Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (6) : 128    https://doi.org/10.1007/s11783-021-1416-4
RESEARCH ARTICLE
Solvent-free mechanochemical mild oxidation method to enhance adsorption properties of chitosan
Mohammadtaghi Vakili1, Wen Qiu2, Giovanni Cagnetta2(), Jun Huang2(), Gang Yu2
1. Green Intelligence Environmental School, Yangtze Normal University, Chongqing 408100, China
2. State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(2165 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Solvent-free chitosan oxidation is obtained by rapid mechanochemical reaction.

• Different oxidants induce very diverse physicochemical changes on chitosan.

• Oxidized chitosan with persulfate or percarbonate has improved adsorption capacity.

• Uptake on oxidized chitosan with persulfate is 125-fold faster than on pristine one.

Oxidation has been profitably utilized to improve some properties of chitosan. However, only solvent-based oxidation procedures have been proposed so far, which are hardly feasible at industrial scale in an economic way because of product recovery cost. In this study, a solvent-free, rapid, and effective oxidation method is proposed. It is based on direct solid-state reaction between chitosan and oxidant powder in a mechanochemical reactor. Results prove that by short high energy ball milling (<3 h) it is possible to achieve diverse physicochemical modifications employing different reagents. Apart from polysaccharidic chain shortening, persulfate provokes high amorphization and induces formation of ketonic groups; percarbonate heightens deacetylation degree, preserving in part crystallinity; calcium peroxide merely deprotonates amino groups and increases amorphization degree. Adsorption tests with the azo-dye reactive red 2 show that adsorption capacity of chitosan co-milled with persulfate (974 mg/g milled product), which is the best performing adsorbent, is twice that of pristine chitosan, while adsorption rate is outstandingly boosted (125 times).

Keywords Chitosan      High energy ball milling      Mechanochemistry      Oxidation     
Corresponding Author(s): Giovanni Cagnetta,Jun Huang   
Issue Date: 24 March 2021
 Cite this article:   
Mohammadtaghi Vakili,Wen Qiu,Giovanni Cagnetta, et al. Solvent-free mechanochemical mild oxidation method to enhance adsorption properties of chitosan[J]. Front. Environ. Sci. Eng., 2021, 15(6): 128.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1416-4
https://academic.hep.com.cn/fese/EN/Y2021/V15/I6/128
Fig.1  SEM images of (a) pristine chitosan, (b) chitosan milled for 1 h, and (c) chitosan co-milled with 30%w/w potassium persulfate for 1 h.
Fig.2  X-ray diffractograms of chitosan (unmilled and milled) and its oxidized products.
Fig.3  13C CP-MAS NMR of chitosan (unmilled and milled) and its oxidized products.
Fig.4  FTIR spectra of chitosan (unmilled and milled) and its oxidized products.
Fig.5  Thermograms of chitosan (unmilled and milled) and its oxidized products.
Fig.6  Proposed chemical modifications of chitosan caused by the investigated mechanochemical treatment.
Fig.7  Adsorption capacities of chitosan (unmilled and milled) and the products oxidized with (from top to bottom) potassium persulfate, calcium peroxide, and sodium percarbonate under different mechanochemical treatment conditions.
Parameter Chitosan Milled chitosan (h) Milled chitosan (+30%w/w K2S2O8, 1 h)
Langmuir
?qm (mg/g) 544.5 887.9 849.0
?KS (L/mg) 0.1344 0.6985 0.5429
?R2 0.9995 0.9999 0.9994
Freundlich
?K (mg1−1/m·L1/m /g) 357.0 731.5 610.2
?m 13.46 26.18 15.82
?R2 0.9982 0.9997 0.9977
BET
?qm (mg/g) 193.4 265.7 801.0
?N 2.814 3.332 6.936
?n?qm (mg/g) 544.2 885.3 5555.7
?KS (L/mg) 0.1976 0.4163 10.29
?KL (L/mg) 0.05853 0.2796 2.430×10−4
?R2 0.9995 0.9999 0.9997
Tab.1  Best-fit parameters of isotherm models
Fig.8  (a) BET isotherm model and (b) pseudo-second order kinetic model for chitosan, 1 h-milled chitosan, and chitosan co-milled for 1 h with 30%w/w potassium persulfate.
Parameter Chitosan Milled chitosan (h) Milled chitosan (+30%w/w K2S2O8, 1 h)
qe (experimental) (mg/g) 528.7 877.4 837.7
Pseudo-first order
??qe (mg/g) 403.5 689.6 855.6
??k (h−1) 1.286 1.032 82.64
??R2 0.9800 0.9841 0.9293
Pseudo-second order
??qe (mg/g) 489.5 861.7 878.4
??v0 (g/mg/h) 671.8 887.3 1.111×105
??R2 0.9966 0.9927 0.9614
Tab.2  Best-fit parameters of kinetic models
1 M Ahmad, S Ahmed, B L Swami, S Ikram (2015). Preparation and characterization of antibacterial thiosemicarbazide chitosan as efficient Cu(II) adsorbent. Carbohydrate Polymers, 132: 164–172
https://doi.org/10.1016/j.carbpol.2015.06.034
2 N M Alves, J F Mano (2008). Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. International Journal of Biological Macromolecules, 43(5): 401–414
https://doi.org/10.1016/j.ijbiomac.2008.09.007
3 P Baláž, M Achimovičová, M Baláž, P Billik, Z Cherkezova-Zheleva, J M Criado, F Delogu, E Dutková, E Gaffet, F J Gotor, R Kumar, I Mitov, T Rojac, M Senna, A Streletskii, K Wieczorek-Ciurowa (2013). Hallmarks of mechanochemistry: From nanoparticles to technology. Chemical Society Reviews, 42(18): 7571–7637
https://doi.org/10.1039/c3cs35468g
4 M Bengisu, E Yilmaz (2002). Oxidation and pyrolysis of chitosan as a route for carbon fiber derivation. Carbohydrate Polymers, 50(2): 165–175
https://doi.org/10.1016/S0144-8617(02)00018-8
5 V V Boldyrev, K Tkačova (2000). Mechanochemistry of solids: Past, present, and prospects. Journal of Materials Synthesis and Processing, 8: 121–132
6 S Botelho da Silva, M Krolicka, L A M van den Broek, A E Frissen, C G Boeriu (2018). Water-soluble chitosan derivatives and pH-responsive hydrogels by selective C-6 oxidation mediated by TEMPO-laccase redox system. Carbohydrate Polymers, 186: 299–309
https://doi.org/10.1016/j.carbpol.2018.01.050
7 G Brião V de, J R de Andrade, M G C da Silva, M G A Vieira (2020). Removal of toxic metals from water using chitosan-based magnetic adsorbents. A review. Environmental Chemistry Letters, 18: 1145–1168
https://doi.org/10.1007/s10311-020-01003-y
8 G Cagnetta, J Huang, I O Lomovskiy, G Yu (2017a). Tailoring the properties of a zero-valent iron-based composite by mechanochemistry for nitrophenols degradation in wastewaters. Environmental Technology, 38(22): 2916–2927
https://doi.org/10.1080/09593330.2017.1282985
9 G Cagnetta, J Huang, M Lu, B Wang, Y Wang, S Deng, G Yu (2017b). Defect engineered oxides for enhanced mechanochemical destruction of halogenated organic pollutants. Chemosphere, 184: 879–883
https://doi.org/10.1016/j.chemosphere.2017.06.075
10 G Cagnetta, J Huang, B Wang, S Deng, G Yu (2016a). A comprehensive kinetic model for mechanochemical destruction of persistent organic pollutants. Chemical Engineering Journal, 291: 30–38
https://doi.org/10.1016/j.cej.2016.01.079
11 G Cagnetta, J Huang, G Yu (2018). A mini-review on mechanochemical treatment of contaminated soil: From laboratory to large-scale. Critical Reviews in Environmental Science and Technology, 48(7–9): 723–771
https://doi.org/10.1080/10643389.2018.1493336
12 G Cagnetta, H Liu, K Zhang, J Huang, B Wang, S Deng, Y Wang, G Yu (2016b). Mechanochemical conversion of brominated POPs into useful oxybromides: A greener approach. Scientific Reports, 6(1): 28394
https://doi.org/10.1038/srep28394
13 G Cagnetta, J Robertson, J Huang, K Zhang, G Yu (2016c). Mechanochemical destruction of halogenated organic pollutants: A critical review. Journal of Hazardous Materials, 313: 85–102
https://doi.org/10.1016/j.jhazmat.2016.03.076
14 G Cagnetta, K Zhang, Q Zhang, J Huang, G Yu (2019). Augmented hydrogen production by gasification of ball milled polyethylene with Ca(OH)2 and Ni(OH)2. Frontiers of Environmental Science & Engineering, 13(1): 11
https://doi.org/10.1007/s11783-019-1096-5
15 G Cagnetta, Q Zhang, J Huang, M Lu, B Wang, Y Wang, S Deng, G Yu (2017c). Mechanochemical destruction of perfluorinated pollutants and mechanosynthesis of lanthanum oxyfluoride: A waste-to-materials process. Chemical Engineering Journal, 316: 1078–1090
https://doi.org/10.1016/j.cej.2017.02.050
16 A C Chao, S S Shyu, Y C Lin, F L Mi (2004). Enzymatic grafting of carboxyl groups on to chitosan––to confer on chitosan the property of a cationic dye adsorbent. Bioresource Technology, 91(2): 157–162
https://doi.org/10.1016/S0960-8524(03)00171-8
17 X Chen, H Yang, Z Zhong, N Yan (2017). Base-catalysed, one-step mechanochemical conversion of chitin and shrimp shells into low molecular weight chitosan. Green Chemistry, 19(12): 2783–2792
https://doi.org/10.1039/C7GC00089H
18 K T Chung (2016). Azo dyes and human health: A review. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 34(4): 233–261
https://doi.org/10.1080/10590501.2016.1236602
19 S Deng, Y Bao, G Cagnetta, J Huang, G Yu (2020). Mechanochemical degradation of perfluorohexane sulfonate: Synergistic effect of ferrate(VI) and zero-valent iron. Environmental Pollution, 264: 114789
https://doi.org/10.1016/j.envpol.2020.114789
20 T Di Nardo, C Hadad, A Nguyen Van Nhien, A Moores (2019). Synthesis of high molecular weight chitosan from chitin by mechanochemistry and aging. Green Chemistry, 21(12): 3276–3285
https://doi.org/10.1039/C9GC00304E
21 A Ebadi, J S Soltan Mohammadzadeh, A Khudiev (2009). What is the correct form of BET isotherm for modeling liquid phase adsorption? Adsorption, 15(1): 65–73
https://doi.org/10.1007/s10450-009-9151-3
22 H Fan, H Ren, X Ma, S Zhou, J Huang, W Jiao, G Qi, Y Liu (2020). High-gravity continuous preparation of chitosan-stabilized nanoscale zero-valent iron towards Cr(VI) removal. Chemical Engineering Journal, 390: 124639
https://doi.org/10.1016/j.cej.2020.124639
23 M H Farzana, S Meenakshi (2014). Photo-decolorization and detoxification of toxic dyes using titanium dioxide impregnated chitosan beads. International Journal of Biological Macromolecules, 70: 420–426
https://doi.org/10.1016/j.ijbiomac.2014.07.021
24 L A Frank, G R Onzi, A S Morawski, A R Pohlmann, S S Guterres, R V Contri (2020). Chitosan as a coating material for nanoparticles intended for biomedical applications. Reactive & Functional Polymers, 147: 104459
https://doi.org/10.1016/j.reactfunctpolym.2019.104459
25 T Friščić (2012). Supramolecular concepts and new techniques in mechanochemistry: Cocrystals, cages, rotaxanes, open metal-organic frameworks. Chemical Society Reviews, 41(9): 3493–3510
https://doi.org/10.1039/c2cs15332g
26 T Friščić, C Mottillo, H M Titi (2020). Mechanochemistry for synthesis. Angewandte Chemie International Edition in English, 59(3): 1018–1029
https://doi.org/10.1002/anie.201906755
27 Grand View Research Inc. (2020). Chitosan Market Size, Share & Trends Analysis Report by Application (Pharmaceutical & Biomedical, Water Treatment, Cosmetics, Food & Beverage), by Region (APAC, North America, Europe, MEA), and Segment Forecasts, 2020–2027 (No. 978–1-68038–798–8). SanFancisco: Grand View Research
28 X Guo, Q Wang, T Xu, K Wei, M Yin, P Liang, X Huang, X Zhang (2020). One-step ball milling-prepared nano Fe2O3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells. Frontiers of Environmental Science & Engineering, 14(2): 30
https://doi.org/10.1007/s11783-019-1209-1
29 Y C Huang, R Y Li (2014). Preparation and characterization of antioxidant nanoparticles composed of chitosan and fucoidan for antibiotics delivery. Marine Drugs, 12(8): 4379–4398
https://doi.org/10.3390/md12084379
30 K Ilić Đurđić, R Ostafe, O Prodanović, A Đurđević Đelmaš, N Popović, R Fischer, S Schillberg, R Prodanović (2021). Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. Frontiers of Environmental Science & Engineering, 15(2): 19
https://doi.org/10.1007/s11783-020-1311-4
31 S L James, C J Adams, C Bolm, D Braga, P Collier, T Friščić, F Grepioni, K D M Harris, G Hyett, W Jones, A Krebs, J Mack, L Maini, A G Orpen, I P Parkin, W C Shearouse, J W Steed, D C Waddell (2012). Mechanochemistry: Opportunities for new and cleaner synthesis. Chemical Society Reviews, 41(1): 413–447
https://doi.org/10.1039/C1CS15171A
32 A H Jawad, M A Nawi, M H Mohamed, L D Wilson (2017). Oxidation of chitosan in solution by photocatalysis and product characterization. Journal of Polymers and the Environment, 25(3): 828–835
https://doi.org/10.1007/s10924-016-0867-3
33 J Ji, L Wang, H Yu, Y Chen, Y Zhao, H Zhang, W A Amer, Y Sun, L Huang, M Saleem (2014). Chemical modifications of chitosan and its applications. Polymer-Plastics Technology and Engineering, 53(14): 1494–1505
https://doi.org/10.1080/03602559.2014.909486
34 S Joshi, S Kalyanasundaram, V Balasubramanian (2013). Quantitative analysis of sodium carbonate and sodium bicarbonate in solid mixtures using Fourier transform infrared spectroscopy (FT-IR). Applied Spectroscopy, 67(8): 841–845
https://doi.org/10.1366/12-06915
35 S M A S Keshk, A M Ramadan, A G Al-Sehemi, A Irfan, S Bondock (2017). An unexpected reactivity during periodate oxidation of chitosan and the affinity of its 2,3-di-aldehyde toward sulfa drugs. Carbohydrate Polymers, 175: 565–574
https://doi.org/10.1016/j.carbpol.2017.08.027
36 S Khorshidi, A Karkhaneh, S Bonakdar (2020). Fabrication of amine-decorated nonspherical microparticles with calcium peroxide cargo for controlled release of oxygen. Journal of Biomedical Materials Research. Part A, 108(1): 136–147
https://doi.org/10.1002/jbm.a.36799
37 G Z Kyzas, D N Bikiaris (2015). Recent modifications of chitosan for adsorption applications: A critical and systematic review. Marine Drugs, 13(1): 312–337
https://doi.org/10.3390/md13010312
38 O León, A Muñoz-Bonilla, D Soto, D Pérez, M Rangel, M Colina, M Fernández-García (2018a). Removal of anionic and cationic dyes with bioadsorbent oxidized chitosans. Carbohydrate Polymers, 194: 375–383
https://doi.org/10.1016/j.carbpol.2018.04.072
39 O León, A Muñoz-Bonilla, D Soto, J Ramirez, Y Marquez, M Colina, M Fernández-García (2018b). Preparation of oxidized and grafted chitosan superabsorbents for urea delivery. Journal of Polymers and the Environment, 26(2): 728–739
https://doi.org/10.1007/s10924-017-0981-x
40 X Lou, M Shen, C Li, Q Chen, B Hu (2018). Reduction of the 13C cross-polarization experimental time for pharmaceutical samples with long T1 by ball milling in solid-state NMR. Solid State Nuclear Magnetic Resonance, 94: 20–25
https://doi.org/10.1016/j.ssnmr.2018.08.001
41 J Lu, X Cong, Y Li, Y Hao, C Wang (2018). Scalable recycling of oyster shells into high purity calcite powders by the mechanochemical and hydrothermal treatments. Journal of Cleaner Production, 172: 1978–1985
https://doi.org/10.1016/j.jclepro.2017.11.228
42 C M A McQueen, C C Steindal, O Narygina, S Braovac (2018). Temperature- and humidity-induced changes in alum-treated wood: A qualitative X-ray diffraction study. Heritage Science, 6(1): 66
https://doi.org/10.1186/s40494-018-0232-z
43 C R Mohan, R Sathya, P Nithiananthi, K Jayakumar (2017). Ultrasonic velocimetry studies on different salts of chitosan: Effect of ion size. International Journal of Biological Macromolecules, 104: 1596–1603
https://doi.org/10.1016/j.ijbiomac.2017.02.049
44 A B Muley, P R Shingote, A P Patil, S G Dalvi, P Suprasanna (2019). Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate Polymers, 210: 289–301
https://doi.org/10.1016/j.carbpol.2019.01.056
45 Y Nie, S Deng, B Wang, J Huang, G Yu (2014). Removal of clofibric acid from aqueous solution by polyethylenimine-modified chitosan beads. Frontiers of Environmental Science & Engineering, 8(5): 675–682
https://doi.org/10.1007/s11783-013-0622-0
46 W Qiu, M Vakili, G Cagnetta, J Huang, G Yu (2020). Effect of high energy ball milling on organic pollutant adsorption properties of chitosan. International Journal of Biological Macromolecules, 148: 543–549
https://doi.org/10.1016/j.ijbiomac.2020.01.171
47 A Rastinfard, M H Nazarpak, F Moztarzadeh (2018). Controlled chemical synthesis of CaO2 particles coated with polyethylene glycol: Characterization of crystallite size and oxygen release kinetics. RSC Advances, 8(1): 91–101
https://doi.org/10.1039/C7RA08758F
48 M N V Ravi Kumar (2000). A review of chitin and chitosan applications. Reactive & Functional Polymers, 46(1): 1–27
https://doi.org/10.1016/S1381-5148(00)00038-9
49 L S Rocha, Â Almeida, C Nunes, B Henriques, M A Coimbra, C B Lopes, C M Silva, A C Duarte, E Pereira (2016). Simple and effective chitosan based films for the removal of Hg from waters: Equilibrium, kinetic and ionic competition. Chemical Engineering Journal, 300: 217–229
https://doi.org/10.1016/j.cej.2016.04.054
50 H Saito, R Tabeta, K Ogawa (1987). High-resolution solid-state carbon-13 NMR study of chitosan and its salts with acids: conformational characterization of polymorphs and helical structures as viewed from the conformation-dependent carbon-13 chemical shifts. Macromolecules, 20(10): 2424–2430
https://doi.org/10.1021/ma00176a017
51 C Shen, Y Wen, X Kang, W Liu (2011). H2O2-induced surface modification: A facile, effective and environmentally friendly pretreatment of chitosan for dyes removal. Chemical Engineering Journal, 166(2): 474–482
https://doi.org/10.1016/j.cej.2010.10.075
52 L Takacs (2014). What is unique about mechanochemical reactions? Acta Physica Polonica A, 126(4): 1040–1043
https://doi.org/10.12693/APhysPolA.126.1040
53 M D Teli, J Sheikh (2012). Extraction of chitosan from shrimp shells waste and application in antibacterial finishing of bamboo rayon. International Journal of Biological Macromolecules, 50(5): 1195–1200
https://doi.org/10.1016/j.ijbiomac.2012.04.003
54 D L M Tzou (2005). A solid-state NMR application of the anomeric effect in carbohydrates: galactosamine, glucosamine, and N-acetyl-glucosamine. Solid State Nuclear Magnetic Resonance, 27(4): 209–214
https://doi.org/10.1016/j.ssnmr.2004.11.007
55 M Vakili, S Deng, G Cagnetta, W Wang, P Meng, D Liu, G Yu (2019a). Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Separation and Purification Technology, 224: 373–387
https://doi.org/10.1016/j.seppur.2019.05.040
56 M Vakili, S Deng, T Li, W Wang, W Wang, G Yu (2018). Novel crosslinked chitosan for enhanced adsorption of hexavalent chromium in acidic solution. Chemical Engineering Journal, 347: 782–790
https://doi.org/10.1016/j.cej.2018.04.181
57 M Vakili, A Mojiri, H M Zwain, J Yuan, A S Giwa, W Wang, F Gholami, X Guo, G Cagnetta, G Yu (2019b). Effect of beading parameters on cross-linked chitosan adsorptive properties. Reactive & Functional Polymers, 144: 104354
https://doi.org/10.1016/j.reactfunctpolym.2019.104354
58 M Vakili, H M Zwain, A Mojiri, W Wang, F Gholami, Z Gholami, A S Giwa, B Wang, G Cagnetta, B Salamatinia (2020). Effective adsorption of reactive black 5 onto hybrid hexadecylamine impregnated chitosan-powdered activated carbon beads. Water (Basel), 12(8): 2242
https://doi.org/10.3390/w12082242
59 T Wada, N Koga (2013). Kinetics and mechanism of the thermal decomposition of sodium percarbonate: Role of the surface product layer. Journal of Physical Chemistry A, 117(9): 1880–1889
https://doi.org/10.1021/jp3123924
60 M Wang, Q Tan, L Liu, J Li (2021). Selective regeneration of lithium from spent lithium-ion batteries using ionic substitution stimulated by mechanochemistry. Journal of Cleaner Production, 279: 123612
https://doi.org/10.1016/j.jclepro.2020.123612
61 K Wieczorek-Ciurowa, K Gamrat (2007). Mechanochemical syntheses as an example of green processes. Journal of Thermal Analysis and Calorimetry, 88(1): 213–217
https://doi.org/10.1007/s10973-006-8098-9
62 X Yan, X Liu, C Qi, C Lin, P Li, H Wang (2017). Disposal of hexabromocyclododecane (HBCD) by grinding assisted with sodium persulfate. RSC Advances, 7(38): 23313–23318
https://doi.org/10.1039/C7RA02689G
63 S H Yoo, J S Lee, S Y Park, Y S Kim, P S Chang, H G Lee (2005). Effects of selective oxidation of chitosan on physical and biological properties. International Journal of Biological Macromolecules, 35(1–2): 27–31
https://doi.org/10.1016/j.ijbiomac.2004.11.004
64 J Zawadzki, H Kaczmarek (2010). Thermal treatment of chitosan in various conditions. Carbohydrate Polymers, 80(2): 394–400
https://doi.org/10.1016/j.carbpol.2009.11.037
65 J Zhang (2019). Physical insights into kinetic models of adsorption. Separation and Purification Technology, 229: 115832
https://doi.org/10.1016/j.seppur.2019.115832
66 K Zhang, J Huang, G Yu, Q Zhang, S Deng, B Wang (2013). Destruction of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by ball milling. Environmental Science & Technology, 47(12): 6471–6477
https://doi.org/10.1021/es400346n
67 W Zhang, J Zhang, W Xia (2014). Effect of ball-milling treatment on physicochemical and structural properties of chitosan. International Journal of Food Properties, 17(1): 26–37
https://doi.org/10.1080/10942912.2011.608175
68 S Zhao, Z Tao, L Chen, M Han, B Zhao, X Tian, L Wang, F Meng (2021). An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation. Frontiers of Environmental Science & Engineering, 15(4): 63
https://doi.org/10.1007/s11783-020-1355-5
[1] FSE-21007-OF-VM_suppl_1 Download
[1] Shengqi Zhang, Chengsong Ye, Wenjun Zhao, Lili An, Xin Yu, Lei Zhang, Hongjie Sun, Mingbao Feng. Product identification and toxicity change during oxidation of methotrexate by ferrate and permanganate in water[J]. Front. Environ. Sci. Eng., 2022, 16(7): 93-.
[2] Yan Guo, Zibin Luo, Junhao Shen, Yu-You Li. The main anammox-based processes, the involved microbes and the novel process concept from the application perspective[J]. Front. Environ. Sci. Eng., 2022, 16(7): 84-.
[3] Zecong Yu, Keke Xiao, Yuwei Zhu, Mei Sun, Sha Liang, Jingping Hu, Huijie Hou, Bingchuan Liu, Jiakuan Yang. Comparison of different valent iron on anaerobic sludge digestion: Focusing on oxidation reduction potential, dissolved organic nitrogen and microbial community[J]. Front. Environ. Sci. Eng., 2022, 16(6): 80-.
[4] Qinjun Liang, Yu Gao, Zhigang Li, Jiayi Cai, Na Chu, Wen Hao, Yong Jiang, Raymond Jianxiong Zeng. Electricity-driven ammonia oxidation and acetate production in microbial electrosynthesis systems[J]. Front. Environ. Sci. Eng., 2022, 16(4): 42-.
[5] Yanan Bai, Xiuning Wang, Fang Zhang, Raymond Jianxiong Zeng. Acid Orange 7 degradation using methane as the sole carbon source and electron donor[J]. Front. Environ. Sci. Eng., 2022, 16(3): 34-.
[6] Yukun Zhang, Shuying Wang, Shengbo Gu, Liang Zhang, Yijun Dong, Lei Jiang, Wei Fan, Yongzhen Peng. The combined effects of biomass and temperature on maximum specific ammonia oxidation rate in domestic wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(6): 123-.
[7] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[8] Zeshen Tian, Bo Wang, Yuyang Li, Bo Shen, Fengjuan Li, Xianghua Wen. Enhancement on the ammonia oxidation capacity of ammonia-oxidizing archaeon originated from wastewater: Utilizing low-density static magnetic field[J]. Front. Environ. Sci. Eng., 2021, 15(5): 81-.
[9] Shuchang Wang, Binbin Shao, Junlian Qiao, Xiaohong Guan. Application of Fe(VI) in abating contaminants in water: State of art and knowledge gaps[J]. Front. Environ. Sci. Eng., 2021, 15(5): 80-.
[10] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[11] Shanshan Zhao, Zhu Tao, Liwei Chen, Muqiao Han, Bin Zhao, Xuelin Tian, Liang Wang, Fangang Meng. An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation[J]. Front. Environ. Sci. Eng., 2021, 15(4): 63-.
[12] Xuefeng Liu, Shijie You, Fang Ma, Hao Zhou. Characterization of electrode fouling during electrochemical oxidation of phenolic pollutant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 53-.
[13] Jing Ding, Wanyi Seow, Jizhong Zhou, Raymond Jianxiong Zeng, Jun Gu, Yan Zhou. Effects of Fe(II) on anammox community activity and physiologic response[J]. Front. Environ. Sci. Eng., 2021, 15(1): 7-.
[14] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[15] Senem Yazici Guvenc, Gamze Varank. Degradation of refractory organics in concentrated leachate by the Fenton process: Central composite design for process optimization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 2-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed