NH4+ adsorption," /> NH4+ adsorption,"/> NH4+ adsorption,"/>
Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2014, Vol. 8 Issue (6) : 825-834    https://doi.org/10.1007/s11783-014-0682-9
RESEARCH ARTICLE
Recovery of NH4+ by corn cob produced biochars and its potential application as soil conditioner
Yang ZHANG,Zifu LI(),Ibrahim B MAHMOOD
School of Civil & Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
 Download: PDF(903 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

NH4+ ion, a main pollutant in aquatic systems, not only causes eutrophication in rivers and lakes but also contributes to fish toxicity. In this study, an eco-friendly biosorbent was prepared from the pyrolysis of corn cob, a low-cost agricultural residue. The biochars produced by pyrolysis of corn cob at 400°C and 600°C were characterized and investigated as adsorbents for NH4+-N from an aqueous solution. The biochars were characterized through elemental analysis, Brunauer–Emmett–Teller–N2 surface area analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy. Batch experiments were conducted to investigate the NH4+ adsorption process of the corn cob biochars. The Freundlich isotherm model fitted the adsorption process better than the Langmuir and Dubinin–Radushkevich isotherm models. Moreover, the adsorption process was well described by a pseudo-second-order kinetic model. Results of thermodynamic analysis suggested that adsorption was a nonspontaneous exothermic process. Biochars produced at 400°C had higher adsorption capacity than those produced at 600°C because of the presence of polar functional groups with higher acidity. The exhausted biochar can be potentially used as soil conditioner, which can provide 6.37 kg NH4+-N?t-1 (N fertilizer per ton of biochar).

Keywords corn cob      biochar      isotherm model      kinetic model      NH4+ adsorption')" href="#">NH4+ adsorption     
Corresponding Author(s): Zifu LI   
Online First Date: 04 May 2014    Issue Date: 17 November 2014
 Cite this article:   
Yang ZHANG,Zifu LI,Ibrahim B MAHMOOD. Recovery of NH4+ by corn cob produced biochars and its potential application as soil conditioner[J]. Front. Environ. Sci. Eng., 2014, 8(6): 825-834.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0682-9
https://academic.hep.com.cn/fese/EN/Y2014/V8/I6/825
properties CC-400 CC-600
pH 9.3 10.7
ash/% 3.56 3.15
C/% 79.65 84.35
H/% 3.96 2.41
N/% 0.67 0.76
O/% 12.16 9.33
(O+ N)/C 0.13 0.09
O/C 0.115 0.083
acidity /(mmol·g-1) 0.89 0.23
SA/(m2·g-1) 180.1 212.9
Tab.1  Physicochemical characteristic of two different biochars
Fig.1  (a) SEM images of CC-400 (A, B) and CC-600 (C, D); (b) FTIR spectra of CC-400 and CC-600
Fig.2  Application of nonlinear pseudo-first-order and pseudo-second-order kinetic models, and intraparticle diffusion model for N H 4 + ion adsorption by CC-400 and CC-600: (a) CC-400; (b) CC-600; (c) intraparticle diffusion model for CC-400; (d) intraparticle diffusion model for CC-600
kinetic model parameter value
CC-400 CC-600
pseudo-first-order k1 (min-1) 0.116 0.435
qe (mg·g-1) 1.013 0.677
R2 0.902 0.986
SD 0.052 0.011
pseudo-second-order k2 (g·mg-1·min-1) 0.164 1.675
qe (mg·g-1) 1.091 0.690
R2 0.961 0.993
SD 0.004 0.001
Tab.2  Kinetic parameters for ammonium ion adsorption on biochars
Fig.3  Nolinear Freundlich and Langmuir isotherms of N H 4 + sorption on the biochars and Linear D-R isotherm: (a) Freundlich model of CC-400; (b) Freundlich model of CC-600; (c) Langmuir model of CC-400; (d) Langmuir model of CC-600; (e) D–Rmodel of CC-400; (f) D–R model of CC-600
parameters CC-400 CC-600
20°C 25°C 30°C 20°C 25°C 30°C
Langmuir model qmax (mg·g-1) 16.9 15.3 15.3 10.9 12.8 11.5
KL(L·mg-1) 0.0009 0.0009 0.0008 0.0012 0.0008 0.0003
R2 0.973 0.974 0.981 0.953 0.982 0.982
χ2 0.23 0.23 0.24 0.25 0.23 0.27
Freundlich model kF() 0.052 0.051 0.037 0.046 0.030 0.013
n 0.74 0.73 0.77 0.71 0.77 0.89
R2 0.996 0.996 0.996 0.996 0.996 0.996
χ2 0.12 0.12 0.13 0.13 0.14 0.13
D-R model qmax (mg·g-1) 14.2 13.3 13.4 11.0 10.6 12.4
E (kJ·mol-1) 3.76 3.86 3.60 3.70 3.80 3.10
R2 0.941 0.953 0.972 0.982 0.982 0.982
χ2 167 167 168 165 167 167
Tab.3  Constants and correlation coefficient of Langmuir, Freundlich and Dubinin-Radushkevich models for N H 4 + adsorption onto CC-400 and CC-600
adsorbents adsorption capacity /(mg·g-1) references
Posidonia oceanica ?bers 1.73 [24]
natural zeolite 4.04 [25]
hardwood biochar 5.3 [26]
microwave-treated zeolite 23.83 [27]
CC-400 6.37 this study
Tab.4  Comparison between various adsorbents used for ammonium nitrogen removal
location plants exp AP/(t·ha-1) N-fertilizer/(kg·ha-1) effect references
Australia Radish P 10 100 no effect [30]
Australia Radish P 50 100 + 95% [30]
Australia Radish P 100 100 + 266% [30]
Australia Radish P 50 100 + 320% [31]
Japan Rice F 8 50 + 30% [32]
China Maize F 40 300 + 12% [33]
Tab.5  List of the experimental results in some literatures that have applied biochar
1 Zhang Y, Yan R, Zou Z, Wang J, Rittmann B E. Improved nitrogen removal in dual-contaminated surface water by photocatalysis. Frontiers of Environmental Science & Engineering, 2012, 6(3): 428–436
2 Hung C M, Lou J C, Lin C H. Removal of ammonia solutions used in catalytic wet oxidation processes. Chemosphere, 2003, 52(6): 989–995
https://doi.org/10.1016/S0045-6535(03)00303-5 pmid: 12781232
3 Ma Z H, Li Q, Yue Q Y, Gao B Y, Li W H, Xu X, Zhong Q Q. Adsorption removal of ammonium and phosphate from water by fertilizer controlled release agent prepared from wheat straw. Chemical Engineering Journal, 2011, 171(3): 1209–1217
https://doi.org/10.1016/j.cej.2011.05.027
4 Vassileva P, Tzvetkova P, Nickolov R. Removal of ammonium ions from aqueous solutions with coal-based activated carbons modified by oxidation. Fuel, 2009, 88(2): 387–390
https://doi.org/10.1016/j.fuel.2008.08.016
5 Yan L. Basic study on the comprehensive utilization of the corn cob. Dissertation for the Master Degree. Jilin: Jilin University, 2009 (in Chinese)
6 Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride M B, Hay A G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 2011, 102(19): 8877–8884
https://doi.org/10.1016/j.biortech.2011.06.078 pmid: 21764299
7 Chen B, Chen Z. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere, 2009, 76(1): 127–133
https://doi.org/10.1016/j.chemosphere.2009.02.004 pmid: 19282020
8 Mizuta K, Matsumoto T, Hatate Y, Nishihara K, Nakanishi T. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresource Technology, 2004, 95(3): 255–257
https://doi.org/10.1016/j.biortech.2004.02.015 pmid: 15288267
9 Yao Y, Gao B, Zhang M, Inyang M, Zimmerman A R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 2012, 89(11): 1467–1471
https://doi.org/10.1016/j.chemosphere.2012.06.002 pmid: 22763330
10 Petit C, Kante K, Bandosz T J. The role of sulfur-containing groups in ammonia retention on activated carbons. Carbon, 2010, 48(3): 654–667
https://doi.org/10.1016/j.carbon.2009.10.007
11 Seredych M, Petit C, Tamashausky A V, Bandosz T J. Role of graphite precursor in the performance of graphite oxides as ammonia adsorbents. Carbon, 2009, 47(2): 445–456
https://doi.org/10.1016/j.carbon.2008.10.020
12 Hale S E, Alling V, Martinsen V, Mulder J, Breedveld G D, Cornelissen G. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere, 2013, 91(11): 1612–1619
https://doi.org/10.1016/j.chemosphere.2012.12.057 pmid: 23369636
13 Zhang G X, Zhang Q, Sun K, Liu X T, Zheng W J, Zhao Y. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Environmental Pollution, 2011, 159(10): 2594– 2601
https://doi.org/10.1016/j.envpol.2011.06.012 pmid: 21719171
14 Chun Y, Sheng G, Chiou C T, Xing B. Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology, 2004, 38(17): 4649–4655
https://doi.org/10.1021/es035034w pmid: 15461175
15 Sureshkumar M K, Das D, Mallia M B, Gupta P C. Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. Journal of Hazardous Materials, 2010, 184(1–3): 65–72
https://doi.org/10.1016/j.jhazmat.2010.07.119 pmid: 20817347
16 Viswanathan N, Meenakshi S. Selective sorption of fluoride using Fe(III) loaded carboxylated chitosan beads. Journal of Fluorine Chemistry, 2008, 129(6): 503–509
https://doi.org/10.1016/j.jfluchem.2008.03.005
17 Sekar M, Sakthi V, Rengaraj S. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. Journal of Colloid and Interface Science, 2004, 279(2): 307–313
https://doi.org/10.1016/j.jcis.2004.06.042 pmid: 15464794
18 Cornelissen G, Gustafsson ?, Bucheli T D, Jonker M T O, Koelmans A A, van Noort P C M. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environmental Science & Technology, 2005, 39(18): 6881–6895
https://doi.org/10.1021/es050191b pmid: 16201609
19 Wolbach W S, Anders E. Elemental carbon in sediments: determination and isotopic analysis in the presence of kerogen. Geochimica et Cosmochimica Acta, 1989, 53(7): 1637–1647
https://doi.org/10.1016/0016-7037(89)90245-7
20 Zhao Y, Yang Y, Yang S, Wang Q, Feng C, Zhang Z. Adsorption of high ammonium nitrogen from wastewater using a novel ceramic adsorbent and the evaluation of the ammonium-adsorbed-ceramic as fertilizer. Journal of Colloid and Interface Science, 2013, 393(0): 264–270
https://doi.org/10.1016/j.jcis.2012.10.028 pmid: 23153680
21 U?urlu M, Karao?lu M H. Adsorption of ammonium from an aqueous solution by fly ash and sepiolite: isotherm, kinetic and thermodynamic analysis. Microporous and Mesoporous Materials, 2011, 139(1–3): 173–178
https://doi.org/10.1016/j.micromeso.2010.10.039
22 Raji C, Anirudhan T S. Batch Cr(VI) removal by polyacrylamide-grafted sawdust: kinetics and thermodynamics. Water Research, 1998, 32(12): 3772–3780
https://doi.org/10.1016/S0043-1354(98)00150-X
23 Liu H, Dong Y, Wang H, Liu Y. Ammonium adsorption from aqueous solutions by strawberry leaf powder: equilibrium, kinetics and effects of coexisting ions. Desalination, 2010, 263(1–3): 70–75
https://doi.org/10.1016/j.desal.2010.06.040
24 Jellali S, Wahab M A, Anane M, Riahi K, Jedidi N. Biosorption characteristics of ammonium from aqueous solutions onto Posidonia oceanica (L.) fibers. Desalination, 2011, 270(1–3): 40–49
https://doi.org/10.1016/j.desal.2010.11.018
25 Liang Z, Ni J. Improving the ammonium ion uptake onto natural zeolite by using an integrated modification process. Journal of Hazardous Materials, 2009, 166(1): 52–60
https://doi.org/10.1016/j.jhazmat.2008.11.002 pmid: 19135300
26 Sarkhot D V, Ghezzehei T A, Berhe A A. Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent. Journal of Environmental Quality, 2013, 42(5): 1545–1554
https://doi.org/10.2134/jeq2012.0482 pmid: 24216432
27 Lei L, Li X, Zhang X. Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Separation and Purification Technology, 2008, 58(3): 359–366
https://doi.org/10.1016/j.seppur.2007.05.008
28 Karadag D, Koc Y, Turan M, Armagan B. Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. Journal of Hazardous Materials, 2006, 136(3): 604–609
https://doi.org/10.1016/j.jhazmat.2005.12.042 pmid: 16442711
29 Steiner C, Teixeira W, Lehmann J, Nehls T, Macêdo J, Blum W H, Zech W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 2007, 291(1–2): 275–290
https://doi.org/10.1007/s11104-007-9193-9
30 Chan K Y, Van Zwieten L, Meszaros I, Downie A, Joseph S. Agronomic values of greenwaste biochar as a soil amendment. Soil Research (Collingwood, Vic.), 2007, 45(8): 629–634
31 Chan K Y, Van Zwieten L, Meszaros I, Downie A, Joseph S. Using poultry litter biochars as soil amendments. Soil Research (Collingwood, Vic.), 2008, 46(5): 437–444
32 Asai H, Samson B K, Stephan H M, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T. Biochar amendment techniques for upland rice production in Northern Laos: 1. soil physical properties, leaf SPAD and grain yield. Field Crops Research, 2009, 111(1–2): 81–84
https://doi.org/10.1016/j.fcr.2008.10.008
33 Zhang A F, Liu Y M, Pan G X, Hussain Q, Li L Q, Zheng J W, Zhang X H. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil, 2012, 351(1–2): 263–275
https://doi.org/10.1007/s11104-011-0957-x
34 Zhang W L, Wu S X, Ji H J, Kolbe H. Estimation of agricultural non-point source pollution in China and the alleviating strategies. Scientia Agricultura Sinica, 2004, 37(07): 1008–1017 (in Chinese)
[1] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[2] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[3] Wenqing Xu, Mark L. Segall, Zhao Li. Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge and future trends[J]. Front. Environ. Sci. Eng., 2020, 14(5): 86-.
[4] Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed. Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute[J]. Front. Environ. Sci. Eng., 2020, 14(4): 70-.
[5] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[6] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
[7] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[8] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[9] Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang. Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene[J]. Front. Environ. Sci. Eng., 2019, 13(4): 61-.
[10] Kaikai Zhang, Peng Sun, Yanrong Zhang. Decontamination of Cr(VI) facilitated formation of persistent free radicals on rice husk derived biochar[J]. Front. Environ. Sci. Eng., 2019, 13(2): 22-.
[11] Yan-Shan Wang, Dao-Bo Li, Feng Zhang, Zhong-Hua Tong, Han-Qing Yu. Algal biomass derived biochar anode for efficient extracellular electron uptake from Shewanella oneidensis MR-1[J]. Front. Environ. Sci. Eng., 2018, 12(4): 11-.
[12] Xiangyu Wang, Weitao Lian, Xin Sun, Jun Ma, Ping Ning. Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline in aqueous solution[J]. Front. Environ. Sci. Eng., 2018, 12(4): 9-.
[13] Zhengjun Feng, Lizhong Zhu. Sorption of phenanthrene to biochar modified by base[J]. Front. Environ. Sci. Eng., 2018, 12(2): 1-.
[14] Qi Lin, Xin Xu, Lihua, Wang, Qian Chen, Jing Fang, Xiaodong Shen, Liping Lou, Guangming Tian. The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effect of feedstock and pyrolysis temperature[J]. Front. Environ. Sci. Eng., 2017, 11(3): 5-.
[15] Tong Chi, Jiane Zuo, Fenglin Liu. Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar[J]. Front. Environ. Sci. Eng., 2017, 11(2): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed