Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (5) : 1147-1157    https://doi.org/10.1007/s11705-020-1978-x
RESEARCH ARTICLE
Insight into the effect of surface carboxyl and amino groups on the adsorption of titanium dioxide for acid red G
Wenlong Zhang1, Xuyang Zhao1, Lin Zhang1, Jinwei Zhu1,2, Shanshan Li1, Ping Hu3, Jiangtao Feng1(), Wei Yan1
1. Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2. Shaanxi Electrical Equipment Institution, Xi’an 710025, China
3. Shaanxi Polytechnic Institute, Xianyang 712000, China
 Download: PDF(1630 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, TiO2 functionalized with organic groups were prepared to study the effect of carboxyl and amino groups on the adsorption behavior of TiO2 for the removal of acid red G (ARG) as an anionic dye from aqueous solution. TiO2 was successfully modified with carboxyl and amino groups by using the hydrolysis method with oxalic acid (OAD, with two carboxyl groups), ethylenediamine (EDA, with two amino groups) and DL-alanine (DLA, with one carboxyl group and one amino group) at low temperature (65 °C) and labeled as OAD-TiO2, EDA-TiO2 and DLA-TiO2, respectively. The ARG uptake by the functionalized TiO2 samples was largely dependent on the functional groups. The interaction between ARG and the functional organic groups on the TiO2 samples plays an important role in the adsorption process, which leads to the excellent adsorption performance (higher capacity and faster adsorption rate) of the functionalized TiO2 samples than that of P25 (commercial TiO2 without modification). Furthermore, there is no obvious loss of the adsorption capacity for the functionalized TiO2 even after 5 adsorption-desorption cycles, which indicated the good reusability of the modified TiO2 samples for anionic dye removal from aqueous solution.

Keywords amino group      carboxylic group      titanium dioxide      ARG      adsorption     
Corresponding Author(s): Jiangtao Feng   
Just Accepted Date: 27 November 2020   Online First Date: 22 January 2021    Issue Date: 30 August 2021
 Cite this article:   
Wenlong Zhang,Xuyang Zhao,Lin Zhang, et al. Insight into the effect of surface carboxyl and amino groups on the adsorption of titanium dioxide for acid red G[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1147-1157.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1978-x
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I5/1147
Fig.1  FTIR spectra of (a) P25, (b) DLA-TiO2, (c) EDA-TiO2 and (d) OAD-TiO2.
Sample C/atom % Ti/atom % O/atom % C/Ti
P25a) 4.19 63.69 32.12 0.065
OAD-TiO2b) 8.18 59.90 28.57 0.137
EDA-TiO2c) 11.93 57.61 30.47 0.207
DLA-TiO2d) 24.68 45.09 30.23 0.547
Tab.1  The surface molar ratio of different atoms for the TiO2 samples
Fig.2  TG spectra of the TiO2 samples.
Fig.3  Zeta potential of the TiO2 samples. The numbers in blue mean isoelectronic point.
Sample SBET/(m2·g–1) Vp/(cm3·g–1) R/nm
P25a) 48.48 0.258 1.07
OAD-TiO2b) 30.47 0.043 2.88
EDA-TiO2c) 25.56 0.188 8.92
DLA-TiO2d) 401.26 0.366 1.83
Tab.2  Textural properties of the TiO2 samples
Fig.4  Influence of the solution pH on the ARG adsorption onto the TiO2 samples. Experimental conditions: initial ARG C0 200 mg/L, dosage 2 g/L.
Fig.5  Kinetics plots of ARG adsorbed onto (a) P25, (b) DLA-TiO2, (c) EDA-TiO2 and (d) OAD-TiO2. Experimental conditions: initial C0 100, 200, 300 mg/L, solution pH 3.0, dosage 2 g/L.
Sample C0
/(mg·L–1)
Qexp
/(mg·g–1)
Pseudo-first-order model Pseudo-second-order model
kl
/(L·min–1)
Qe
/(mg·g–1)
R2 k2
/(g·min–1·mg–1)
Qe
/(mg·g–1)
R2
P25a) 100 15.83 0.208 15.04 0.9894 0.018 16.22 0.9919
200 18.82 0.273 18.53 0.9926 0.020 19.09 0.9947
300 22.72 0.229 21.86 0.9714 0.014 23.15 0.9953
OAD-TiO2b) 100 39.24 0.605 38.07 0.9832 0.024 39.78 0.9989
200 42.17 0.640 40.81 0.9766 0.023 42.70 0.9975
300 45.55 0.905 44.62 0.9904 0.036 46.08 0.9992
EDA-TiO2c) 100 48.71 1.791 47.46 0.9923 0.101 48.28 0.9986
200 61.78 1.195 60.93 0.9773 0.042 62.40 0.9996
300 74.77 1.430 71.42 0.9810 0.043 73.21 0.9997
DLA-TiO2d) 100 44.98 1.511 43.59 0.9952 0.084 44.45 0.9983
200 53.93 1.610 53.33 0.9963 0.079 54.24 0.9994
300 60.69 0.923 58.71 0.9637 0.027 60.77 0.9929
Tab.3  Kinetics parameters for ARG adsorption at different initial concentrations
Fig.6  Adsorption isotherms for ARG adsorbed onto the TiO2 samples at 25 °C. Experimental conditions: initial ARG C0 = 10–500 mg/L, solution pH 3.0, contact time 120 min.
Samples RL Langmuir model parameters Freundlich model parameters
Qm,cal/(mg·g–1) KL/(L·mg–1) R2 KF/(mg?g–1)·(mg?L–1)n 1/n R2
P25a) 0.1538 28.78 0.011 0.9903 3.42 0.323 0.9293
OAD-TiO2b) 0.0392 48.11 0.049 0.9969 18.86 0.153 0.9036
EDA-TiO2c) 0.0143 78.15 0.138 0.9840 35.79 0.139 0.9078
DLA-TiO2d) 0.0180 59.07 0.109 0.9567 29.01 0.122 0.9484
Tab.4  Langmuir and Freundlich isotherm parameters for ARG adsorbed onto the TiO2 samples
Fig.7  Recycle performance of the TiO2 samples with the initial concentrations of 200 mg/L of ARG, contact time of 120 min, at the temperature of 25 °C.
Fig.8  FTIR spectra of (a) OAD-TiO2, (b) EDA-TiO2, and (c) DLA-TiO2 before and after adsorption of ARG. The data before and after adsorption of ARG are represented by black and red curves, respectively.
1 H Park, H I Kim, G H Moon, W Choi. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy & Environmental Science, 2016, 9(2): 411–433
https://doi.org/10.1039/C5EE02575C
2 K Nakata, A Fujishima. TiO2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2012, 13(3): 169–189
https://doi.org/10.1016/j.jphotochemrev.2012.06.001
3 J Schneider, M Matsuoka, M Takeuchi, J Zhang, Y Horiuchi, M Anpo, D W Bahnemann. Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 2014, 114(19): 9919–9986
https://doi.org/10.1021/cr5001892
4 H Xu, S Ouyang, L Liu, P Reunchan, N Umezawa, J Ye. Recent advances in TiO2-based photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(32): 12642–12661
https://doi.org/10.1039/C4TA00941J
5 L Prieto Rodriguez, S Miralles Cuevas, I Oller, A Aguera, G Li Puma, S Malato. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. Journal of Hazardous Materials, 2012, 211: 131–137
https://doi.org/10.1016/j.jhazmat.2011.09.008
6 B A Marinho, R O Cristóvão, R Djellabi, J M Loureiro, R A Boaventura, V J P Vilar. Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light. Applied Catalysis B: Environmental, 2017, 203: 18–30
https://doi.org/10.1016/j.apcatb.2016.09.061
7 Y Choi, M S Koo, A D Bokare, D H Kim, D W Bahnemann, W Choi. Sequential process combination of photocatalytic oxidation and dark reduction for the removal of organic pollutants and Cr(VI) using Ag/TiO2. Environmental Science & Technology, 2017, 51(7): 3973–3981
https://doi.org/10.1021/acs.est.6b06303
8 L Xiong, W Sun, Y Yang, C Chen, J Ni. Heterogeneous photocatalysis of methylene blue over titanate nanotubes: effect of adsorption. Journal of Colloid and Interface Science, 2011, 356(1): 211–216
https://doi.org/10.1016/j.jcis.2010.12.059
9 T D Nguyen-Phan, M B Song, E W Shin. Removal efficiency of gaseous benzene using lanthanide-doped mesoporous titania. Journal of Hazardous Materials, 2009, 167(1-3): 75–81
https://doi.org/10.1016/j.jhazmat.2008.12.085
10 L Zhang, J M Cole, C Dai. Variation in optoelectronic properties of azo dye-sensitized TiO2 semiconductor interfaces with different adsorption anchors: carboxylate, sulfonate, hydroxyl and pyridyl groups. ACS Applied Materials & Interfaces, 2014, 6(10): 7535–7546
https://doi.org/10.1021/am502186k
11 B Kim, S W Park, J Y Kim, K Yoo, J A Lee, M W Lee, D K Lee, J Y Kim, B Kim, H Kim, S Han, H J Son, M J Ko. Rapid dye adsorption via surface modification of TiO2 photoanodes for dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2013, 5(11): 5201–5207
https://doi.org/10.1021/am401034r
12 T S Natarajan, H C Bajaj, R J Tayade. Preferential adsorption behavior of methylene blue dye onto surface hydroxyl group enriched TiO2 nanotube and its photocatalytic regeneration. Journal of Colloid and Interface Science, 2014, 433: 104–114
https://doi.org/10.1016/j.jcis.2014.07.019
13 T Sugita, K I Kobayashi, K Kobayashi, T Yamazaki, K Fujii, H Itabashi, M Mori. Enhanced aqueous adsorption and photodecomposition of anionic organic target by amino group-modified TiO2 as anionic adsorptive photocatalyst. Journal of Photochemistry and Photobiology A Chemistry, 2018, 356: 71–80
https://doi.org/10.1016/j.jphotochem.2017.12.025
14 M I Baig, P G Ingole, W K Choi, S R Park, E C Kang, H K Lee. Development of carboxylated TiO2 incorporated thin film nanocomposite hollow fiber membranes for flue gas dehydration. Journal of Membrane Science, 2016, 514: 622–635
https://doi.org/10.1016/j.memsci.2016.05.017
15 M T Nguyen-Le, B K Lee. High temperature synthesis of interfacial functionalized carboxylate mesoporous TiO2 for effective adsorption of cationic dyes. Chemical Engineering Journal, 2015, 281: 20–33
https://doi.org/10.1016/j.cej.2015.06.075
16 J M Liu, L Han, N An, L Xing, H Y Ma, L Cheng, J C Yang, Q C Zhang. Enhanced visible-light photocatalytic activity of carbonate-doped anatase TiO2 based on the electron-withdrawing bidentate carboxylate linkage. Applied Catalysis B: Environmental, 2017, 202: 642–652
https://doi.org/10.1016/j.apcatb.2016.09.057
17 J Wang, G Yang, J Chen, Y Liu, Y Wang, C Y Lao, K Xi, D Yang, C J Harris, W Yan, S Ding, R V Kumar. Flexible and High-loading lithium-sulfur batteries enabled by integrated three-in-one fibrous membranes. Advanced Energy Materials, 2019, 9(38): 1902001
https://doi.org/10.1002/aenm.201902001
18 Y Weng, L Li, Y Liu, L Wang, G Yang. Surface-binding forms of carboxylic groups on nanoparticulate TiO2 surface studied by the interface-sensitive transient triplet-state molecular probe. Journal of Physical Chemistry B, 2003, 107(18): 4356–4363
https://doi.org/10.1021/jp022534n
19 S Karapati, T Giannakopoulou, N Todorova, N Boukos, D Dimotikali, C Trapalis. Eco-efficient TiO2 modification for air pollutants oxidation. Applied Catalysis B: Environmental, 2015, 176-177: 578–585
https://doi.org/10.1016/j.apcatb.2015.04.012
20 S Mallakpour, E Nikkhoo. Surface modification of nano-TiO2 with trimellitylimido-amino acid-based diacids for preventing aggregation of nanoparticles. Advanced Powder Technology, 2014, 25(1): 348–353
https://doi.org/10.1016/j.apt.2013.05.017
21 B Shi, C Zhao, Y Ji, J Shi, H Yang. Promotion effect of PANI on Fe-PANI/zeolite as an active and recyclable Fenton-like catalyst under near-neutral condition. Applied Surface Science, 2020, 508: 145298
https://doi.org/10.1016/j.apsusc.2020.145298
22 X Li, D Wang, G Cheng, Q Luo, J An, Y Wang. Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Applied Catalysis B: Environmental, 2008, 81(3-4): 267–273
https://doi.org/10.1016/j.apcatb.2007.12.022
23 I A Janković, Z V Šaponjić, M I Čomor, J M Nedeljković. Surface modification of colloidal TiO2 nanoparticles with bidentate benzene derivatives. Journal of Physical Chemistry C, 2009, 113(29): 12645–12652
https://doi.org/10.1021/jp9013338
24 O W Duckworth, S T Martin. Surface complexation and dissolution of hematite by C1–C6 dicarboxylic acids at pH= 5.0. Geochimica et Cosmochimica Acta, 2001, 65(23): 4289–4301
https://doi.org/10.1016/S0016-7037(01)00696-2
25 J D Filius, T Hiemstra, W H Van Riemsdijk. Adsorption of small weak organic acids on goethite: modeling of mechanisms. Journal of Colloid and Interface Science, 1997, 195(2): 368–380
https://doi.org/10.1006/jcis.1997.5152
26 A Crake, K C Christoforidis, R Godin, B Moss, A Kafizas, S Zafeiratos, J R Durrant, C Petit. Titanium dioxide/carbon nitride nanosheet nanocomposites for gas phase CO2 photoreduction under UV-visible irradiation. Applied Catalysis B: Environmental, 2019, 242: 369–378
https://doi.org/10.1016/j.apcatb.2018.10.023
27 J Feng, J Zhu, W Lv, J Li, W Yan. Effect of hydroxyl group of carboxylic acids on the adsorption of acid red G and methylene blue on TiO2. Chemical Engineering Journal, 2015, 269: 316–322
https://doi.org/10.1016/j.cej.2015.01.109
28 J C Yu, J G Yu, W K Ho, Z T Jiang, L Z Zhang. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of Materials, 2002, 14(9): 3808–3816
https://doi.org/10.1021/cm020027c
29 J C Yu, J G Yu, W K Ho, L Z Zhang. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chemical Communications, 2001, 19(19): 1942–1943
https://doi.org/10.1039/b105471f
30 W Lyu, J M Wu, W L Zhang, Y P Liu, M T Yu, Y F Zhao, J T Feng, W Yan. Easy separated 3D hierarchical coral-like magnetic polyaniline adsorbent with enhanced performance in adsorption and reduction of Cr(VI) and immobilization of Cr(III). Chemical Engineering Journal, 2019, 363: 107–119
https://doi.org/10.1016/j.cej.2019.01.109
31 C Moreno-Castilla. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 2004, 42(1): 83–94
https://doi.org/10.1016/j.carbon.2003.09.022
32 Z Shayegan, F Haghighat, C S Lee, A Bahloul, M Huard. Effect of surface fluorination of P25-TiO2 on adsorption of indoor environment volatile organic compounds. Chemical Engineering Journal, 2018, 346: 578–589
https://doi.org/10.1016/j.cej.2018.04.043
33 S Li, L Fang, M Ye, Y Zhang. Enhanced adsorption of norfloxacin on modified TiO2 particles prepared via surface molecular imprinting technique. Desalination and Water Treatment, 2016, 57: 408–418
34 S Leong, D Li, K Hapgood, X W Zhang, H T Wang. Ni(OH)2 decorated rutile TiO2 for efficient removal of tetracycline from wastewater. Applied Catalysis B: Environmental, 2016, 198: 224–233
https://doi.org/10.1016/j.apcatb.2016.05.043
35 L Wang, J Wang, Z Wang, C He, W Lyu, W Yan, L Yang. Enhanced antimonate (Sb(V)) removal from aqueous solution by La-doped magnetic biochars. Chemical Engineering Journal, 2018, 354: 623–632
https://doi.org/10.1016/j.cej.2018.08.074
36 A Srinivasan, T Viraraghavan. Decolorization of dye wastewaters by biosorbents: a review. Journal of Environmental Management, 2010, 91(10): 1915–1929
https://doi.org/10.1016/j.jenvman.2010.05.003
37 W L Zhang, R Fu, L Wang, J W Zhu, J T Feng, W Yan. Rapid removal of ammonia nitrogen in low-concentration from wastewater by amorphous sodium titanate nano-particles. Science of the Total Environment, 2019, 668: 815–824
https://doi.org/10.1016/j.scitotenv.2019.03.051
38 P Suresh Kumar, L Korving, K J Keesman, M van Loosdrecht, G Witkamp. Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics. Chemical Engineering Journal, 2019, 358: 160–169
https://doi.org/10.1016/j.cej.2018.09.202
39 X X Han, G Q Zhu, Y X Ding, Y L Miao, K W Wang, H J Zhang, Y Wang, S B Liu. Selective catalytic synthesis of glycerol monolaurate over silica gel-based sulfonic acid functionalized ionic liquid catalysts. Chemical Engineering Journal, 2019, 359: 733–745
https://doi.org/10.1016/j.cej.2018.11.169
40 X Han, W Yan, C T Hung, Y He, P H Wu, L L Liu, S J Huang, S B Liu. Transesterification of soybean oil to biodiesel by tin-based Brønsted-Lewis acidic ionic liquid catalysts. Korean Journal of Chemical Engineering, 2016, 33(7): 2063–2072
https://doi.org/10.1007/s11814-016-0060-3
41 X Zhang, R Bai. Adsorption behavior of humic acid onto polypyrrole-coated nylon 6,6-granules. Journal of Materials Chemistry, 2002, 12(9): 2733–2739
https://doi.org/10.1039/b201364a
42 J Li, Q Zhang, J Feng, W Yan. Synthesis of PPy-modified TiO2 composite in H2SO4 solution and its novel adsorption characteristics for organic dyes. Chemical Engineering Journal, 2013, 225: 766–775
https://doi.org/10.1016/j.cej.2013.03.011
[1] FCE-20038-OF-ZW_suppl_1 Download
[1] Soheil Bahraminia, Mansoor Anbia, Esmat Koohsaryan. Dehydration of natural gas and biogas streams using solid desiccants: a review[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1050-1074.
[2] Fengli Li, Chuang Chen, Yuda Wang, Wenpeng Li, Guoli Zhou, Haoqin Zhang, Jie Zhang, Jingtao Wang. Activated carbon-hybridized and amine-modified polyacrylonitrile nanofibers toward ultrahigh and recyclable metal ion and dye adsorption from wastewater[J]. Front. Chem. Sci. Eng., 2021, 15(4): 984-997.
[3] Baowei Wang, Xiaoxi Wang, Bo Zhang. Dielectric barrier micro-plasma reactor with segmented outer electrode for decomposition of pure CO2[J]. Front. Chem. Sci. Eng., 2021, 15(3): 687-697.
[4] Yanxia Wang, Xiude Hu, Tuo Guo, Jian Hao, Chongdian Si, Qingjie Guo. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons[J]. Front. Chem. Sci. Eng., 2021, 15(3): 493-504.
[5] Gongkui Xiao, Penny Xiao, Andrew Hoadley, Paul Webley. Integrated adsorption and absorption process for post-combustion CO2 capture[J]. Front. Chem. Sci. Eng., 2021, 15(3): 483-492.
[6] Leijing Liu, Hao Zhang, Bo Xiao, Yang Liu, Bin Xu, Chen Wang, Shanpeng Wen, Erjun Zhou, Gang Chen, Chan Im, Wenjing Tian. Effects of BTA2 as the third component on the charge carrier generation and recombination behavior of PTB7:PC71BM photovoltaic system[J]. Front. Chem. Sci. Eng., 2021, 15(1): 127-137.
[7] Boa Jin, Hyunmin Park, Yang Liu, Leijing Liu, Jongdeok An, Wenjing Tian, Chan Im. Charge-carrier photogeneration and extraction dynamics of polymer solar cells probed by a transient photocurrent nearby the regime of the space charge-limited current[J]. Front. Chem. Sci. Eng., 2021, 15(1): 164-179.
[8] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[9] Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1018-1028.
[10] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[11] Xinghong Duo, Lingchuang Bai, Jun Wang, Jintang Guo, Xiangkui Ren, Shihai Xia, Wencheng Zhang, Abraham Domb, Yakai Feng. Multifunctional peptide conjugated amphiphilic cationic copolymer for enhancing ECs targeting, penetrating and nuclear accumulation[J]. Front. Chem. Sci. Eng., 2020, 14(5): 889-901.
[12] Sen Wang, Shiyun Liu, Danhua Mei, Rusen Zhou, Congcong Jiang, Xianhui Zhang, Zhi Fang, Kostya (Ken) Ostrikov. Liquid discharge plasma for fast biomass liquefaction at mild conditions: The effects of homogeneous catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 763-771.
[13] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[14] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[15] Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study[J]. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed