Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    2013, Vol. 7 Issue (1) : 103-111    https://doi.org/10.1007/s11707-012-0346-7
RESEARCH ARTICLE
An artificial neural network approach to estimate evapotranspiration from remote sensing and AmeriFlux data
Zhuoqi CHEN1, Runhe SHI2(email.png), Shupeng Zhang1
1. 1. College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; 2. 2. Key Laboratory of Geographic Information Science, East China Normal University, Shanghai 200062, China
 Download: PDF(217 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A simple and accurate method to estimate evapotranspiration (ET) is essential for dynamic monitoring of the Earth system at a large scale. In this paper, we developed an artificial neural network (ANN) model forced by remote sensing and AmeriFlux data to estimate ET. First, the ANN was trained with ET measurements made at 13 AmeriFlux sites and land surface products derived from satellite remotely sensed data (normalized difference vegetation index, land surface temperature and surface net radiation) for the period 2002–2006. ET estimated with the ANN was then validated by ET observed at five AmeriFlux sites during the same period. The validation sites covered five different vegetation types and were not involved in the ANN training. The coefficient of determination (R2) value for comparison between estimated and measured ET was 0.77, the root-mean-square error was 0.62 mm/d, and the mean residual was -0.28. The simple model developed in this paper captured the seasonal and interannual variation features of ET on the whole. However, the accuracy of estimated ET depended on the vegetation types, among which estimated ET showed the best result for deciduous broadleaf forest compared to the other four vegetation types.

Keywords AmeriFlux      artificial neural network (ANN)      evapotranspiration (ET)      remote sensing     
Corresponding Author(s): SHI Runhe,Email:shirunhe@gmail.com   
Issue Date: 05 March 2013
 Cite this article:   
Zhuoqi CHEN,Runhe SHI,Shupeng Zhang. An artificial neural network approach to estimate evapotranspiration from remote sensing and AmeriFlux data[J]. Front Earth Sci, 2013, 7(1): 103-111.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-012-0346-7
https://academic.hep.com.cn/fesci/EN/Y2013/V7/I1/103
SiteLatitudeLongitudeLand coverTime periodCitation
ARM Southern Great Plains36.61-97.49GRS2003-2006Sims and Bradford (2001)
Atqasuk70.47-157.41GRS2003-2006
Blodgett Forest38.90-120.63ENF2002-2006Misson et al. (2007)
Bondville40.01-88.29CRP2002-2006Hollinger et al.(2005)
Fort Peck48.31-105.10GRS2002-2006
Goodwin Creek34.25-89.97CRP2002-2006
Harvard_Forest42.53-72.19MF2002-2006Urbanski et al.(2007)
Ivotuk68.49-155.75OSH2003-2006
Kennedy Space Center (scrub oak)28.61-80.67EBF2002-2006Dore et al. (2003)
Mead-irrigated maize-soybean rotation41.16-96.47CRP2002-2006Verma et al. (2005)
Mead-rainfed maize-soybean rotation41.18-96.44CRP2002-2006Verma et al. (2005)
Metolius-Intermediate44.45-121.56ENF2002-2006Verma et al. (2005)
Morgan Monroe State Forest39.32-86.41DBF2002-2003,2005-2006
Niwot Ridge40.03-105.55ENF2002-2006
Tonzi Ranch38.43-120.97WSV2002-2006Ma et al. (2007)
Vaira Ranch38.41-120.95WSV2002-2006Xu and Baldocchi (2004)
Willow Creek45.81-90.08DBF2002-2006Mackay et al. (2007)
Wind River Crane45.82-121.95ENF2002-2006Chen et al. (2004)
Tab.1  Description of AmeriFlux sites used in this study
Fig.1  The structure of the ANN model used in our study. ‘tansig’ represents tangent sigmoid transfer function; ‘purelin’ represents linear transfer function
Fig.2  Scatterplot of overall ANN-estimated ET and measured ET at five validation sites. The solid line represents a 1:1 relationship and the dashed line represents a linear fit
Fig.3  Scatterplot of overall residuals (measured ET minus estimated ET) at five validation sites
Site nameLand coverR2RMSEMR
Morgan Monroe State ForestDBF0.840.59-0.02
Niwot RidgeENF0.810.770.68
Tonzi RanchWSV0.700.490.19
AtqasukGRS0.590.570.29
BondvilleCRP0.780.630.26
Tab.2  Validation results of the ANN model with inputs of , and
Fig.4  Time series of ANN-estimated ET and measured ET at each validation site. The solid line represents ANN-estimated ET and the dots represent the measured ET
Site nameLand coverRRMSE
Morgan Monroe State ForestDBF0.880.81
Niwot RidgeENF0.681.00
Tonzi RanchWSV0.780.68
AtqasukGRS0.110.53
BondvilleCRP0.781.03
Tab.3  Validation results of an ET estimation algorithm which based on a simplified P–M model and driven by MODIS data and Global Modeling and Assimilation Office (GAMO) meteorological reanalysis data (Mu et al., 2011)
Site nameLand coverR2RMSEMR
All validation sites-0.740.650.29
Morgan Monroe State ForestDBF0.830.61-0.06
Niwot RidgeENF0.730.840.71
Tonzi RanchWSV0.630.550.20
AtqasukGRS0.700.520.28
BondvilleCRP0.780.670.27
Tab.4  Validation results of the ANN model with inputs of EVI, LST and R.
Site nameLand coverR2RMSEMR
All validation sites-0.700.700.32
Morgan Monroe State ForestDBF0.830.650.14
Niwot RidgeENF0.800.880.75
Tonzi RanchWSV0.580.550.08
AtqasukGRS0.570.600.22
BondvilleCRP0.740.770.43
Tab.5  Validation results of the ANN model with inputs of NDVI, LST and
1 Allen R G, Pereira L S, Raes D, Smith M (1998). Crop evapotranspiration, guideline for computing water requirements. Irrigation Drainage Paper, No. 56 . FAO, Rome, Italy
2 Allen R G, Tasumi M, Morse A, Trezza R, Wright J L, Bastiaanssen W, Kramber W, Lorite I, Robison C W (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—applications. J Irrig Drain Eng , 133(4): 395–406
doi: 10.1061/(ASCE)0733-9437(2007)133:4(395)
3 Bastiaanssen W G, Noordman M, Pelgrum E J M, Davids G, Thoreson B P, Allen R G (2005). SEBAL model with remotely sensed data to improve water resources management under actual field conditions. J Irrig Drain Eng , 131(1): 85–93
doi: 10.1061/(ASCE)0733-9437(2005)131:1(85)
4 Chen J, Kyaw T P U, Ustin S L, Suchanek T H, Bond B J, Brosofske K D, Falk M (2004). Net ecosystem exchanges of carbon, water, and energy in young and old-growth Douglas-Fir forests. Ecosystems (N. Y.) , 7(5): 534–544
doi: 10.1007/s10021-004-0143-6
5 Cleugh H, Leuning A, Mu Q, Running S W (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens Environ , 106(3): 285–304
doi: 10.1016/j.rse.2006.07.007
6 Courault D, Seguin B, Olioso A (2005). Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrig Drain Syst , 19(3–4): 223–249
doi: 10.1007/s10795-005-5186-0
7 Dore S, Hymus G J, Johnson D P (2003). Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia , 146: 130–147
8 Falge E, Baldocchi D, Olson R J, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen N O, Katul G, Keronen P, Kowalski A, Ta Lai C, Law B E, Meyers T, Moncrieff J, Moors E, William Munger J, Pilegaard K, Rannik ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001). Gap filling strategies for long term energy flux data sets. Agric Meteorol , 107(1): 71–77
doi: 10.1016/S0168-1923(00)00235-5
9 Gao X, Huete A R, Didan K (2003). Multisensor comparisons and validation of MODIS vegetation indices at the semiarid Jornada Experimental Range. IEEE Trans Geosci Rem Sens , 41(10): 2368–2381
doi: 10.1109/TGRS.2003.813840
10 Gillies R R, Carlson T N, Cui J (1997). A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface e. Int J Remote Sens , 18(15): 3145–3166
doi: 10.1080/014311697217026
11 Haykin S (1994). Neural Networks–A Comprehensive Foundation. New York: MacMillan College Publishing Company
12 Hollinger S E, Bernacchi C J, Meyers T P (2005). Carbon budget of mature no-till ecosystem in North Central Region of the United States. Agric Meteorol , 130(1–2): 59–69
doi: 10.1016/j.agrformet.2005.01.005
13 Irmak A, Kamble B (2009). Evapotranspiration data assimilation with genetic algorithms and SWAP model for on-demand irrigation. Irrig Sci , 28(1): 101–112
doi: 10.1007/s00271-009-0193-9
14 Jung M, Reichstein M, Ciais P, Seneviratne S I, Sheffield J, Goulden M L, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman A J, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law B E, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson A D, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature , 467: 951–954
doi: 10.1038/nature09396 pmid:20935626
15 Kustas W P, Norman J M (1996). Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal , 41(4): 495–516
doi: 10.1080/02626669609491522
16 Li Z L, Tang R, Wan Z, Bi Y, Zhou C, Tang B, Yan G, Zhang X (2009). A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors , 9(5): 3801–3853
doi: 10.3390/s90503801 pmid:22412339
17 Lu X, Zhuang Q (2010). Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sens Environ , 114(9): 1924–1939
doi: 10.1016/j.rse.2010.04.001
18 Ma S Y, Baldocchi D D, Xu L, Hehn T (2007). Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric Meteorol , 147(3–4): 157–171
doi: 10.1016/j.agrformet.2007.07.008
19 Mackay D S, Ewers B E, Cook B D, Davis K J (2007). Environmental drivers of evapotranspiration in a shrub wetland and an upland forest in northern Wisconsin. Water Resources Research , 43: W03442.1–W03442.14
20 Misson L, Baldocchi D D, Black T A, Blanken P D, Brunet Y, Curiel Yuste J, Dorsey J R, Falk M, Granier A, Irvine M R, Jarosz N, Lamaud E, Launiainen S, Law B E, Longdoz B, Loustau D, McKay M, Paw U K T, Vesala T, Vickers D, Wilson K B, Goldstein A H (2007). Partitioning forest carbon fluxes with overstory and understory eddy-covariance measurements: a synthesis based on FLUXNET data. Agric Meteorol , 144(1–2): 14–31
doi: 10.1016/j.agrformet.2007.01.006
21 Monteith J L (1965). Evaporation and environment. Symp Soc Exp Biol , 19: 205–234
pmid:5321565
22 Mu Q, Heinsch F A, Zhao M, Running S W (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ , 111(4): 519–536
doi: 10.1016/j.rse.2007.04.015
23 Mu Q, Zhao M, Running S W (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ , 115(8): 1781–1800
doi: 10.1016/j.rse.2011.02.019 pmid:22180667
24 Nagler P L, Cleverly J, Glenn E, Lampkin D, Huete A, Wan Z (2005a). Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sens Environ , 94(1): 17–30
doi: 10.1016/j.rse.2004.08.009
25 Nagler P L, Scott R, Westenburg C, Cleverly J, Glenn E, Huete A (2005b). Evapotranspiration on western U.S. rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sens Environ , 97(3): 337–351
doi: 10.1016/j.rse.2005.05.011
26 Nemani R R, Running S W (1989). Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J Appl Meteorol , 28(4): 276–284
doi: 10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2
27 Nishida K, Nemani R R, Glassy J M, Running S W (2003). Development of an evapotranspiration index from aqua/MODIS for monitoring surface moisture status. IEEE Trans Geosci Rem Sens , 41(2): 493–501
doi: 10.1109/TGRS.2003.811744
28 Oki T, Kanae S (2006). Global hydrological cycles and world water resources. Science , 313(5790): 1068–1072
doi: 10.1126/science.1128845 pmid:16931749
29 Olioso A, Chauki H, Courault D, Wigneron J P (1999). Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models. Remote Sens Environ , 68(3): 341–356
doi: 10.1016/S0034-4257(98)00121-7
30 Olioso A, Inoue Y, Ortega-FARIAS S, Demarty J, Wigneron J P, Braud I, Jacob F, Lecharpentier P, Ottlé C, Calvet J C, Brisson N (2005). Future directions for advanced evapotranspiration modeling: assimilation of remote sensing data into crop simulation models and SVAT models. Irrig Drain Syst , 19(3–4): 377–412
doi: 10.1007/s10795-005-8143-z
31 Overgaard J, Rosbjerg D, Butts M B (2006). Land-surface modeling in hydrological perspective—a review. Biogeosciences , 3(2): 229–241
doi: 10.5194/bg-3-229-2006
32 Pan M, Wood E (2006). Data assimilation for estimating the terrestrial water budget using a constrained ensemble Kalman filter. J Hydrometeorol , 7(3): 534–547
doi: 10.1175/JHM495.1
33 Rumelhart D E, Hinton G E, Williams R J (1986). Learning representations by back-propagating errors. Nature , 323(6088): 533–536
doi: 10.1038/323533a0
34 Sims P L, Bradford J A (2001). Carbon dioxide fluxes in a southern plains prairie. Agric Meteorol , 109(2): 117–134
doi: 10.1016/S0168-1923(01)00264-7
35 Su Z (2002). The surface energy balance system (SEBS) (for estimation of turbulent heat fluxes). Hydrol Earth Syst Sci , 6(1): 85–100
doi: 10.5194/hess-6-85-2002
36 Tang Q, Peterson S, Cuenca R H, Hagimoto Y, Lettenmaier D P (2009). Satellite-based near real-time estimation of irrigated crop water consumption. J Geophys Res , 114(D5): D05114
doi: 10.1029/2008JD010854
37 Twine T E, Kustas W P, Norman J M, Cook D R, Houser P R, Meyers T P, Prueger J H, Starks P J, Wesely M L (2000). Correcting eddy-covariance flux underestimates over a grassland. Agric Meteorol , 103(3): 279–300
doi: 10.1016/S0168-1923(00)00123-4
38 Urbanski S, Barford C, Wofsy S, Kucharik C, Pyle E, Budney J, McKain K, Fitzjarrald D, Czikowsky M, Munger J W (2007). Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. J Geophys Res , 112(G2): G02020
doi: 10.1029/2006JG000293
39 Verma S B, Dobermann A, Cassman K G, Walters D T, Knops J M, Arkebauer T J, Suyker A E, Burba G G, Amos B, Yang H, (2005). Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology , 131(1–2): 77–96
doi: 10.1016/S0168-1923(02)00109-0
40 Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law B E, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S (2002). Energy balance closure at FLUXNET sites. Agric Meteorol , 113(1–4): 223–243
doi: 10.1016/S0168-1923(02)00109-0
41 Xu L K, Baldocchi D D (2004). Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric Meteorol , 123(1–2): 79–96
doi: 10.1016/j.agrformet.2003.10.004
42 Yang F, White M, Michaelis A, Ichii K, Hashimoto H, Votava P, Zhu A X, Nemani R R (2006). Prediction of continental-scale evapotranspiration by combining MODIS and Ameriflux data through support vector machine. IEEE Trans Geosci Rem Sens , 44(11): 3452–3461
doi: 10.1109/TGRS.2006.876297
43 Yi C, Davis K J, Bakwin P S, Berger B W, Marr L C (2000). Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower. Journal of Geography Research , 105: 9991–9999
[1] Conghui LI, Lili LIN, Zhenbang HAO, Christopher J. POST, Zhanghao CHEN, Jian LIU, Kunyong YU. Developing a USLE cover and management factor (C) for forested regions of southern China[J]. Front. Earth Sci., 2020, 14(3): 660-672.
[2] Emre ÇOLAK, Filiz SUNAR. Spatial pattern analysis of post-fire damages in the Menderes District of Turkey[J]. Front. Earth Sci., 2020, 14(2): 446-461.
[3] Jianhong LIU, Clement ATZBERGER, Xin HUANG, Kejian SHEN, Yongmei LIU, Lei WANG. Modeling grass yields in Qinghai Province, China, based on MODIS NDVI data—an empirical comparison[J]. Front. Earth Sci., 2020, 14(2): 413-429.
[4] Xia LEI, Jiayi PAN, Adam DEVLIN. An ultraviolet to visible scheme to estimate chromophoric dissolved organic matter absorption in a Case-2 water from remote sensing reflectance[J]. Front. Earth Sci., 2020, 14(2): 384-400.
[5] Tong LI, Huadong GUO, Li ZHANG, Chenwei NIE, Jingjuan LIAO, Guang LIU. Simulation of Moon-based Earth observation optical image processing methods for global change study[J]. Front. Earth Sci., 2020, 14(1): 236-250.
[6] Kaiguo FAN, Huaguo ZHANG, Jianjun LIANG, Peng CHEN, Bojian XU, Ming ZHANG. Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea[J]. Front. Earth Sci., 2019, 13(3): 588-595.
[7] Ying XIONG, Fen PENG, Bin ZOU. Spatiotemporal influences of land use/cover changes on the heat island effect in rapid urbanization area[J]. Front. Earth Sci., 2019, 13(3): 614-627.
[8] Shichao CUI, Kefa ZHOU, Rufu DING, Guo JIANG. Estimation of copper concentration of rocks using hyperspectral technology[J]. Front. Earth Sci., 2019, 13(3): 563-574.
[9] Igor Appel. Uncertainty in satellite remote sensing of snow fraction for water resources management[J]. Front. Earth Sci., 2018, 12(4): 711-727.
[10] Donal O’Leary III, Dorothy Hall, Michael Medler, Aquila Flower. Quantifying the early snowmelt event of 2015 in the Cascade Mountains, USA by developing and validating MODIS-based snowmelt timing maps[J]. Front. Earth Sci., 2018, 12(4): 693-710.
[11] Zhen LI, Jinghu PAN. Spatiotemporal changes in vegetation net primary productivity in the arid region of Northwest China, 2001 to 2012[J]. Front. Earth Sci., 2018, 12(1): 108-124.
[12] Mohamed Abd Salam EL-VILALY, Kamel DIDAN, Stuart E. MARSH, Willem J.D. VAN LEEUWEN, Michael A. CRIMMINS, Armando Barreto MUNOZ. Vegetation productivity responses to drought on tribal lands in the four corners region of the Southwest USA[J]. Front. Earth Sci., 2018, 12(1): 37-51.
[13] Duanyang XU, Alin SONG, Xiao SONG. Assessing the effect of desertification controlling projects and policies in northern Shaanxi Province, China by integrating remote sensing and farmer investigation data[J]. Front. Earth Sci., 2017, 11(4): 689-701.
[14] Sizhang TANG,Chaomin SHEN,Guixu ZHANG. Adaptive regularized scheme for remote sensing image fusion[J]. Front. Earth Sci., 2016, 10(2): 236-244.
[15] Man-Chung CHIM,Jiayi PAN,Wenfeng LAI. Modified optical remote sensing algorithms for the Pearl River Estuary[J]. Front. Earth Sci., 2015, 9(4): 732-741.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed