Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (10) : 128    https://doi.org/10.1007/s11783-023-1728-7
RESEARCH ARTICLE
Effects of sulfur on variations in the chemical speciation of heavy metals from fly ash glass
Yali Chang1,2, Jianwei Cao2(), Wenfeng Song2, Zhi Wang2(), Chenyang Xu1(), Mengzhuo Long1,2
1. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing 100083, China
2. CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(5485 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● A higher sulfur content reduced the curing rate of Cr in glass.

● Depolymerization increased the amounts of heavy metals in the carbonate bound state.

● Reducing the CaO/SiO2 ratio increased the proportion of stable heavy metals.

This work designed a new CaO-Al2O3-SiO2-SO3 glass for the immobilization of multiple heavy metals found in dechlorinated fly ash having high amounts of calcium and sulfur. Increasing the (CaO + SO3)/SiO2 mass ratio (M(CS/S)) from 0.28 to 0.85 was found to lower the proportions of Mn, Ni and Zn in an unstable state, while an M(CS/S) ratio of 0.51 gave the lowest proportions of unstable Cr and Pb. Decreasing the degree of polymerization of the glassy network increased the proportions of Mn, Cr, Ni, Pb and Zn in the carbonate bound state. The leaching out of metals in this state was the primary cause of degradation of Q3 structural units in the glassy network. The amount of Mn in the iron-manganese oxide bound state was increased by increasing the number of Q2 units in the silicate network. Decreasing the CaO/SiO2 mass ratio (M(C/S)) raised the proportions of Mn, Ni and Zn in the unstable state. An M(C/S) value of 0.43 lowered the proportions of unstable Cr and Pb. A principal components analysis determined that the leaching of toxic heavy metals from the glass was primarily related to the proportions of these metals in the unstable state while there were no evident correlations between leaching and the proportions in stable states.

Keywords Dechlorinated fly ash      SO3      Heavy metal      Chemical speciation      Glass solidification     
Corresponding Author(s): Jianwei Cao,Zhi Wang,Chenyang Xu   
Issue Date: 29 May 2023
 Cite this article:   
Yali Chang,Jianwei Cao,Wenfeng Song, et al. Effects of sulfur on variations in the chemical speciation of heavy metals from fly ash glass[J]. Front. Environ. Sci. Eng., 2023, 17(10): 128.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1728-7
https://academic.hep.com.cn/fese/EN/Y2023/V17/I10/128
CompositionDechlorinated fly ashCoal fly ash
SiO28.051.8
Al2O33.027.7
CaO67.45.9
Fe2O33.08.0
Na2O0.30.6
K2O0.31.8
MgO2.50.8
SO310.80.5
TiO21.21.9
MnO0.1
ZnO0.9
PbO0.3
NiO0.1
Cr2O30.1
Tab.1  Compositions of the dechlorinated fly ash and coal fly ash used in this work (wt.%)
CompositionA1A2A3
SiO256.047.338.6
Al2O310.010.010.0
CaO13.520.226.9
Fe2O35.05.05.0
Na2O4.04.04.0
K2O2.02.02.0
MgO5.05.05.0
SO32.04.06.0
TiO21.01.01.0
MnO0.20.20.2
ZnO0.40.40.4
PbO0.30.30.3
NiO0.20.20.2
Cr2O30.40.40.4
M(CS/S)0.280.510.85
Tab.2  Oxide compositions of the group A base glass specimens (wt.%)
CompositionB1B2B3
SiO254.047.340.6
Al2O310.010.010.0
CaO13.520.226.9
Fe2O35.05.05.0
Na2O4.04.04.0
K2O2.02.02.0
MgO5.05.05.0
SO34.04.04.0
TiO21.01.01.0
MnO0.20.20.2
ZnO0.40.40.4
PbO0.30.30.3
NiO0.20.20.2
Cr2O30.40.40.4
M(C/S)0.250.430.66
Tab.3  Oxide compositions of the group B base glass specimens (wt.%)
LabelFraction phaseExtraction agent and conditions
F1Exchangeable state10 mL MgCl2 (1 mol/ L)
F2Carbonate bound state10 mL NaOAc-HOAc (1 mol/ L)
F3Iron-manganese oxide bound state40 mL NH2OH·HCl (0.04 mol/L)
F4Organic matter bound state10 mL H2O2 (8.8 mol/L), 40 mL NH4Ac (l mol/L)
F5Residual stateHF/HClO4
Tab.4  Details of Tessier’s five-step continuous chemical extraction method
Fig.1  Macroscopic morphologies and XRD patterns of glass samples.
Fig.2  The concentrations of various metals obtained from leaching trials with glass specimens.
Compositionwt.%
SO352.90
CaO16.12
K2O15.21
Na2O13.26
Cr2O31.04
SiO2 + Al2O30.98
MgO + Fe2O30.24
Others0.23
Tab.5  Composition of the yellow phase found on sample A3 as determined by XRF (wt.%)
Fig.3  The proportions of (a) Mn, (b) Cr, (c) Ni, (d) Pb and (e) Zn in various states within glass specimens. (f) The proportions of heavy metals in various states in glass specimens having an M(CS/S) of 0.85 with and without the yellow surface phase.
Fig.4  FTIR spectra obtained from glass specimens having M(CS/S) of 0.28, 0.51 and 0.85.
Fig.5  The results of peak fitting of FTIR spectra obtained from specimens having M(CS/S) values of (a) 0.28, (b) 0.51 and (c) 0.85. (d) The NBO/T values of the glass specimens.
Fig.6  Proportions of (a) Mn, (b) Cr, (c) Ni, (d) Pb and (e) Zn in various glass specimens with M(CS/S) of 0.28, 0.51 and 0.85. (f) Variations in the proportions of Qn structural units.
Fig.7  Variations in the quantities of Qn structural units in the specimens having M(CS/S) values of (a) 0.28, (b) 0.51 and (c) 0.85. (d) NBO/T values of the raw glass powder and the glass after leaching of metals in the carbonate bound state.
Fig.8  The proportions of (a) Mn, (b) Cr, (c) Ni, (d) Pb and (e) Zn in various states in glass specimens having M(C/S) values of 0.25, 0.43 and 0.66.
Fig.9  The results of peak fitting of FTIR spectra obtained from specimens having M(C/S) values of (a) 0.25, (b) 0.43 and (c) 0.66. (d) The NBO/T values of the glass specimens.
Fig.10  Proportions of (a) Mn, (b) Cr, (c) Ni, (d) Pb and (e) Zn in various glass specimens with M(C/S) of 0.25, 0.43 and 0.66. (f) Variations in the proportions of Qn structural units.
Fig.11  The results of the PCA of TS values for (a) Mn, (b) Cr, (c) Ni and (d) Pb.
1 C G Chen , C J Sun , S H Gau , C W Wu , Y L Chen . (2013). The effects of the mechanical–chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste. Waste Management (New York, N.Y.), 33(4): 858–865
https://doi.org/10.1016/j.wasman.2012.12.014
2 J Crum, V Maio, J Mccloy, C Scott, B Riley, B Benefiel, J Vienna, K Archibald, C Rodriguez, V Rutledge, Z Zhu, J Ryan, M Olszta (2014). Cold crucible induction melter studies for making glass ceramic waste forms: a feasibility assessment. Journal of Nuclear Materials, 444(1–3): 481–492
https://doi.org/10.1016/j.jnucmat.2013.10.029
3 J V Crum , L Turo , B Riley , M Tang , A Kossoy . (2012). Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals. Journal of the American Ceramic Society, 95(4): 1297–1303
https://doi.org/10.1111/j.1551-2916.2012.05089.x
4 M Cyr , R Idir , G Escadeillas . (2012). Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration fly ash in cement-based materials. Journal of Hazardous Materials, 243: 193–203
https://doi.org/10.1016/j.jhazmat.2012.10.019
5 A Ferraro , I Farina , M Race , F Colangelo , R Cioffi , M Fabbricino . (2019). Pre-treatments of MSWI fly-ashes: a comprehensive review to determine optimal conditions for their reuse and/or environmentally sustainable disposal. Reviews in Environmental Science and Biotechnology, 18(3): 453–471
https://doi.org/10.1007/s11157-019-09504-1
6 A Fuentes , M Lloréns , J Sáez , M I Aguilar , J F Ortuño , V F Meseguer . (2008). Comparative study of six different sludges by sequential speciation of heavy metals. Bioresource Technology, 99(3): 517–525
https://doi.org/10.1016/j.biortech.2007.01.025
7 P R Griffiths . (1983). Fourier transform infrared spectrometry. Science, 222(4621): 297–302
https://doi.org/10.1126/science.6623077
8 H B Hou , X H He , S J Zhu , D J Zhang . (2006). The cement solidification of municipal solid waste incineration fly ash. Journal of Wuhan University of Technology (Materials Science), 21(4): 137–140
https://doi.org/10.1007/BF02841224
9 T Huang , S Zhang , L Liu . (2019). Immobilization of trace heavy metals in the electrokinetics-processed municipal solid waste incineration fly ashes and its characterizations and mechanisms. Journal of Environmental Management, 232: 207–218
https://doi.org/10.1016/j.jenvman.2018.11.051
10 K Krausova , L Gautron , A Karnis , G Catillon , S Borensztajn . (2016). Glass ceramics and mineral materials for the immobilization of lead and cadmium. Ceramics International, 42(7): 8779–8788
https://doi.org/10.1016/j.ceramint.2016.02.119
11 M Li , J Xiang , S Hu , L S Sun , S Su , P S Li , X X Sun . (2004). Characterization of solid residues from municipal solid waste incinerator. Fuel, 83(10): 1397–1405
https://doi.org/10.1016/j.fuel.2004.01.005
12 W Ma , Y Fang , D Chen , G Chen , Y Xu , H Sheng , Z Zhou . (2017). Volatilization and leaching behavior of heavy metals in MSW incineration fly ash in a DC arc plasma furnace. Fuel, 210: 145–153
https://doi.org/10.1016/j.fuel.2017.07.091
13 W Ma , W Shi , Y Shi , D Chen , B Liu , C Chu , D Li , Y Li , G Chen . (2021). Plasma vitrification and heavy metals solidification of MSW and sewage sludge incineration fly ash. Journal of Hazardous Materials, 408: 124809
https://doi.org/10.1016/j.jhazmat.2020.124809
14 Y Pan , Z Wu , J Zhou , J Zhao , X Ruan , J Liu , G Qian . (2013). Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China. Journal of Hazardous Materials, 261: 269–276
https://doi.org/10.1016/j.jhazmat.2013.07.038
15 T Sun , J Chen , X Lei , C Zhou . (2014). Detoxification and immobilization of chromite ore processing residue with metakaolin-based geopolymer. Journal of Environmental Chemical Engineering, 2(1): 304–309
https://doi.org/10.1016/j.jece.2013.12.022
16 A Tessier , P G Campbell , M Bisson . (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7): 844–851
https://doi.org/10.1021/ac50043a017
17 X Tian , F Rao , C Li , W Ge , N O Lara , S Song , L Xia . (2021). Solidification of municipal solid waste incineration fly ash and immobilization of heavy metals using waste glass in alkaline activation system. Chemosphere, 283: 131240
https://doi.org/10.1016/j.chemosphere.2021.131240
18 Y Wang , F Han , J Mu . (2018). Solidification/stabilization mechanism of Pb (II), Cd (II), Mn (II) and Cr (III) in fly ash based geopolymers. Construction & Building Materials, 160: 818–827
https://doi.org/10.1016/j.conbuildmat.2017.12.006
19 M Y Wey , W Y Ou , Z S Liu , H H Tseng , W Y Yang , B C Chiang . (2001). Pollutants in incineration flue gas. Journal of Hazardous Materials, 82(3): 247–262
https://doi.org/10.1016/S0304-3894(00)00355-1
20 Y Yue , J Zhang , F Sun , S Wu , Y Pan , J Zhou , G Qian . (2019). Heavy metal leaching and distribution in glass products from the co-melting treatment of electroplating sludge and MSWI fly ash. Journal of Environmental Management, 232: 226–235
https://doi.org/10.1016/j.jenvman.2018.11.053
21 J Zhang, J Liu, C Li, Y Jin, Y Nie, J Li (2009). Comparison of the fixation effects of heavy metals by cement rotary kiln co-processing and cement based solidification/stabilization. Journal of Hazardous Materials, 165(1–3): 1179–1185
https://doi.org/10.1016/j.jhazmat.2008.10.109
22 J Zhang , S Zhang , B Liu . (2020a). Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review. Journal of Cleaner Production, 250: 119507
https://doi.org/10.1016/j.jclepro.2019.119507
23 Y Zhang , S Liu , S Ouyang , X Zhang , Z Zhao , X Jia , Y Du , L Deng , B Li . (2020b). Transformation of unstable heavy metals in solid waste into stable state by the preparation of glass-ceramics. Materials Chemistry and Physics, 252: 123061
https://doi.org/10.1016/j.matchemphys.2020.123061
24 M Zhao , J Cao , X Geng , W Song , Z Wang . (2020a). Structural origin of CaO-MgO-Al2O3-SiO2-Fe2O3 glass crystallization: iron-containing clusters. Journal of Non-Crystalline Solids, 547: 120295
https://doi.org/10.1016/j.jnoncrysol.2020.120295
25 M Zhao , J Cao , Z Wang , G Li . (2019). Insight into the dual effect of Fe2O3 addition on the crystallization of CaO-MgO-Al2O3-SiO2 glass-ceramics. Journal of Non-Crystalline Solids, 513: 144–151
https://doi.org/10.1016/j.jnoncrysol.2019.03.021
26 S Zhao , B Liu , Y Ding , J Zhang , Q Wen , C Ekberg , S Zhang . (2020b). Study on glass-ceramics made from MSWI fly ash, pickling sludge and waste glass by one-step process. Journal of Cleaner Production, 271: 122674
https://doi.org/10.1016/j.jclepro.2020.122674
27 S Zhao , Q Wen , X Zhang , B Liu , S Zhang . (2021). Migration, transformation and solidification/stabilization mechanisms of heavy metals in glass-ceramics made from MSWI fly ash and pickling sludge. Ceramics International, 47(15): 21599–21609
https://doi.org/10.1016/j.ceramint.2021.04.172
28 J Zhou , S Wu , Y Pan , L Zhang , Z Cao , X Zhang , S Yonemochi , S Hosono , Y Wang , K Oh , G Qian . (2015). Enrichment of heavy metals in fine particles of municipal solid waste incinerator (MSWI) fly ash and associated health risk. Waste Management (New York, N.Y.), 43: 239–246
https://doi.org/10.1016/j.wasman.2015.06.026
29 C Zou , J Cao , M Zhao , Z Wang , J Lu . (2019). Combined sodium and fluorine promote diopside continuous growth to achieve one-step crystallization in CaO-Al2O3-SiO2-Fe2O3 glass-ceramics. Journal of the European Ceramic Society, 39(15): 4979–4987
https://doi.org/10.1016/j.jeurceramsoc.2019.07.033
[1] Yating Wei, Dong Hu, Chengsong Ye, Heng Zhang, Haoran Li, Xin Yu. Drinking water quality & health risk assessment of secondary water supply systems in residential neighborhoods[J]. Front. Environ. Sci. Eng., 2024, 18(2): 18-.
[2] Xinwan Zhang, Guangyuan Meng, Jinwen Hu, Wanzi Xiao, Tong Li, Lehua Zhang, Peng Chen. Electroreduction of hexavalent chromium using a porous titanium flow-through electrode and intelligent prediction based on a back propagation neural network[J]. Front. Environ. Sci. Eng., 2023, 17(8): 97-.
[3] Xu Zhao, Wei Li, Wei Wang, Jingjing Liu, Yunjiang Yu, Yang Li, Xichao Chen, Yun Liu. Legacies and health risks of heavy metals, polybrominated diphenyl ethers, and polychlorinated dibenzo-dioxins/furans at e-waste recycling sites in South China[J]. Front. Environ. Sci. Eng., 2023, 17(7): 79-.
[4] Xinrui Yuan, Kangping Cui, Yihan Chen, Shiyang Wu, Yao Zhang, Tong Liu. Response of antibiotic and heavy metal resistance genes to the co-occurrence of gadolinium and sulfamethoxazole in activated sludge systems[J]. Front. Environ. Sci. Eng., 2023, 17(12): 154-.
[5] Xian Zhou, Xia Chen, Ziling Peng, Yongmen Zhou, Yan Li, Wang Jian, Zeyu Fan, Yuchi Chen. Cleaner geopolymer prepared by co-activation of gasification coal fly ash and steel slag: durability properties and economic assessment[J]. Front. Environ. Sci. Eng., 2023, 17(12): 150-.
[6] Yueming Wu, Zhanrui Leng, Jian Li, Chongling Yan, Xinhong Wang, Hui Jia, Lingyun Chen, Sai Zhang, Xiaojun Zheng, Daolin Du. Sulfur mediated heavy metal biogeochemical cycles in coastal wetlands: From sediments, rhizosphere to vegetation[J]. Front. Environ. Sci. Eng., 2022, 16(8): 102-.
[7] Qian Li, Zhaoping Zhong, Haoran Du, Xiang Zheng, Bo Zhang, Baosheng Jin. Co-pyrolysis of sludge and kaolin/zeolite in a rotary kiln: Analysis of stabilizing heavy metals[J]. Front. Environ. Sci. Eng., 2022, 16(7): 85-.
[8] Kehui Liu, Xiaojin Guan, Chunming Li, Keyi Zhao, Xiaohua Yang, Rongxin Fu, Yi Li, Fangming Yu. Global perspectives and future research directions for the phytoremediation of heavy metal-contaminated soil: A knowledge mapping analysis from 2001 to 2020[J]. Front. Environ. Sci. Eng., 2022, 16(6): 73-.
[9] Yanlin Li, Bo Wang, Lei Zhu, Yixing Yuan, Lujun Chen, Jun Ma. Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metal oxides[J]. Front. Environ. Sci. Eng., 2022, 16(6): 68-.
[10] Lihui Gao, Yijun Cao, Lizhang Wang, Shulei Li. A review on sustainable reuse applications of Fenton sludge during wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(6): 77-.
[11] Liang Cui, Ji Li, Xiangyun Gao, Biao Tian, Jiawen Zhang, Xiaonan Wang, Zhengtao Liu. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake[J]. Front. Environ. Sci. Eng., 2022, 16(4): 41-.
[12] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[13] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[14] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[15] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed