Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2025, Vol. 19 Issue (1) : 5    https://doi.org/10.1007/s11705-024-2506-1
Probing the dynamics of methanol in copper-loaded zeolites via quasi-elastic and inelastic neutron scattering
Vainius Skukauskas1,2, Nicolas De Souza3, Emma K. Gibson1,2, Ian P. Silverwood1,4()
. UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, OX11 0FA, UK
. School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
. Australian Nuclear Science and Technology Organisation (ANSTO), NSW 2232, Australia
. ISIS Neutron and Muon Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, OX11 0QX, UK
 Download: PDF(645 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The dynamics of methanol within prototype methanol synthesis catalysts were studied using quasi-elastic neutron scattering. Three Cu-exchanged zeolites (mordenite, SSZ-13 and ZSM-5) were studied after methanol loading and showed jump diffusion coefficients between 1.04 × 10−10 and 2.59 × 10−10 m2·s–1. Non-Arrhenius behavior was observed with varying temperature due to methoxy formation at Brønsted acid sites and methanol clustering around copper cations.

Keywords quasielastic neutron scattering      inelastic neutron scattering      methanol      diffusion      zeolites     
Corresponding Author(s): Ian P. Silverwood   
Just Accepted Date: 05 July 2024   Issue Date: 28 November 2024
 Cite this article:   
Vainius Skukauskas,Nicolas De Souza,Emma K. Gibson, et al. Probing the dynamics of methanol in copper-loaded zeolites via quasi-elastic and inelastic neutron scattering[J]. Front. Chem. Sci. Eng., 2025, 19(1): 5.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2506-1
https://academic.hep.com.cn/fcse/EN/Y2025/V19/I1/5
Fig.1  Fits applied to the data from (a, d, g) CuMOR, (b, e, h) CuSSZ13, and (c, f, i) CuZSM5 at 375 K for Q values of (a,b,c) 0.4, (d, e, f) 1.0, and (g, h, i) 1.8 ?–1.
Fig.2  Lorentzian linewidths of the quasielastic component from the QENS spectra and the SS jump diffusion model applied. (a), (b), (c) and (d) correspond to data obtained at 300, 325, 350, and 375 K respectively.
SampleT/K?l2?/?τ0/psDs/( × 10?10 m2·s–1)
CuMOR3002.0 ± 0.347.8 ± 11.01.3 ± 0.5
CuMOR3252.9 ± 0.477.2 ± 13.21.8 ± 0.6
CuMOR3502.9 ± 0.476.4 ± 12.21.8 ± 0.6
CuMOR3751.8 ± 0.251.3 ± 10.31.0 ± 0.4
CuSSZ133003.7 ± 0.390.2 ± 8.92.6 ± 0.5
CuSSZ133253.3 ± 0.380.8 ± 7.22.2 ± 0.4
CuSSZ133503.3 ± 0.272.8 ± 6.22.5 ± 0.4
CuSSZ133752.7 ± 0.253.2 ± 5.02.3 ± 0.4
CuZSM53002.4 ± 0.277.5 ± 10.31.2 ± 0.3
CuZSM53252.7 ± 0.281.5 ± 9.11.5 ± 0.3
CuZSM53503.1 ± 0.383.8 ± 8.41.9 ± 0.4
CuZSM53752.4 ± 0.259.6 ± 6.31.6 ± 0.4
Tab.1  Jump lengths, residence times and diffusion coefficients derived from QENS
Fig.3  INS spectra of methanol adsorbed on the three zeolites at 350 K.
1 V Van Speybroeck , K Hemelsoet , L Joos , M Waroquier , R G Bell , C R A Catlow . Advances in theory and their application within the field of zeolite chemistry. Chemical Society Reviews, 2015, 44(20): 7044–7111
https://doi.org/10.1039/C5CS00029G
2 S Mitra , V K Sharma , R Mukhopadhyay . Diffusion of confined fluids in microporous zeolites and clay materials. Reports on Progress in Physics, 2021, 84(6): 066501
https://doi.org/10.1088/1361-6633/abf085
3 P Vanelderen , J Vancauwenbergh , B F Sels , R A Schoonheydt . Coordination chemistry and reactivity of copper in zeolites. Coordination Chemistry Reviews, 2013, 257(2): 483–494
https://doi.org/10.1016/j.ccr.2012.07.008
4 B E R Snyder , M L Bols , R A Schoonheydt , B F Sels , E I Solomon . Iron and copper active sites in zeolites and their correlation to metalloenzymes. Chemical Reviews, 2018, 118(5): 2718–2768
https://doi.org/10.1021/acs.chemrev.7b00344
5 J Colby , D I Stirling , H Dalton . The soluble methane mono oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n alkanes, n alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochemical Journal, 1977, 165(2): 395–402
https://doi.org/10.1042/bj1650395
6 M B Park , E D Park , W S Ahn . Recent progress in direct conversion of methane to methanol over copper-exchanged zeolites. Frontiers in Chemistry, 2019, 7: 514
https://doi.org/10.3389/fchem.2019.00514
7 A J O’Malley , C R A Catlow . Sorbate dynamics in zeolite catalysts. Experimental Methods in the Physical Sciences, 2017, 49: 349–401
https://doi.org/10.1016/B978-0-12-805324-9.00006-6
8 D H Lin , V Ducarme , G Coudurier , J C Vedrine . Adsorption and diffusion of different hydrocarbons in MFI zeolite of varying crystallite sizes. Studies in Surface Science and Catalysis, 1989, 46: 615–623
https://doi.org/10.1016/S0167-2991(08)61016-2
9 B Millot , A Méthivier , H Jobic , H Moueddeb , J A Dalmon . Permeation of linear and branched alkanes in ZSM-5 supported membranes. Microporous and Mesoporous Materials, 2000, 38(1): 85–95
https://doi.org/10.1016/S1387-1811(99)00302-9
10 W Heink , J Kärger , H Pfeifer , K P Datema , A K Nowak . High-temperature pulsed field gradient nuclear magnetic resonance self-diffusion measurements of n-alkanes in MFI-type zeolites. Journal of the Chemical Society, Faraday Transactions, 1992, 88(23): 3505–3509
https://doi.org/10.1039/FT9928803505
11 M Bée. Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry, Biology and Materials Science. Bristol: Adam Hilger, 1988
12 R Mukhopadhyay , S Mitra . Molecular diffusion and confinement effect: neutron scattering study. Indian Journal of Pure and Applied Physics, 2006, 44: 732–740
13 S K Matam , C R A Catlow , I P Silverwood , A J O’Malley . Methanol dynamics in H-ZSM-5 with Si/Al ratio of 25: a quasi-elastic neutron scattering (QENS) study. Topics in Catalysis, 2021, 64(9-12): 699–706
https://doi.org/10.1007/s11244-021-01450-z
14 I P Silverwood , N G Hamilton , A McFarlane , R M Ormerod , T Guidi , J Bones , M P Dudman , C M Goodway , M Kibble , S F Parker . et al.. Experimental arrangements suitable for the acquisition of inelastic neutron scattering spectra of heterogeneous catalysts. Review of Scientific Instruments, 2011, 82(3): 034101
https://doi.org/10.1063/1.3553295
15 N R de Souza , A Klapproth , G N Iles . EMU: high-resolution backscattering spectrometer at ANSTO. Neutron News, 2016, 27(2): 20–21
https://doi.org/10.1080/10448632.2016.1163985
16 O Arnold , J C Bilheux , J M Borreguero , A Buts , S I Campbell , L Chapon , M Doucet , N Draper , R Ferraz Leal , M A Gigg . et al.. Mantid—Data analysis and visualization package for neutron scattering and μSR experiments. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 764: 156–166
https://doi.org/10.1016/j.nima.2014.07.029
17 R T Azuah , L R Kneller , Y Qiu , P L W Tregenna-Piggott , C M Brown , J R D Copley , R M Dimeo . DAVE: a comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. Journal of Research of the National Institute of Standards and Technology, 2009, 114(6): 341–358
https://doi.org/10.6028/jres.114.025
18 S F Parker , F Fernandez-Alonso , A J Ramirez-Cuesta , J Tomkinson , S Rudic , R S Pinna , G Gorini , Castañon J Fernández . Recent and future developments on TOSCA at ISIS. Journal of Physics: Conference Series, 2014, 554: 012003
https://doi.org/10.1088/1742-6596/554/1/012003
19 K S Singwi , A Sjölander . Resonance absorption of nuclear gamma rays and the dynamics of atomic motions. Physical Review, 1960, 120(4): 1093–1102
https://doi.org/10.1103/PhysRev.120.1093
20 A J O’Malley , S F Parker , A Chutia , M R Farrow , I P Silverwood , V García-Sakai , C R A Catlow . Room temperature methoxylation in zeolites: insight into a key step of the methanol-to-hydrocarbons process. Chemical Communications, 2016, 52(14): 2897–2900
https://doi.org/10.1039/C5CC08956E
21 A Zachariou , A Hawkins , S F Parker , D Lennon , R F Howe . Neutron spectroscopy studies of methanol to hydrocarbons catalysis over ZSM-5. Catalysis Today, 2021, 368: 20–27
https://doi.org/10.1016/j.cattod.2020.05.030
22 R Schenkel , A Jentys , S F Parker , J A Lercher . Investigation of the adsorption of methanol on alkali metal cation exchanged zeolite X by inelastic neutron scattering. Journal of Physical Chemistry B, 2004, 108(23): 7902–7910
https://doi.org/10.1021/jp049819f
23 D F Plant , G Maurin , R G Bell . Molecular dynamics simulation of methanol in zeolite NaY. Studies in Surface Science and Catalysis, 2005, 158: 963–970
https://doi.org/10.1016/S0167-2991(05)80436-7
24 C L M Woodward , A J Porter , K S C Morton , A J O’Malley . Methanol diffusion in H-ZSM-5 catalysts as a function of loading and Si/Al ratio: a classical molecular dynamics study. Catalysis Communications, 2022, 164: 106415
https://doi.org/10.1016/j.catcom.2022.106415
25 C H Botchway , R Tia , E Adei , A J O’Malley , N Y Dzade , C Hernandez-Tamargo , Leeuw N H De . Influence of topology and brønsted acid site presence on methanol diffusion in zeolites beta and MFI. Catalysts, 2020, 10(11): 1342
https://doi.org/10.3390/catal10111342
26 E GibsonV SkukasukasI P Silverwood. INS vibrational spectroscopy of surface species relevant to the partial oxidation of methane. STFC ISIS Neutron and Muon Source, 2022
[1] Weilong Chun, Chenbiao Yang, Xu Wang, Xin Yang, Huiyong Chen. Solid-conversion synthesis of three-dimensionally ordered mesoporous ZSM-5 catalysts for the methanol-to-propylene reaction[J]. Front. Chem. Sci. Eng., 2024, 18(8): 93-.
[2] Yi Chen, Shaowei Chen, Yan Shao, Cui Quan, Ningbo Gao, Xiaolei Fan, Huanhao Chen. Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis[J]. Front. Chem. Sci. Eng., 2024, 18(7): 77-.
[3] Ning Yang, Tingjun Fu, Chuntao Cao, Xueqing Wu, Huiling Zheng, Zhong Li. Constructing hierarchical ZSM-5 coated with small ZSM-5 crystals via oriented-attachment and in situ assembly for methanol-to-aromatics reaction[J]. Front. Chem. Sci. Eng., 2024, 18(7): 76-.
[4] Guoxing Chen, Wenmei Liu, Marc Widenmeyer, Xiao Yu, Zhijun Zhao, Songhak Yoon, Ruijuan Yan, Wenjie Xie, Armin Feldhoff, Gert Homm, Emanuel Ionescu, Maria Fyta, Anke Weidenkaff. Advancing oxygen separation: insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3–δ (M = Cu, Zn) oxygen transport membranes[J]. Front. Chem. Sci. Eng., 2024, 18(6): 62-.
[5] Jibin Zhou, Xue Li, Duiping Liu, Feng Wang, Tao Zhang, Mao Ye, Zhongmin Liu. A hybrid spatial-temporal deep learning prediction model of industrial methanol-to-olefins process[J]. Front. Chem. Sci. Eng., 2024, 18(4): 42-.
[6] Hassan Alhassawi, Edidiong Asuquo, Shima Zainal, Yuxin Zhang, Abdullah Alhelali, Zhipeng Qie, Christopher M. A. Parlett, Carmine D’Agostino, Xiaolei Fan, Arthur A. Garforth. Formulation of zeolite-mesoporous silica composite catalysts for light olefin production from catalytic cracking[J]. Front. Chem. Sci. Eng., 2024, 18(11): 133-.
[7] Russell F Howe. New approaches to vibrational spectroscopy of zeolite catalysts: a perspective[J]. Front. Chem. Sci. Eng., 2024, 18(11): 123-.
[8] Yi Cheng, Qiong Pan, Jie Li, Nan Zhang, Yang Yang, Jiawei Wang, Ningbo Gao. Machine learning facilitated the modeling of plastics hydrothermal pretreatment toward constructing an on-ship marine litter-to-methanol plant[J]. Front. Chem. Sci. Eng., 2024, 18(10): 117-.
[9] Katarzyna Majerczak, Ophelie Squillace, Zhiwei Shi, Zhanping Zhang, Zhenyu J. Zhang. Molecular diffusion in ternary poly(vinyl alcohol) solutions[J]. Front. Chem. Sci. Eng., 2022, 16(6): 1003-1016.
[10] Shitong Cui, Jun Ge. Diffusion process in enzyme–metal hybrid catalysts[J]. Front. Chem. Sci. Eng., 2022, 16(6): 921-929.
[11] Huan Wang, Guo Du, Jiaqing Jia, Shaohua Chen, Zhipeng Su, Rui Chen, Tiehong Chen. Hierarchically porous zeolites synthesized with carbon materials as templates[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1444-1461.
[12] Xue Liu, Lingtao Kong, Shengtao Xu, Chaofan Liu, Fengyun Ma. Modified iron-molybdate catalysts with various metal oxides by a mechanochemical method: enhanced formaldehyde yield in methanol partial oxidation[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1099-1110.
[13] Chaoli Tong, Jiachang Zuo, Danlu Wen, Weikun Chen, Linmin Ye, Youzhu Yuan. Halide-free carbonylation of methanol with H-MOR supported CuCeOx catalysts[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1075-1087.
[14] Yuexin Hou, Xiaoyun Li, Minghui Sun, Chaofan Li, Syed ul Hasnain Bakhtiar, Kunhao Lei, Shen Yu, Zhao Wang, Zhiyi Hu, Lihua Chen, Bao-Lian Su. The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance[J]. Front. Chem. Sci. Eng., 2021, 15(2): 269-278.
[15] Yun Liu, Jiangyuan Qu, Xuehui Wu, Kai Zhang, Yuan Zhang. Reaction kinetics and internal diffusion of Zhundong char gasification with CO2[J]. Front. Chem. Sci. Eng., 2021, 15(2): 373-383.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed