P Goguen , J F Haw . An in situ NMR probe with reagent flow and magic angle spinning. Journal of Catalysis, 1996, 161(2): 870–872 https://doi.org/10.1006/jcat.1996.0250
107
J Z Hu , J A Sears , H S Mehta , J J Ford , J H Kwak , K Zhu , Y Wang , J Liu , D W Hoyt , C H F Peden . A large sample volume magic angle spinning nuclear magnetic resonance probe for in situ investigations with constant flow of reactants. Physical Chemistry Chemical Physics, 2012, 14(7): 2137–2143 https://doi.org/10.1039/C1CP22692D
J Sun , Y Wang . Recent advances in catalytic conversion of ethanol to chemicals. ACS Catalysis, 2014, 4(4): 1078–1090 https://doi.org/10.1021/cs4011343
111
C Wang , Y Chu , A Zheng , J Xu , Q Wang , P Gao , G Qi , Y Gong , F Deng . New insight into the hydrocarbon-pool chemistry of the methanol-to-olefins conversion over zeolite H-ZSM-5 from GC-MS, solid-state NMR spectroscopy, and DFT calculations. Chemistry, 2014, 20(39): 12432–12443 https://doi.org/10.1002/chem.201403972
112
J W Park , G Seo . IR study on methanol-to-olefin reaction over zeolites with different pore structures and acidities. Applied Catalysis A, General, 2009, 356(2): 180–188 https://doi.org/10.1016/j.apcata.2009.01.001
113
Y T Chua , P C Stair , J B Nicholas , W Song , J F Haw . UV Raman spectrum of 1,3-dimethylcyclopentenyl cation adsorbed in zeolite H-MFI. Journal of the American Chemical Society, 2003, 125(4): 866–867 https://doi.org/10.1021/ja028439+
114
I Lezcano-Gonzalez , E Campbell , A E J Hoffman , M Bocus , I V Sazanovich , M Towrie , M Agote-Aran , E K Gibson , A Greenaway , K De Wispelaere . et al.. Insight into the effects of confined hydrocarbon species on the lifetime of methanol conversion catalysts. Nature Materials, 2020, 19(10): 1081–1087 https://doi.org/10.1038/s41563-020-0800-y
115
J Goetze , F Meirer , I Yarulina , J Gascon , F Kapteijn , J Ruiz-Martínez , B M Weckhuysen . Insights into the activity and deactivation of the methanol-to-olefins process over different small-pore zeolites as studied with operando UV-Vis spectroscopy. ACS Catalysis, 2017, 7(6): 4033–4046 https://doi.org/10.1021/acscatal.6b03677
116
D Fu , A Lucini Paioni , C Lian , O van der Heijden , M Baldus , B M Weckhuysen . Elucidating zeolite channel geometry-reaction intermediate relationships for the methanol-to-hydrocarbon process. Angewandte Chemie International Edition, 2020, 59(45): 20024–20030 https://doi.org/10.1002/anie.202009139
117
W Wang , J Jiao , Y Jiang , S S Ray , M Hunger . Formation and decomposition of surface ethoxy species on acidic zeolite Y. ChemPhysChem, 2005, 6(8): 1467–1469 https://doi.org/10.1002/cphc.200500262
118
S Xu , A Zheng , Y Wei , J Chen , J Li , Y Chu , M Zhang , Q Wang , Y Zhou , J Wang . et al.. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angewandte Chemie International Edition, 2013, 52(44): 11564–11568 https://doi.org/10.1002/anie.201303586
119
W Dai , C Wang , M Dyballa , G Wu , N Guan , L Li , Z Xie , M Hunger . Understanding the early stages of the methanol-to-olefin conversion on H-SAPO-34. ACS Catalysis, 2015, 5(1): 317–326 https://doi.org/10.1021/cs5015749
120
H KoempelW Liebner. Lurgi’s Methanol to Propylene (MTP®) Report on A Successful Commercialisation. In: Noronha F B, Schmal M, Sousa-Aguiar E F, eds. Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2007, 261–267
121
C D Chang , J C W Kuo , W H Lang , S M Jacob , J J Wise , A J Silvestri . Process studies on the conversion of methanol to gasoline. Industrial & Engineering Chemistry Process Design and Development, 1978, 17(3): 255–260 https://doi.org/10.1021/i260067a008
I Yarulina , K De Wispelaere , S Bailleul , J Goetze , M Radersma , E Abou-Hamad , I Vollmer , M Goesten , B Mezari , E J M Hensen . et al.. Structure-performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nature Chemistry, 2018, 10(8): 804–812 https://doi.org/10.1038/s41557-018-0081-0
124
Y Ono , T Mori . Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 1981, 77(9): 2209–2221
125
H Schulz . “Coking” of zeolites during methanol conversion: basic reactions of the MTO-, MTP- and MTG processes. Catalysis Today, 2010, 154(3): 183–194 https://doi.org/10.1016/j.cattod.2010.05.012
126
U Olsbye , S Svelle , K P Lillerud , Z H Wei , Y Y Chen , J F Li , J G Wang , W B Fan . The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. Chemical Society Reviews, 2015, 44(20): 7155–7176 https://doi.org/10.1039/C5CS00304K
127
I Yarulina , A D Chowdhury , F Meirer , B M Weckhuysen , J Gascon . Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nature Catalysis, 2018, 1(6): 398–411 https://doi.org/10.1038/s41929-018-0078-5
128
M Yang , D Fan , Y Wei , P Tian , Z Liu . Recent progress in methanol-to-olefins (MTO) catalysts. Advanced Materials, 2019, 31(50): 1902181 https://doi.org/10.1002/adma.201902181
129
S Ilias , A Bhan . Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catalysis, 2013, 3(1): 18–31 https://doi.org/10.1021/cs3006583
130
L Lin , M Fan , A M Sheveleva , X Han , Z Tang , J H Carter , I da Silva , C M A Parlett , F Tuna , E J L McInnes . et al.. Control of zeolite microenvironment for propene synthesis from methanol. Nature Communications, 2021, 12(1): 822 https://doi.org/10.1038/s41467-021-21062-1
131
S S Arora , D L S Nieskens , A Malek , A Bhan . Lifetime improvement in methanol-to-olefins catalysis over chabazite materials by high-pressure H2 co-feeds. Nature Catalysis, 2018, 1(9): 666–672 https://doi.org/10.1038/s41929-018-0125-2
132
C Wang , M Hu , Y Chu , X Zhou , Q Wang , G Qi , S Li , J Xu , F Deng . π-Interactions between cyclic carbocations and aromatics cause zeolite deactivation in methanol-to-hydrocarbon conversion. Angewandte Chemie International Edition, 2020, 59(18): 7198–7202 https://doi.org/10.1002/anie.202000637
133
C Wang , Y Chu , J Xu , Q Wang , G Qi , P Gao , X Zhou , F Deng . Extra-framework aluminum-assisted initial C–C bond formation in methanol-to-olefins conversion on zeolite H-ZSM-5. Angewandte Chemie International Edition, 2018, 57(32): 10197–10201 https://doi.org/10.1002/anie.201805609
134
X Wu , S Xu , W Zhang , J Huang , J Li , B Yu , Y Wei , Z Liu . Direct mechanism of the first carbon-carbon bond formation in the methanol-to-hydrocarbons process. Angewandte Chemie International Edition, 2017, 56(31): 9039–9043 https://doi.org/10.1002/anie.201703902
135
Y Liu , S Müller , D Berger , J Jelic , K Reuter , M Tonigold , M Sanchez-Sanchez , J A Lercher . Formation mechanism of the first carbon–carbon bond and the first olefin in the methanol conversion into hydrocarbons. Angewandte Chemie International Edition, 2016, 55(19): 5723–5726 https://doi.org/10.1002/anie.201511678
136
A D Chowdhury , A L Paioni , K Houben , G T Whiting , M Baldus , B M Weckhuysen . Bridging the gap between the direct and hydrocarbon pool mechanisms of the methanol-to-hydrocarbons process. Angewandte Chemie International Edition, 2018, 57(27): 8095–8099 https://doi.org/10.1002/anie.201803279
137
A Cesarini , S Mitchell , G Zichittella , M Agrachev , S P Schmid , G Jeschke , Z Pan , A Bodi , P Hemberger , J Pérez-Ramírez . Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons. Nature Catalysis, 2022, 5(7): 605–614 https://doi.org/10.1038/s41929-022-00808-0
138
B Arstad , J B Nicholas , J F Haw . Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis. Journal of the American Chemical Society, 2004, 126(9): 2991–3001 https://doi.org/10.1021/ja035923j
139
D M McCann , D Lesthaeghe , P W Kletnieks , D R Guenther , M J Hayman , V Van Speybroeck , M Waroquier , J F Haw . A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment. Angewandte Chemie International Edition, 2008, 47(28): 5179–5182 https://doi.org/10.1002/anie.200705453
140
C Wang , J Xu , G Qi , Y Gong , W Wang , P Gao , Q Wang , N Feng , X Liu , F Deng . Methylbenzene hydrocarbon pool in methanol-to-olefins conversion over zeolite H-ZSM-5. Journal of Catalysis, 2015, 332: 127–137 https://doi.org/10.1016/j.jcat.2015.10.001
141
C Wang , X Yi , J Xu , G Qi , P Gao , W Wang , Y Chu , Q Wang , N Feng , X Liu . et al.. Experimental evidence on the formation of ethene through carbocations in methanol conversion over H-ZSM-5 Zeolite. Chemistry—A European Journal, 2015, 21(34): 12061–12068
142
C Wang , Q Wang , J Xu , G Qi , P Gao , W Wang , Y Zou , N Feng , X Liu , F Deng . Direct detection of supramolecular reaction centers in the methanol-to-olefins conversion over zeolite H-ZSM-5 by 13C-27Al solid-state NMR spectroscopy. Angewandte Chemie International Edition, 2016, 55(7): 2507–2511 https://doi.org/10.1002/anie.201510920
143
C Wang , X Sun , J Xu , G Qi , W Wang , X Zhao , W Li , Q Wang , F Deng . Impact of temporal and spatial distribution of hydrocarbon pool on methanol conversion over H-ZSM-5. Journal of Catalysis, 2017, 354: 138–151 https://doi.org/10.1016/j.jcat.2017.08.003
144
W Zhang , Y Zhi , J Huang , X Wu , S Zeng , S Xu , A Zheng , Y Wei , Z Liu . Methanol to olefins reaction route based on methylcyclopentadienes as critical intermediates. ACS Catalysis, 2019, 9(8): 7373–7379 https://doi.org/10.1021/acscatal.9b02487
145
E J Munson , A A Kheir , J F Haw . An in situ solid-state NMR study of the formation and reactivity of trialkylonium ions in zeolites. Journal of Physical Chemistry, 1993, 97(28): 7321–7327 https://doi.org/10.1021/j100130a033
146
T Sun , W Chen , S Xu , A Zheng , X Wu , S Zeng , N Wang , X Meng , Y Wei , Z Liu . The first carbon-carbon bond formation mechanism in methanol-to-hydrocarbons process over chabazite zeolite. Chem, 2021, 7(9): 2415–2428 https://doi.org/10.1016/j.chempr.2021.05.023
147
Y Jiang , W Wang , V R Reddy Marthala , J Huang , B Sulikowski , M Hunger . Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts. Journal of Catalysis, 2006, 238(1): 21–27 https://doi.org/10.1016/j.jcat.2005.11.029
148
E J Munson , J F Haw . NMR observation of trimethyloxonium formation from dimethyl ether on zeolite HZSM-5. Journal of the American Chemical Society, 1991, 113(16): 6303–6305 https://doi.org/10.1021/ja00016a075
149
S Müller , Y Liu , F M Kirchberger , M Tonigold , M Sanchez-Sanchez , J A Lercher . Hydrogen transfer pathways during zeolite catalyzed methanol conversion to hydrocarbons. Journal of the American Chemical Society, 2016, 138(49): 15994–16003 https://doi.org/10.1021/jacs.6b09605
150
J Li , Z Wei , Y Chen , B Jing , Y He , M Dong , H Jiao , X Li , Z Qin , J Wang . et al.. A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites. Journal of Catalysis, 2014, 317: 277–283 https://doi.org/10.1016/j.jcat.2014.05.015
151
N Tajima , T Tsuneda , F Toyama , K Hirao . A new mechanism for the first carbon–carbon bond formation in the MTG process: a theoretical study. Journal of the American Chemical Society, 1998, 120(32): 8222–8229 https://doi.org/10.1021/ja9741483
152
A D Chowdhury , K Houben , G T Whiting , M Mokhtar , A M Asiri , S A Al-Thabaiti , S N Basahel , M Baldus , B M Weckhuysen . Initial carbon-carbon bond formation during the early stages of the methanol-to-olefin process proven by zeolite-trapped acetate and methyl acetate. Angewandte Chemie International Edition, 2016, 55(51): 15840–15845 https://doi.org/10.1002/anie.201608643
153
H Zhou , X Gong , E Abou-Hamad , Y Ye , X Zhang , P Ma , J Gascon , A D Chowdhury . Tracking the impact of Koch-carbonylated organics during the zeolite ZSM-5 catalyzed methanol-to-hydrocarbons process. Angewandte Chemie International Edition, 2024, 63(10): e202318250 https://doi.org/10.1002/anie.202318250
154
A Comas-Vives , M Valla , C Copéret , P Sautet . Cooperativity between Al sites promotes hydrogen transfer and carbon–carbon bond formation upon dimethyl ether activation on alumina. ACS Central Science, 2015, 1(6): 313–319 https://doi.org/10.1021/acscentsci.5b00226
155
P W Goguen , T Xu , D H Barich , T W Skloss , W G Song , Z K Wang , J B Nicholas , J F Haw . Pulse-quench catalytic reactor studies reveal a carbon-pool mechanism in methanol-to-gasoline chemistry on zeolite HZSM-5. Journal of the American Chemical Society, 1998, 120(11): 2650–2651 https://doi.org/10.1021/ja973920z
156
T Xu , D H Barich , P W Goguen , W G Song , Z K Wang , J B Nicholas , J F Haw . Synthesis of a benzenium ion in a zeolite with use of a catalytic flow reactor. Journal of the American Chemical Society, 1998, 120(16): 4025–4026 https://doi.org/10.1021/ja973791m
157
S Ilias , A Bhan . The mechanism of aromatic dealkylation in methanol-to-hydrocarbons conversion on H-ZSM-5: what are the aromatic precursors to light olefins. Journal of Catalysis, 2014, 311: 6–16 https://doi.org/10.1016/j.jcat.2013.11.003
158
S Wang , Y Chen , Z Wei , Z Qin , H Ma , M Dong , J Li , W Fan , J Wang . Polymethylbenzene or alkene cycle? Theoretical study on their contribution to the process of methanol to olefins over H-ZSM-5 zeolite. Journal of Physical Chemistry C, 2015, 119(51): 28482–28498 https://doi.org/10.1021/acs.jpcc.5b10299
159
M Zhang , S Xu , J Li , Y Wei , Y Gong , Y Chu , A Zheng , J Wang , W Zhang , X Wu . et al.. Methanol to hydrocarbons reaction over Hβ zeolites studied by high resolution solid-state NMR spectroscopy: carbenium ions formation and reaction mechanism. Journal of Catalysis, 2016, 335: 47–57 https://doi.org/10.1016/j.jcat.2015.12.007
160
W Dai , M Dyballa , G Wu , L Li , N Guan , M Hunger . Intermediates and dominating reaction mechanism during the early period of the methanol-to-olefin conversion on SAPO-41. Journal of Physical Chemistry C, 2015, 119(5): 2637–2645 https://doi.org/10.1021/jp5118757
161
J Li , Y Wei , J Chen , S Xu , P Tian , X Yang , B Li , J Wang , Z Liu . Cavity controls the selectivity: insights of confinement effects on MTO reaction. ACS Catalysis, 2015, 5(2): 661–665 https://doi.org/10.1021/cs501669k
162
J Li , Y Wei , J Chen , P Tian , X Su , S Xu , Y Qi , Q Wang , Y Zhou , Y He . et al.. Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions. Journal of the American Chemical Society, 2012, 134(2): 836–839 https://doi.org/10.1021/ja209950x
163
D Xiao , S Xu , X Han , X Bao , Z Liu , F Blanc . Direct structural identification of carbenium ions and investigation of host-guest interaction in the methanol to olefins reaction obtained by multinuclear NMR correlations. Chemical Science, 2017, 8(12): 8309–8314 https://doi.org/10.1039/C7SC03657D
164
P ImhofJ C Van der Waal. Catalytic Process Development for Renewable Materials. New Jersey: John Wiley & Sons, 2013
165
M Zhang , Y Yu . Dehydration of ethanol to ethylene. Industrial & Engineering Chemistry Research, 2013, 52(28): 9505–9514 https://doi.org/10.1021/ie401157c
166
X Zhou , C Wang , Y Chu , Q Wang , J Xu , F Deng . Mechanistic insight into ethanol dehydration over SAPO-34 zeolite by solid-state NMR spectroscopy. Chemical Research in Chinese Universities, 2022, 38(1): 155–160 https://doi.org/10.1007/s40242-022-1450-1
167
der Borght Van , R Batchu , V V Galvita , K Alexopoulos , M F Reyniers , J W Thybaut , G B Marin . Insights into the reaction mechanism of ethanol conversion into hydrocarbons on H-ZSM-5. Angewandte Chemie International Edition, 2016, 55(41): 12817–12821 https://doi.org/10.1002/anie.201607230
168
K Gołąbek , E Tabor , V Pashkova , J Dedecek , K Tarach , K Góra-Marek . The proximity of aluminium atoms influences the reaction pathway of ethanol transformation over zeolite ZSM-5. Communications Chemistry, 2020, 3(1): 25 https://doi.org/10.1038/s42004-020-0268-3
169
X Zhou , C Wang , Y Chu , J Xu , Q Wang , G Qi , X Zhao , N Feng , F Deng . Observation of an oxonium ion intermediate in ethanol dehydration to ethene on zeolite. Nature Communications, 2019, 10(1): 1961 https://doi.org/10.1038/s41467-019-09956-7
170
A D Chowdhury , A Lucini Paioni , G T Whiting , D Fu , M Baldus , B M Weckhuysen . Unraveling the homologation reaction sequence of the zeolite-catalyzed ethanol-to-hydrocarbons process. Angewandte Chemie International Edition, 2019, 58(12): 3908–3912 https://doi.org/10.1002/anie.201814268
171
S Zeng , J Li , N Wang , W Zhang , Y Wei , Z Liu , S Xu . Investigation of ethanol conversion on H-ZSM-5 zeolite by in situ solid-state NMR. Energy & Fuels, 2021, 35(15): 12319–12328 https://doi.org/10.1021/acs.energyfuels.1c02151
172
S Zeng , W Zhang , J Li , S Lin , S Xu , Y Wei , Z Liu . Revealing the roles of hydrocarbon pool mechanism in ethanol-to-hydrocarbons reaction. Journal of Catalysis, 2022, 413: 517–526 https://doi.org/10.1016/j.jcat.2022.07.002
173
X Li , C Pei , J Gong . Shale gas revolution: catalytic conversion of C1–C3 light alkanes to value-added chemicals. Chem, 2021, 7(7): 1755–1801 https://doi.org/10.1016/j.chempr.2021.02.002
174
G Caeiro , R H Carvalho , X Wang , M A N D A Lemos , F Lemos , M Guisnet , Ribeiro F Ramôa . Activation of C2–C4 alkanes over acid and bifunctional zeolite catalysts. Journal of Molecular Catalysis A Chemical, 2006, 255(1): 131–158 https://doi.org/10.1016/j.molcata.2006.03.068
175
J J H B Sattler , J Ruiz-Martinez , E Santillan-Jimenez , B M Weckhuysen . Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chemical Reviews, 2014, 114(20): 10613–10653 https://doi.org/10.1021/cr5002436
176
M W Schreiber , C P Plaisance , M Baumgärtl , K Reuter , A Jentys , R Bermejo-Deval , J A Lercher . Lewis-Brønsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes. Journal of the American Chemical Society, 2018, 140(14): 4849–4859 https://doi.org/10.1021/jacs.7b12901
177
L Qi , M Babucci , Y Zhang , A Lund , L Liu , J Li , Y Chen , A S Hoffman , S R Bare , Y Han . et al.. Propane dehydrogenation catalyzed by isolated Pt atoms in ≡SiOZn–OH nests in dealuminated zeolite beta. Journal of the American Chemical Society, 2021, 143(50): 21364–21378 https://doi.org/10.1021/jacs.1c10261
178
N M Phadke , E Mansoor , M Bondil , M Head-Gordon , A T Bell . Mechanism and kinetics of propane dehydrogenation and cracking over Ga/H-MFI prepared via vapor-phase exchange of H-MFI with GaCl3. Journal of the American Chemical Society, 2019, 141(4): 1614–1627 https://doi.org/10.1021/jacs.8b11443
179
T F Narbeshuber , H Vinek , J A Lercher . Monomolecular conversion of light alkanes over H-ZSM-5. Journal of Catalysis, 1995, 157(2): 388–395 https://doi.org/10.1006/jcat.1995.1304
180
G A OlahG KlopmanR H Schlosberg. Super acids. III. Protonation of alkanes and intermediacy of alkanonium ions, pentacoordinated carbon cations of CH5+ type. Hydrogen exchange, protolytic cleavage, hydrogen abstraction; polycondensation of methane, ethane, 2,2-dimethylpropane and 2,2,3,3-tetramethylbutane in FSO3H-SbF5. Journal of the American Chemical Society, 1969, 91(12): 3261–3268
181
N Kosinov , F J A G Coumans , E A Uslamin , A S G Wijpkema , B Mezari , E J M Hensen . Methane dehydroaromatization by Mo/HZSM-5: mono- or bifunctional catalysis. ACS Catalysis, 2017, 7(1): 520–529 https://doi.org/10.1021/acscatal.6b02497
182
A Hagen , F Roessner . Ethane to aromatic hydrocarbons: past, present, future. Catalysis Reviews. Science and Engineering, 2000, 42(4): 403–437 https://doi.org/10.1081/CR-100101952
183
M J Wulfers , S Teketel , B Ipek , R F Lobo . Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes. Chemical Communications, 2015, 51(21): 4447–4450 https://doi.org/10.1039/C4CC09645B
184
G Li , P Vassilev , M Sanchez-Sanchez , J A Lercher , E J M Hensen , E A Pidko . Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol. Journal of Catalysis, 2016, 338: 305–312 https://doi.org/10.1016/j.jcat.2016.03.014
185
M V Luzgin , V A Rogov , S S Arzumanov , A V Toktarev , A G Stepanov , V N Parmon . Methane aromatization on Zn-modified zeolite in the presence of a co-reactant higher alkane: how does it occur. Catalysis Today, 2009, 144(3): 265–272 https://doi.org/10.1016/j.cattod.2008.08.043
186
A Corma , J Planelles , J Sánchez-Marín , F Tomás . The role of different types of acid site in the cracking of alkanes on zeolite catalysts. Journal of Catalysis, 1985, 93(1): 30–37 https://doi.org/10.1016/0021-9517(85)90148-4
187
M V Luzgin , A A Gabrienko , V A Rogov , A V Toktarev , V N Parmon , A G Stepanov . The “alkyl” and “carbenium” pathways of methane activation on Ga-modified zeolite BEA: 13C solid-state NMR and GC-MS study of methane aromatization in the presence of higher alkane. Journal of Physical Chemistry C, 2010, 114(49): 21555–21561 https://doi.org/10.1021/jp1078899
188
Y G Kolyagin , I I Ivanova , V V Ordomsky , A Gedeon , Y A Pirogov . Methane activation over Zn-modified MFI zeolite: NMR evidence for Zn-methyl surface species formation. Journal of Physical Chemistry C, 2008, 112(50): 20065–20069 https://doi.org/10.1021/jp8067766
189
V B Kazansky , V Y Borovkov , A I Serikh , R A van Santen , B G Anderson . Nature of the sites of dissociative adsorption of dihydrogen and light paraffins in ZnHZSM-5 zeolite prepared by incipient wetness impregnation. Catalysis Letters, 2000, 66(1): 39–47 https://doi.org/10.1023/A:1019031119325
190
E A Pidko , J Xu , B L Mojet , L Lefferts , I R Subbotina , V B Kazansky , R A van Santen . Interplay of bonding and geometry of the adsorption complexes of light alkanes within cationic faujasites. Combined spectroscopic and computational study. Journal of Physical Chemistry B, 2006, 110(45): 22618–22627 https://doi.org/10.1021/jp0634757
191
V B Kazansky , A I Serykh , E A Pidko . DRIFT study of molecular and dissociative adsorption of light paraffins by HZSM-5 zeolite modified with zinc ions: methane adsorption. Journal of Catalysis, 2004, 225(2): 369–373 https://doi.org/10.1016/j.jcat.2004.04.029
192
J A Biscardi , G D Meitzner , E Iglesia . Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts. Journal of Catalysis, 1998, 179(1): 192–202 https://doi.org/10.1006/jcat.1998.2177
193
V B Kazansky , I R Subbotina , N Rane , R A van Santen , E J M Hensen . On two alternative mechanisms of ethane activation over ZSM-5 zeolite modified by Zn2+ and Ga1+ cations. Physical Chemistry Chemical Physics, 2005, 7(16): 3088–3092 https://doi.org/10.1039/b506782k
194
Y G Kolyagin , V V Ordomsky , Y Z Khimyak , A I Rebrov , F Fajula , I I Ivanova . Initial stages of propane activation over Zn/MFI catalyst studied by in situ NMR and IR spectroscopic techniques. Journal of Catalysis, 2006, 238(1): 122–133 https://doi.org/10.1016/j.jcat.2005.11.037
195
A A Gabrienko , S S Arzumanov , D Freude , A G Stepanov . Propane aromatization on Zn-modified zeolite BEA studied by solid-state NMR in situ. Journal of Physical Chemistry C, 2010, 114(29): 12681–12688 https://doi.org/10.1021/jp103580f
196
Y G Kolyagin , I I Ivanova , Y A Pirogov . 1H and 13C MAS NMR studies of light alkanes activation over MFI zeolite modified by Zn vapour. Solid State Nuclear Magnetic Resonance, 2009, 35(2): 104–112 https://doi.org/10.1016/j.ssnmr.2009.01.005
197
F C Jentoft , B C Gates . Solid-acid-catalyzed alkane cracking mechanisms: evidence from reactions of small probe molecules. Topics in Catalysis, 1997, 4(1): 1–13 https://doi.org/10.1023/A:1019184004885
198
M Guisnet , N S Gnep . Mechanism of short-chain alkane transformation over protonic zeolites. Alkylation, disproportionation and aromatization. Applied Catalysis A, General, 1996, 146(1): 33–64 https://doi.org/10.1016/0926-860X(96)00282-7
199
A CormaA V Orchillés. Current views on the mechanism of catalytic cracking. Microporous and Mesoporous Materials, 2000, 35–36: 21–30
200
G Qi , Q Wang , J Xu , J Trébosc , O Lafon , C Wang , J P Amoureux , F Deng . Synergic effect of active sites in zinc-modified ZSM-5 zeolites as revealed by high-field solid-state NMR spectroscopy. Angewandte Chemie International Edition, 2016, 55(51): 15826–15830 https://doi.org/10.1002/anie.201608322
201
P Tomkins , M Ranocchiari , J A van Bokhoven . Direct conversion of methane to methanol under mild conditions over Cu-zeolites and beyond. Accounts of Chemical Research, 2017, 50(2): 418–425 https://doi.org/10.1021/acs.accounts.6b00534
202
M Ravi , M Ranocchiari , J A van Bokhoven . The direct catalytic oxidation of methane to methanol—a critical assessment. Angewandte Chemie International Edition, 2017, 56(52): 16464–16483 https://doi.org/10.1002/anie.201702550
203
M Ravi , V L Sushkevich , A J Knorpp , M A Newton , D Palagin , A B Pinar , M Ranocchiari , J A van Bokhoven . Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites. Nature Catalysis, 2019, 2(6): 485–494 https://doi.org/10.1038/s41929-019-0273-z
204
V L Sushkevich , D Palagin , M Ranocchiari , J A van Bokhoven . Selective anaerobic oxidation of methane enables direct synthesis of methanol. Angewandte Chemie International Edition, 2017, 356(6337): 523–527
205
A Blankenship , M Artsiusheuski , V Sushkevich , J A van Bokhoven . Recent trends, current challenges and future prospects for syngas-free methane partial oxidation. Nature Catalysis, 2023, 6(9): 748–762 https://doi.org/10.1038/s41929-023-01000-8
206
L A M M Barbosa , G M Zhidomirov , R A van Santen . Theoretical study of methane adsorption on Zn(II) zeolites. Physical Chemistry Chemical Physics, 2000, 2(17): 3909–3918 https://doi.org/10.1039/b004090h
207
E A Pidko , R A van Santen . Activation of light alkanes over zinc species stabilized in ZSM-5 zeolite: a comprehensive DFT study. Journal of Physical Chemistry C, 2007, 111(6): 2643–2655 https://doi.org/10.1021/jp065911v
208
L Benco , T Bucko , J Hafner , H Toulhoat . Periodic DFT calculations of the stability of Al/Si substitutions and extraframework Zn2+ cations in mordenite and reaction pathway for the dissociation of H2 and CH4. Journal of Physical Chemistry B, 2005, 109(43): 20361–20369 https://doi.org/10.1021/jp0530597
209
S S Arzumanov , A A Gabrienko , A V Toktarev , D Freude , J Haase , A G Stepanov . Propane activation on Zn-modified zeolite. The effect of the nature of Zn-species on the mechanism of H/D hydrogen exchange of the alkane with Brønsted acid sites. Journal of Catalysis, 2019, 378: 341–352 https://doi.org/10.1016/j.jcat.2019.09.006
210
S S Arzumanov , A A Gabrienko , A V Toktarev , D Freude , J Haase , A G Stepanov . Mechanism of H/D hydrogen exchange of n-butane with Brønsted acid sites on Zn-modified zeolite: the effect of different Zn species (Zn2+ and ZnO) on the activation of alkane C–H bonds. Journal of Physical Chemistry C, 2020, 124(37): 20270–20279 https://doi.org/10.1021/acs.jpcc.0c06616
211
M V Luzgin , V A Rogov , S S Arzumanov , A V Toktarev , A G Stepanov , V N Parmon . Understanding methane aromatization on a Zn-modified high-silica zeolite. Angewandte Chemie International Edition, 2008, 47(24): 4559–4562 https://doi.org/10.1002/anie.200800317
212
J F Wu , W D Wang , J Xu , F Deng , W Wang . Reactivity of C1 surface species formed in methane activation on Zn-modified H-ZSM-5 zeolite. Chemistry, 2010, 16(47): 14016–14025 https://doi.org/10.1002/chem.201002258
213
J Xu , A Zheng , X Wang , G Qi , J Su , J Du , Z Gan , J Wu , W Wang , F Deng . Room temperature activation of methane over Zn modified H-ZSM-5 zeolites: insight from solid-state NMR and theoretical calculations. Chemical Science, 2012, 3(10): 2932–2940 https://doi.org/10.1039/c2sc20434g
214
X Wang , J Xu , G Qi , B Li , C Wang , F Deng . Alkylation of benzene with methane over ZnZSM-5 zeolites studied with solid-state NMR spectroscopy. Journal of Physical Chemistry C, 2013, 117(8): 4018–4023 https://doi.org/10.1021/jp310872a
215
X Zhao , J Xu , Y Chu , G Qi , Q Wang , W Gao , S Li , N Feng , F Deng . Multiple methane activation pathways on Ga-modified ZSM-5 zeolites revealed by solid-state NMR spectroscopy. ChemCatChem, 2020, 12(15): 3880–3889 https://doi.org/10.1002/cctc.202000650
216
X Zhao , Y Chu , G Qi , Q Wang , W Gao , X Wang , S Li , J Xu , F Deng . Probing the active sites for methane activation on Ga/ZSM-5 zeolites with solid-state NMR spectroscopy. Chemical Communications, 2020, 56(80): 12029–12032 https://doi.org/10.1039/D0CC04298F
217
X Wang , G Qi , J Xu , B Li , C Wang , F Deng . NMR-spectroscopic evidence of intermediate-dependent pathways for acetic acid formation from methane and carbon monoxide over a ZnZSM-5 zeolite catalyst. Angewandte Chemie International Edition, 2012, 51(16): 3850–3853 https://doi.org/10.1002/anie.201108634
218
L Wang , L Tao , M Xie , G Xu , J Huang , Y Xu . Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catalysis Letters, 1993, 21(1): 35–41 https://doi.org/10.1007/BF00767368
219
S Ma , X Guo , L Zhao , S Scott , X Bao . Recent progress in methane dehydroaromatization: from laboratory curiosities to promising technology. Journal of Energy Chemistry, 2013, 22(1): 1–20 https://doi.org/10.1016/S2095-4956(13)60001-7
220
B M Weckhuysen , D Wang , M P Rosynek , J H Lunsford . Conversion of methane to benzene over transition metal ion ZSM-5 zeolites: I. Catalytic characterization. Journal of Catalysis, 1998, 175(2): 338–346 https://doi.org/10.1006/jcat.1998.2010
221
Y Shu , Y Xu , S T Wong , L Wang , X Guo . Promotional effect of Ru on the dehydrogenation and aromatization of methane in the absence of oxygen over Mo/HZSM-5 catalysts. Journal of Catalysis, 1997, 170(1): 11–19 https://doi.org/10.1006/jcat.1997.1726
222
L Y Chen , L W Lin , Z S Xu , X S Li , T Zhang . Dehydro-oligomerization of methane to ethylene and aromatics over molybdenum/HZSM-5 catalyst. Journal of Catalysis, 1995, 157(1): 190–200 https://doi.org/10.1006/jcat.1995.1279
223
V T T Ha , L V Tiep , P Meriaudeau , C Naccache . Aromatization of methane over zeolite supported molybdenum: active sites and reaction mechanism. Journal of Molecular Catalysis A Chemical, 2002, 181(1): 283–290 https://doi.org/10.1016/S1381-1169(01)00373-9
224
D Wang , J H Lunsford , M P Rosynek . Catalytic conversion of methane to benzene over Mo/ZSM-5. Topics in Catalysis, 1996, 3(3): 289–297 https://doi.org/10.1007/BF02113855
225
N Kosinov , A S G Wijpkema , E Uslamin , R Rohling , F J A G Coumans , B Mezari , A Parastaev , A S Poryvaev , M V Fedin , E A Pidko . et al.. Confined carbon mediating dehydroaromatization of methane over Mo/ZSM-5. Angewandte Chemie International Edition, 2018, 57(4): 1016–1020 https://doi.org/10.1002/anie.201711098
226
M Çağlayan , Paioni A Lucini , E Abou-Hamad , G Shterk , A Pustovarenko , M Baldus , A D Chowdhury , J Gascon . Initial carbon–carbon bond formation during the early stages of methane dehydroaromatization. Angewandte Chemie International Edition, 2020, 59(38): 16741–16746 https://doi.org/10.1002/anie.202007283
227
I I Ivanova , E B Pomakhina , A I Rebrov , E G Derouane . 13C MAS NMR mechanistic study of the initial stages of propane activation over H-ZSM-5 zeolite. Topics in Catalysis, 1998, 6(1): 49–59 https://doi.org/10.1023/A:1019139111671
228
I I Ivanova , A I Rebrov , E Pomakhina , E G J Derouane . J o M C A-c. 13C MAS NMR mechanistic study of propane conversion into butanes over H-MFI catalyst. Journal of Molecular Catalysis A Chemical, 1999, 141(1-3): 107–116 https://doi.org/10.1016/S1381-1169(98)00254-4
229
S S Arzumanov , A A Gabrienko , D Freude , A G Stepanov . in situ high temperature MAS NMR study of the mechanisms of catalysis. Ethane aromatization on Zn-modified zeolite BEA. Solid State Nuclear Magnetic Resonance, 2009, 35(2): 113–119 https://doi.org/10.1016/j.ssnmr.2008.12.005
230
A A Gabrienko , S S Arzumanov , A V Toktarev , A G Stepanov . Metal-alkyl species are formed on interaction of small alkanes with gallium oxide: evidence from solid-state NMR. Chemical Physics Letters, 2010, 496(1): 148–151 https://doi.org/10.1016/j.cplett.2010.07.063
231
X Wang , J Xu , G Qi , C Wang , W Wang , P Gao , Q Wang , X Liu , N Feng , F Deng . Carbonylation of ethane with carbon monoxide over Zn-modified ZSM-5 zeolites studied by in situ solid-state NMR spectroscopy. Journal of Catalysis, 2017, 345: 228–235 https://doi.org/10.1016/j.jcat.2016.11.009
232
G Buckles , G J Hutchings , C D Williams . Propane conversion over zeolite catalysts: comments on the role of Ga. Catalysis Letters, 1991, 8(2): 115–123 https://doi.org/10.1007/BF00764107
233
G Buckles , G J Hutchings , C D Williams . Aromatization of propane over Ga/H-ZSM-5: an explanation of the synergy observed between Ga3+ and H+. Catalysis Letters, 1991, 11(1): 89–93 https://doi.org/10.1007/BF00866905
234
K M Dooley , G L Price , V I Kanazirev , V I Hart . Gallium-loaded zeolites for light paraffin aromatization: evidence for exchanged gallium cation active centers. Catalysis Today, 1996, 31(3): 305–315 https://doi.org/10.1016/S0920-5861(96)00071-5
235
F Solymosi , J Cserényi , A Szöke , T Bánsági , A Oszkó . Aromatization of methane over supported and unsupported Mo-based catalysts. Journal of Catalysis, 1997, 165(2): 150–161 https://doi.org/10.1006/jcat.1997.1478
236
C R Bayense , A J H P van der Pol , J H C van Hooff . Aromatization of propane over MFI-gallosilicates. Applied Catalysis, 1991, 72(1): 81–98 https://doi.org/10.1016/0166-9834(91)85030-Y
237
A A Gabrienko , S S Arzumanov , Z N Lashchinskaya , A V Toktarev , D Freude , J Haase , A G Stepanov . n-Butane transformation on Zn/H-BEA. The effect of different Zn species (Zn2+ and ZnO) on the reaction performance. Journal of Catalysis, 2020, 391: 69–79 https://doi.org/10.1016/j.jcat.2020.08.011
238
C Wang , X Zhao , M Hu , G Qi , Q Wang , S Li , J Xu , F Deng . Unraveling hydrocarbon pool boosted propane aromatization on gallium/ZSM-5 zeolite by solid-state nuclear magnetic resonance spectroscopy. Angewandte Chemie International Edition, 2021, 60(44): 23630–23634 https://doi.org/10.1002/anie.202111111
239
R Bermejo-Deval , M Orazov , R Gounder , S J Hwang , M E Davis . Active sites in Sn-beta for glucose isomerization to fructose and epimerization to mannose. ACS Catalysis, 2014, 4(7): 2288–2297 https://doi.org/10.1021/cs500466j
240
F Chen , M Shetty , M Wang , H Shi , Y Liu , D M Camaioni , O Y Gutiérrez , J A Lercher . Differences in mechanism and rate of zeolite-catalyzed cyclohexanol dehydration in apolar and aqueous phase. ACS Catalysis, 2021, 11(5): 2879–2888 https://doi.org/10.1021/acscatal.0c05674
241
A J Rossini , A Zagdoun , M Lelli , A Lesage , C Copéret , L Emsley . Dynamic nuclear polarization surface enhanced NMR spectroscopy. Accounts of Chemical Research, 2013, 46(9): 1942–1951 https://doi.org/10.1021/ar300322x
242
A G M Rankin , J Trébosc , F Pourpoint , J P Amoureux , O Lafon . Recent developments in MAS DNP-NMR of materials. Solid State Nuclear Magnetic Resonance, 2019, 101: 116–143 https://doi.org/10.1016/j.ssnmr.2019.05.009
243
W Wang , Q Wang , J Xu , F Deng . Understanding heterogeneous catalytic hydrogenation by parahydrogen-induced polarization NMR spectroscopy. ACS Catalysis, 2023, 13(6): 3501–3519 https://doi.org/10.1021/acscatal.2c05659
244
P Hübler , R Giernoth , G Kümmerle , J Bargon . Investigating the kinetics of homogeneous hydrogenation reactions using PHIP NMR spectroscopy. Journal of the American Chemical Society, 1999, 121(22): 5311–5318 https://doi.org/10.1021/ja984353y
245
S B Duckett , R E Mewis . Application of parahydrogen induced polarization techniques in NMR spectroscopy and imaging. Accounts of Chemical Research, 2012, 45(8): 1247–1257 https://doi.org/10.1021/ar2003094
246
G Buntkowsky , F Theiss , J Lins , Y A Miloslavina , L Wienands , A Kiryutin , A Yurkovskaya . Recent advances in the application of parahydrogen in catalysis and biochemistry. RSC Advances, 2022, 12(20): 12477–12506 https://doi.org/10.1039/D2RA01346K
247
K V Kovtunov , I V Koptyug , M Fekete , S B Duckett , T Theis , B Joalland , E Y Chekmenev . Parahydrogen-induced hyperpolarization of gases. Angewandte Chemie International Edition, 2020, 59(41): 17788–17797 https://doi.org/10.1002/anie.201915306
248
T Chakrabarty , N Goldin , A Feintuch , L Houben , M Leskes . Paramagnetic metal-ion dopants as polarization agents for dynamic nuclear polarization NMR spectroscopy in inorganic solids. ChemPhysChem, 2018, 19(17): 2139–2142 https://doi.org/10.1002/cphc.201800462
249
H Henning , M Dyballa , M Scheibe , E Klemm , M Hunger . in situ CF MAS NMR study of the pairwise incorporation of parahydrogen into olefins on rhodium-containing zeolites Y. Chemical Physics Letters, 2013, 555: 258–262 https://doi.org/10.1016/j.cplett.2012.10.068
250
U Obenaus , S Lang , R Himmelmann , M Hunger . Parahydrogen-induced hyperpolarization inside meso- and micropores of Pt-, Rh-, Ir-, and Pd-containing solid catalysts. Journal of Physical Chemistry C, 2017, 121(18): 9953–9962 https://doi.org/10.1021/acs.jpcc.7b01899
251
W Wang , Q Sun , Q Wang , S Li , J Xu , F Deng . Heterogeneous parahydrogen induced polarization on Rh-containing silicalite-1 zeolites: effect of the catalyst structure on signal enhancement. Catalysis Science & Technology, 2022, 12(14): 4442–4449 https://doi.org/10.1039/D2CY00615D