Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (8) : 102    https://doi.org/10.1007/s11783-022-1523-x
REVIEW ARTICLE
Sulfur mediated heavy metal biogeochemical cycles in coastal wetlands: From sediments, rhizosphere to vegetation
Yueming Wu1, Zhanrui Leng1, Jian Li1,2(), Chongling Yan2, Xinhong Wang2, Hui Jia1, Lingyun Chen3, Sai Zhang4, Xiaojun Zheng1(), Daolin Du1
1. Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
2. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
3. Laboratory of Microbiota, College of Life Science, Northwest Normal University, Lanzhou 730070, China
4. Department of Physics and Electronic Engineering, Jiangsu University, Zhenjiang 212013, China
 Download: PDF(1364 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• In sediments, the transformation of sulfides may lead to the release of heavy metals.

• In the rhizosphere, sulfur regulates the uptake of heavy metals by plants.

• In plants, sulfur mediates a series of heavy metal tolerance mechanisms.

• Explore interactions between sulfur and heavy metals on different scales is needed.

The interactions and mechanisms between sulfur and heavy metals are a growing focus of biogeochemical studies in coastal wetlands. These issues underline the fate of heavy metals bound in sediments or released into the system through sediments. Despite the fact that numerous published studies have suggested sulfur has a significant impact on the bioavailability of heavy metals accumulated in coastal wetlands, to date, no review article has systematically summarized those studies, particularly from the perspective of the three major components of wetland ecosystems (sediments, rhizosphere, and vegetation). The present review summarizes the studies published in the past four decades and highlights the major achievements in this field. Research and studies available thus far indicate that under anaerobic conditions, most of the potentially bioavailable heavy metals in coastal wetland sediments are fixed as precipitates, such as metal sulfides. However, fluctuations in physicochemical conditions may affect sulfur cycling, and hence, directly or indirectly lead to the conversion and migration of heavy metals. In the rhizosphere, root activities and microbes together affect the speciation and transformation of sulfur which in turn mediate the migration of heavy metals. As for plant tissues, tolerance to heavy metals is enhanced by sulfur-containing compounds via promoting a series of chelation and detoxification processes. Finally, to further understand the interactions between sulfur and heavy metals in coastal wetlands, some major future research directions are proposed.

Keywords Coastal wetland      Heavy metal      Sulfur      Biogeochemical cycle     
Corresponding Author(s): Jian Li,Xiaojun Zheng   
About author: Tongcan Cui and Yizhe Hou contributed equally to this work.
Issue Date: 16 December 2021
 Cite this article:   
Yueming Wu,Zhanrui Leng,Jian Li, et al. Sulfur mediated heavy metal biogeochemical cycles in coastal wetlands: From sediments, rhizosphere to vegetation[J]. Front. Environ. Sci. Eng., 2022, 16(8): 102.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1523-x
https://academic.hep.com.cn/fese/EN/Y2022/V16/I8/102
Fig.1  The transformation and migration of heavy metals in the coastal wetland ecosystem.
Fig.2  The sediment-plant cycle of sulfur in coastal wetlands.
Locations Value Cd Cr Cu Ni Pb Zn Reference
Futian Mangrove, Shenzhen, China Range 5.35−6.18 34.83−71.84 79.22−84.98 101.03−148.88 NA 324.48−401.03 Wu et al., 2019
Mean 5.70 49.76 82.62 117.92 351.15
Xixiang Mangrove, Shenzhen, China Range 8.33−9.08 96.42−116.06 328.63−431.83 157.86−176.04 NA 354.83−497.43 Wu et al., 2019
Mean 8.76 103.09 381.56 168.12 429.41
Shajing Mangrov, Shenzhen, China Range 7.63−8.32 299.05−317.66 1547.66−1624.34 366.59−424.50 NA 632.28−658.95 Wu et al., 2019
Mean 7.98 311.16 1595.24 397.87 649.19
Dongzhaigang
Mangrove, Hainan, China
Mean 0.96 65.77 15.37 18.97 19.32 48.57 Shi et al., 2019
Zhanjiang Mangrove, Guangdong, China Mean 1.74 71.53 20.95 21.85 37.01 76.60 Shi et al., 2019
Yellow River Estuary, China Range NA 35.9−54.7 15.6−29.9 17.6−28.4 35.8−51.7 38.2−68.3 Sun et al., 2015
Mean NA 44.09 22.85 22.97 43.05 54.12
Bohai Bay, China Mean 8.21 NA 50.06 NA 48.12 893.63 Chai et al., 2014b
Min River Estuary, China Range NA 33.3−128.9 23.2−74.4 16.7−61.9 17.8−159.0 71.6−267.4 Sun et al., 2017
Mean NA 73.8 41.2 33.7 62.3 146.6
Subei Shoal, Jiangsu, China Mean 0.56 19.22 11.32 47.88 0.13 38.18 Zhang et al., 2019a
Yangtze Estuary, China Mean 0.15 87.17 25.51 32.24 24.18 84.91 Liu et al., 2016
Pearl River Estuary, China Mean 2.38 109.7 65.36 50.36 79.27 244.42 Zhang et al., 2010
Can Gio Biosphere Reserve, Vietnam Range 0.01−0.2 27.1−71.5 7.1−27 11.7−56.3 8−20.4 25.7−108.1 Costa-Böddeker et al., 2020
Mean 0.06 51 17 29 15 57
Seine Estuary, France Range NA NA 3−45 18−43 18−78 53−188 Cundy et al., 2005
Mean NA NA 29 27 48 123
Medway Estuary, UK Mean NA 76 42 28 67 138 Spencer, 2002
Pozo Salt Marsh, Patagonia, Argentina Range 0.32−0.77 37.39−86.13 4.42−6.8 12.11−32.54 7.14−14.55 15.44−24.95 Idaszkin et al., 2020
Mean 0.51 62.64 5.31 23.29 10.28 19.89
Parnaíba River Delta Estuary, Brazil Range NA 1.5−38 1.5−14 NA 1.5−11 2.6−23 de Paula Filho et al., 2015
Mean 18.0 6.8 5.9 13.4
Sediment Quality Guidelines of China Class I 0.50 80.0 35.0 NA 60.0 150.0 SEPA, 2002
Class II 1.50 150.0 100.0 130.0 350.0
Class III 5.00 270.0 200.0 250.0 600.0
Tab.1  Heavy metal concentration of different coastal wetlands in the world (mg/kg)
Locations Value AVS
umol/g
SEMa umol/g SEM Cd
umol/g
SEM Cu
umol/g
SEM Ni
umol/g
SEM Pb
umol/g
SEM Zn
umol/g
Reference
Zhangjiang Estuary Mangrove, Fujian, China Range 0.2−12.5 1.4−2.1 0.623−1.690 0.152−0.324 0.095−0.20 0.115−0.197 0.731−1.391 Liu et al., 2010
Futian Mangrove, Shenzhen, China Mean 2.93 2.37 0.0113 0.13 NA 0.17 2.06 Chai et al., 2015
Pearl River Estuary, South China Mean 1.59 1.95 0.0430 0.31 0.29 0.18 0.94 Fang et al., 2005
Coastal Areas of Leizhou Peninsula, China Range 0.11−55.55 0.03−8.60 0.03−0.826 0.001−0.161 0.001−0.069 0.001−0.185 0.02−8.21 Li et al., 2014
Mean 4.451 0.843 0.146 0.031 0.01 0.045 0.757
Yangtze River Estuary, China Range 0.0016−8.5 0.326−7.3 0.00024−0.005 0.0246−2.56 0.029−5.96 0.014−0.203 0.114−1.36 Wang et al., 2015a
Mean 0.86 1.163 0.0013 0.266 0.36 0.069 0.467
Yellow River Estuary,
China
Range 0.15−0.185 0.90−1.86 0.184−0.376 0.212−0.404 NA 0.017−0.033 0.438−1.228 Wu et al., 2007
Mean 0.94 1.33 0.022 0.289 0.230 0.764
Bohai Bay, China Range 0.39−3.99 0.54−1.46 0.0002−0.0017 0.091−0.308 0.096−0.273 0.037−0.099 0.289−0.782 Gao et al., 2020
Mean 1.25 1.05 0.0007 0.211 0.192 0.071 0.572
Vembanad Lake Estuary, India Range 0.10−3.31 0.09−7.17 0.00−0.09 0.01−0.56 NA 0.00−0.06 0.00−7.12 Shyleshchandran et al., 2018
Mean 1.15 1.30 0.02 0.15 0.02 1.13
Pialassa Piomboni Coastal Lagoon, Italy Range 0.03−8.8 0.3−6.6 0.001−0.007 0.005−1.4 0.04−0.3 0.02−0.2 0.2−6.1 Pignotti et al., 2018
Mean 3.1 1.7 0.003 0.1 0.2 0.06 1.4
Asaluyeh Harbor, Iran Range 0.017−22.74 0.22−20.15 0.0005−0.0098 0.09−6.34 0.005−0.034 0.009−1.14 0.13−12.43 Arfaeinia et al., 2016
Mean 4.63 7.72 0.22 1.86 0.0026 0.39 4.44
Manzalah Lagoon, Egypt Mean 26.13 2.894 0.008 0.411 0.211 0.175 2.089 Younis et al., 2014
South Coast of São Paulo, Brazil Mean 2.83 1.71 0.0035 0.185 0.085 0.166 1.270 Nizoli and Luiz-Silva, 2012
Tab.2  Summary of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) of different coastal areas in the world
Fig.3  A conceptional model of biofilm and metal-sulfur cycle in the rhizoplane of root (*Figure adapted from Li et al., 2019b).
Fig.4  The mediating role of sulfur in plant absorption and transport of heavy metals from the rhizosphere.
Fig.5  Sulfur-containing compounds mediate heavy metal transport, immobilization and detoxification in plant cells.
1 B Ali, R A Gill, S Yang, M B Gill, S Ali, M T Rafiq, W Zhou (2014). Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus. Ecotoxicology and Environmental Safety, 110: 197–207
https://doi.org/10.1016/j.ecoenv.2014.08.027 pmid: 25255479
2 H E Allen, G Fu, B Deng (1993). Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environmental Toxicology and Chemistry, 12(8): 1441–1453
https://doi.org/10.1002/etc.5620120812
3 D M Alongi (2010). Dissolved iron supply limits early growth of estuarine mangroves. Ecology, 91(11): 3229–3241
https://doi.org/10.1890/09-2142.1 pmid: 21141184
4 H Arfaeinia, I Nabipour, A Ostovar, Z Asadgol, E Abuee, M Keshtkar, S Dobaradaran (2016). Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: Concentrations, spatial distributions, and sediment bioavailability/toxicity. Environmental Science and Pollution Research International, 23(10): 9871–9890
https://doi.org/10.1007/s11356-016-6189-0 pmid: 26856868
5 U Ashraf, A S Kanu, Z Mo, S Hussain, S A Anjum, I Khan, R N Abbas, X Tang (2015). Lead toxicity in rice: effects, mechanisms, and mitigation strategies: A mini review. Environmental Science and Pollution Research International, 22(23): 18318–18332
https://doi.org/10.1007/s11356-015-5463-x pmid: 26432270
6 L L Barton, G D Fauque (2009). Advances in Applied Microbiology. New York: Academic Press, 41–98
7 G Bonanno, R Lo Giudice (2010). Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecological Indicators, 10(3): 639–645
https://doi.org/10.1016/j.ecolind.2009.11.002
8 Z Z Cao, M L Qin, X Y Lin, Z W Zhu, M X Chen (2018). Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration. Environmental Pollution, 238: 76–84
https://doi.org/10.1016/j.envpol.2018.02.083 pmid: 29547864
9 M Chai, X Shen, R Li, G Qiu (2015). The risk assessment of heavy metals in Futian mangrove forest sediment in Shenzhen Bay (South China) based on SEM-AVS analysis. Marine Pollution Bulletin, 97(1–2): 431–439
https://doi.org/10.1016/j.marpolbul.2015.05.057 pmid: 26028168
10 M Chai, F Shi, R Li, F Liu, G Qiu, L Liu (2013). Effect of NaCl on growth and Cd accumulation of halophyte Spartina alterniflora under CdCl2 stress. South African Journal of Botany, 85: 63–69
https://doi.org/10.1016/j.sajb.2012.12.004
11 M Chai, F Shi, R Li, G Qiu, F Liu, L Liu (2014a). Growth and physiological responses to copper stress in a halophyte Spartina alterniflora (Poaceae). Acta Physiologiae Plantarum, 36(3): 745–754
https://doi.org/10.1007/s11738-013-1452-1
12 M Chai, F Shi, R Li, X Shen (2014b). Heavy metal contamination and ecological risk in Spartina alterniflora marsh in intertidal sediments of Bohai Bay, China. Marine Pollution Bulletin, 84(1-2): 115–124
https://doi.org/10.1016/j.marpolbul.2014.05.028 pmid: 24930737
13 M W Chai, R L Li, F C Shi, F C Liu, X Pan, D Cao, X Wen (2012). Effects of cadmium stress on growth, metal accumulation and organic acids of Spartina alterniflora Loisel. African Journal of Biotechnology, 11(22): 6091–6099
14 H Chi, L Yang, W Yang, Y Li, Z Chen, L Huang, Y Chao, R Qiu, S Wang (2018). Variation of the bacterial community in the rhizoplane iron plaque of the wetland plant Typha latifolia. International Journal of Environmental Research and Public Health, 15(12): 2610
https://doi.org/10.3390/ijerph15122610 pmid: 30469475
15 C A Coles, S R Rao, R N Yong (2000). Lead and cadmium interactions with mackinawite: Retention mechanisms and the role of pH. Environmental Science & Technology, 34(6): 996–1000
https://doi.org/10.1021/es990773r
16 R R S Correia, J R D Guimarães (2017). Mercury methylation and sulfate reduction rates in mangrove sediments, Rio de Janeiro, Brazil: The role of different microorganism consortia. Chemosphere, 167: 438–443
https://doi.org/10.1016/j.chemosphere.2016.09.153 pmid: 27750167
17 S Costa-Böddeker, L X Thuyên, P Hoelzmann, H C de Stigter, P van Gaever, H Đ Huy, J P Smol, A Schwalb (2020). Heavy metal pollution in a reforested mangrove ecosystem (Can Gio Biosphere Reserve, Southern Vietnam): Effects of natural and anthropogenic stressors over a thirty-year history. Science of the Total Environment, 716: 137035
https://doi.org/10.1016/j.scitotenv.2020.137035 pmid: 32059307
18 A Cundy, L Hopkinson, R Lafite, K Spencer, J Taylor, B Ouddane, C Heppell, P Carey, R Charman, D Shell, S Ullyott (2005). Heavy metal distribution and accumulation in two Spartina sp.-dominated macrotidal salt marshes from the Seine estuary (France) and the Medway Estuary (UK). Applied Geochemistry, 20(6): 1195–1208
https://doi.org/10.1016/j.apgeochem.2005.01.010
19 G A Cutter, D J Velinsky (1988). Temporal variations of sedimentary sulfur in a Delaware salt marsh. Marine Chemistry, 23(3–4): 311–327
https://doi.org/10.1016/0304-4203(88)90101-6
20 M Dai, H Lu, W Liu, H Jia, H Hong, J Liu, C Yan (2017). Phosphorus mediation of cadmium stress in two mangrove seedlings Avicennia marina and Kandelia obovata differing in cadmium accumulation. Ecotoxicology and Environmental Safety, 139: 272–279
https://doi.org/10.1016/j.ecoenv.2017.01.017 pmid: 28161586
21 F J de Paula Filho, R V Marins, L D de Lacerda, J E Aguiar, T F Peres (2015). Background values for evaluation of heavy metal contamination in sediments in the Parnaíba River Delta Estuary, NE/Brazil. Marine Pollution Bulletin, 91(2): 424–428
https://doi.org/10.1016/j.marpolbul.2014.08.022 pmid: 25284444
22 M de Souza, C Huang, N Chee, N Terry(1999). Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta, 209(2): 259–263
https://doi.org/10.1007/s004250050630 pmid: 10436229
23 A P Deditius, S Utsunomiya, M Reich, S E Kesler, R C Ewing, R Hough, J Walshe (2011). Trace metal nanoparticles in pyrite. Ore Geology Reviews, 42(1): 32–46
https://doi.org/10.1016/j.oregeorev.2011.03.003
24 J Deng, P Guo, J Ji, H Su, Y Zhang, Y Wu, Y Sun, M Wang (2019). Effects of wetland restoration on sulfur and arylsulfatase in mangrove surface soils at Jinjiang Estuary (Fujian, China). Wetlands, 39(2): 393–402
https://doi.org/10.1007/s13157-018-1083-9
25 O P Dhankher, E A Pilon-Smits, R B Meagher, S Doty (2012). Plant biotechnology and agriculture. Biotechnology Education, 3(1): 309–328
26 M O Doyle, M L Otte (1997). Organism-induced accumulation of iron, zinc and arsenic in wetland soils. Environmental Pollution, 96(1): 1–11
https://doi.org/10.1016/S0269-7491(97)00014-6 pmid: 15093426
27 W Du, W Tan, J R Peralta-Videa, J L Gardea-Torresdey, R Ji, Y Yin, H Guo (2017). Interaction of metal oxide nanoparticles with higher terrestrial plants: Physiological and biochemical aspects. Plant Physiology and Biochemistry, 110: 210–225
https://doi.org/10.1016/j.plaphy.2016.04.024 pmid: 27137632
28 G Du Laing, J Rinklebe, B Vandecasteele, E Meers, F M Tack (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407(13): 3972–3985
https://doi.org/10.1016/j.scitotenv.2008.07.025 pmid: 18786698
29 P J Edwards (1998). Sulfur cycling, retention, and mobility in soils: A review. US Department of Agriculture, Forest Service, Northeastern Research Station
30 J L Fan, Z Y Hu, N Ziadi, X Xia, C Y Wu (2010). Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.). Environmental Pollution, 158(2): 409–415
https://doi.org/10.1016/j.envpol.2009.08.042 pmid: 19781829
31 T Fang, X Li, G Zhang (2005). Acid volatile sulfide and simultaneously extracted metals in the sediment cores of the Pearl River Estuary, South China. Ecotoxicology and Environmental Safety, 61(3): 420–431
https://doi.org/10.1016/j.ecoenv.2004.10.004 pmid: 15922809
32 R Fryzova, M Pohanka, P Martinkova, H Cihlarova, M Brtnicky, J Hladky, J Kynicky (2018). Reviews of Environmental Contamination and Toxicology Volume 245. de Voogt, P, ed. Cham: Springer International Publishing,129–156
33 W Gao, Y Du, S Gao, J Ingels, D Wang (2016). Heavy metal accumulation reflecting natural sedimentary processes and anthropogenic activities in two contrasting coastal wetland ecosystems, eastern China. Journal of Soils and Sediments, 16(3): 1093–1108
https://doi.org/10.1007/s11368-015-1314-0
34 X Gao, J Song, X Li, H Yuan, J Zhao, Q Xing, P Li (2020). Sediment quality of the Bohai Sea and the northern Yellow Sea indicated by the results of acid-volatile sulfide and simultaneously extracted metals determinations. Marine Pollution Bulletin, 155: 111147
https://doi.org/10.1016/j.marpolbul.2020.111147 pmid: 32310103
35 N H Ghori, T Ghori, M Q Hayat, S R Imadi, A Gul, V Altay, M Ozturk (2019). Heavy metal stress and responses in plants. International Journal of Environmental Science and Technology, 16(3): 1807–1828
https://doi.org/10.1007/s13762-019-02215-8
36 P S González, M A Talano, A L W Oller, S G Ibañez, M I Medina, E Agostini (2014). Update on mechanisms involved in arsenic and chromium accumulation, translocation and homeostasis in plants. Heavy Metal Remediation: Transport and Accumulation in Plants. Gupta D K, Chatterjee S, eds. Cham: Springer
37 T Griffin, M Rabenhorst, D Fanning (1989). Iron and trace metals in some tidal marsh soils of the Chesapeake Bay. Soil Science Society of America Journal, 53(4): 1010–1019
https://doi.org/10.2136/sssaj1989.03615995005300040004x
38 T Guo, R Delaune, W H Patrick (1997). The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environment International, 23(3): 305–316
https://doi.org/10.1016/S0160-4120(97)00033-0
39 W Guo, Y Wen, Y Chen, Q Zhou (2020). Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm. Frontiers of Environmental Science & Engineering, 14(4): 57
https://doi.org/10.1007/s11783-020-1236-y
40 A F Haag, B Kerscher, S Dall’Angelo, M Sani, R Longhi, M Baloban, H M Wilson, P Mergaert, M Zanda, G P Ferguson (2012). Role of cysteine residues and disulfide bonds in the activity of a legume root nodule-specific, cysteine-rich peptide. Journal of Biological Chemistry, 287(14): 10791–10798
https://doi.org/10.1074/jbc.M111.311316 pmid: 22351783
41 J T Hancock (2019). Hydrogen sulfide and environmental stresses. Environmental and Experimental Botany, 161: 50–56
https://doi.org/10.1016/j.envexpbot.2018.08.034
42 C M Hansel, S Fendorf, S Sutton, M Newville (2001). Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science & Technology, 35(19): 3863–3868
https://doi.org/10.1021/es0105459 pmid: 11642445
43 P Harbison (1986). Mangrove muds: A sink and a source for trace metals. Marine Pollution Bulletin, 17(6): 246–250
https://doi.org/10.1016/0025-326X(86)90057-3
44 H He, Y Li, L F He (2018). The central role of hydrogen sulfide in plant responses to toxic metal stress. Ecotoxicology and Environmental Safety, 157: 403–408
https://doi.org/10.1016/j.ecoenv.2018.03.060 pmid: 29653374
45 S He, X Yang, Z He, V C Baligar (2017). Morphological and physiological responses of plants to cadmium toxicity: A review. Pedosphere, 27(3): 421–438
https://doi.org/10.1016/S1002-0160(17)60339-4
46 M Hempel, S E Botté, V L Negrin, M N Chiarello, J E Marcovecchio (2008). The role of the smooth cordgrass Spartina alterniflora and associated sediments in the heavy metal biogeochemical cycle within Bahía Blanca Estuary salt marshes. Journal of Soils and Sediments, 8(5): 289–297
https://doi.org/10.1007/s11368-008-0027-z
47 U Hildebrandt, M Regvar, H Bothe (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68(1): 139–146
https://doi.org/10.1016/j.phytochem.2006.09.023 pmid: 17078985
48 Y Hu, G Wu, R Li, L Xiao, X Zhan (2020). Iron sulphides mediated autotrophic denitrification: An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment. Water Research, 179: 115914
https://doi.org/10.1016/j.watres.2020.115914 pmid: 32413614
49 J Huang, S Cunningham (1996). Lead phytoextraction: Species variation in lead uptake and translocation. New Phytologist, 134(1): 75–84
https://doi.org/10.1111/j.1469-8137.1996.tb01147.x
50 Y L Idaszkin, E S Carol, J M Barcia-Piedras, P J Bouza, E Mateos-Naranjo (2020). Trace metal concentrations in soil-plant complex in rocky shore salt marshes of Central Patagonia. Continental Shelf Research, 211: 104280
https://doi.org/10.1016/j.csr.2020.104280
51 Y Jiang, B Xi, R Li, M Li, Z Xu, Y Yang, S Gao (2019). Advances in Fe (III) bioreduction and its application prospect for groundwater remediation: A review. Frontiers of Environmental Science & Engineering, 13(6): 89
https://doi.org/10.1007/s11783-019-1173-9
52 S G Johnston, P Slavich, P Hirst (2004). The acid flux dynamics of two artificial drains in acid sulfate soil backswamps on the Clarence River floodplain, Australia. Soil Research (Collingwood, Vic.), 42(6): 623–637
https://doi.org/10.1071/SR03069
53 B B Jørgensen (1982). Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature, 296(5858): 643–645
https://doi.org/10.1038/296643a0
54 P Joseph, S B Nandan, K Adarsh, P Anu, R Varghese, S Sreelekshmi, C Preethy, P Jayachandran, K Joseph (2019). Heavy metal contamination in representative surface sediments of mangrove habitats of Cochin, Southern India. Environmental Earth Sciences, 78(15): 1–11
https://doi.org/10.1007/s12665-019-8499-2
55 N Karimian, S G Johnston, E D Burton (2018). Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions: A review. Chemosphere, 197: 803–816
https://doi.org/10.1016/j.chemosphere.2018.01.096 pmid: 29407844
56 M Kerner, K Wallmann (1992). Remobilization events involving Cd and Zn from intertidal flat sediments in the Elbe Estuary during the tidal cycle. Estuarine, Coastal and Shelf Science, 35(4): 371–393
https://doi.org/10.1016/S0272-7714(05)80034-4
57 J E Kostka, G W Luther III (1995). Seasonal cycling of Fe in saltmarsh sediments. Biogeochemistry, 29(2): 159–181
https://doi.org/10.1007/BF00000230
58 S Kumar, S Prasad, K K Yadav, M Shrivastava, N Gupta, S Nagar, Q V Bach, H Kamyab, S A Khan, S Yadav, L C Malav (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches—A review. Environmental Research, 179(Pt A): 108792
https://doi.org/10.1016/j.envres.2019.108792 pmid: 31610391
59 P Kumarathilaka, S Seneweera, A Meharg, J Bundschuh (2018). Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Science of the Total Environment, 642: 485–496
https://doi.org/10.1016/j.scitotenv.2018.06.030 pmid: 29908507
60 L D Lacerda, J L Freixo, S M Coelho (1997). The effect of Spartina alterniflora Loisel on trace metals accumulation in inter-tidal sediments. Mangroves and Salt Marshes, 1(4): 201–209
https://doi.org/10.1023/A:1009990604727
61 F Li, J Q Lin, Y Y Liang, H Y Gan, X Y Zeng, Z P Duan, K Liang, X Liu, Z H Huo, C H Wu (2014). Coastal surface sediment quality assessment in Leizhou Peninsula (South China Sea) based on SEM-AVS analysis. Marine Pollution Bulletin, 84(1–2): 424–436
https://doi.org/10.1016/j.marpolbul.2014.04.030 pmid: 24880682
62 J Li, J Liu, Y Lin, C Yan, H Lu (2016a). Fraction distribution and migration of heavy metals in mangrove-sediment system under sulphur and phosphorus amendment. Chemistry and Ecology, 32(1): 34–48
https://doi.org/10.1080/02757540.2015.1115840
63 J Li, J Liu, H Lu, H Jia, J Yu, H Hong, C Yan (2016b). Influence of the phenols on the biogeochemical behavior of cadmium in the mangrove sediment. Chemosphere, 144: 2206–2213
https://doi.org/10.1016/j.chemosphere.2015.10.128 pmid: 26598988
64 J Li, J Liu, C Yan, D Du, H Lu (2019a). The alleviation effect of iron on cadmium phytotoxicity in mangrove A. marina. Alleviation effect of iron on cadmium phytotoxicity in mangrove Avicennia marina (Forsk.) Vierh. Chemosphere, 226: 413–420
https://doi.org/10.1016/j.chemosphere.2019.03.172 pmid: 30951935
65 J Li, H Lu, J Liu, H Hong, C Yan (2015). The influence of flavonoid amendment on the absorption of cadmium in Avicennia marina roots. Ecotoxicology and Environmental Safety, 120: 1–6
https://doi.org/10.1016/j.ecoenv.2015.05.004 pmid: 26004538
66 J Li, J Yu, J Liu, C Yan, H Lu, L S Kate (2017). The effects of sulfur amendments on the geochemistry of sulfur, phosphorus and iron in the mangrove plant (Kandelia obovata (S. L.)) rhizosphere. Marine Pollution Bulletin, 114(2): 733–741
https://doi.org/10.1016/j.marpolbul.2016.10.070 pmid: 27817887
67 M Li, A Fang, X Yu, K Zhang, Z He, C Wang, Y Peng, F Xiao, T Yang, W Zhang, X Zheng, Q Zhong, X Liu, Q Yan (2021). Microbially-driven sulfur cycling microbial communities in different mangrove sediments. Chemosphere, 273: 128597
https://doi.org/10.1016/j.chemosphere.2020.128597 pmid: 33077194
68 R Li, L Morrison, G Collins, A Li, X Zhan (2016c). Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction. Water Research, 96: 32–41
https://doi.org/10.1016/j.watres.2016.03.034 pmid: 27017573
69 Y Li, W Feng, H Chi, Y Huang, D Ruan, Y Chao, R Qiu, S Wang (2019b). Could the rhizoplane biofilm of wetland plants lead to rhizospheric heavy metal precipitation and iron-sulfur cycle termination? Journal of Soils and Sediments, 19(11): 3760–3772
https://doi.org/10.1007/s11368-019-02343-1
70 H Lin, J Shi, X Chen, J Yang, Y Chen, Y Zhao, T Hu (2010). Effects of lead upon the actions of sulfate-reducing bacteria in the rice rhizosphere. Soil Biology & Biochemistry, 42(7): 1038–1044
https://doi.org/10.1016/j.soilbio.2010.02.023
71 Y Lin, J Fan, J Yu, S Jiang, C Yan, J Liu (2018). Root activities and arsenic translocation of Avicennia marina (Forsk.) Vierh seedlings influenced by sulfur and iron amendments. Marine Pollution Bulletin, 135: 1174–1182
https://doi.org/10.1016/j.marpolbul.2018.08.040 pmid: 30301016
72 J Liu, C Yan, L S Kate, R Zhang, H Lu (2010). The distribution of acid-volatile sulfide and simultaneously extracted metals in sediments from a mangrove forest and adjacent mudflat in Zhangjiang Estuary, China. Marine Pollution Bulletin, 60(8): 1209–1216
https://doi.org/10.1016/j.marpolbul.2010.03.029 pmid: 20434182
73 R Liu, C Men, Y Liu, W Yu, F Xu, Z Shen (2016). Spatial distribution and pollution evaluation of heavy metals in Yangtze estuary sediment. Marine Pollution Bulletin, 110(1): 564–571
https://doi.org/10.1016/j.marpolbul.2016.05.060 pmid: 27267116
74 H Lu, C Yan, J Liu (2007). Low-molecular-weight organic acids exuded by Mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environmental and Experimental Botany, 61(2): 159–166
https://doi.org/10.1016/j.envexpbot.2007.05.007
75 M Luo, J F Huang, W F Zhu, C Tong (2019). Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: A review. Hydrobiologia, 827(1): 31–49
https://doi.org/10.1007/s10750-017-3416-8
76 G R MacFarlane, A Pulkownik, M D Burchett (2003). Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk)Vierh: Biological indication potential. Environmental Pollution, 123(1): 139–151
https://doi.org/10.1016/S0269-7491(02)00342-1 pmid: 12663214
77 K W Man, J Zheng, A P Leung, P K Lam, M H W Lam, Y F Yen (2004). Distribution and behavior of trace metals in the sediment and porewater of a tropical coastal wetland. Science of the Total Environment, 327(1–3): 295–314
https://doi.org/10.1016/j.scitotenv.2004.01.023 pmid: 15172588
78 C R McFarlin, M Alber (2013). Foliar DMSO: DMSP ratio and metal content as indicators of stress in Spartina alterniflora. Marine Ecology Progress Series, 474: 1–13
https://doi.org/10.3354/meps10184
79 M G Mostofa, A Rahman, M M U Ansary, A Watanabe, M Fujita, L S P Tran (2015). Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Scientific Reports, 5(1): 14078
https://doi.org/10.1038/srep14078 pmid: 26361343
80 H Nakanishi, I Ogawa, Y Ishimaru, S Mori, N K Nishizawa (2006). Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition, 52(4): 464–469
https://doi.org/10.1111/j.1747-0765.2006.00055.x
81 D Nedwell, T Embley, K Purdy (2004). Sulphate reduction, methanogenesis and phylogenetics of the sulphate reducing bacterial communities along an estuarine gradient. Aquatic Microbial Ecology, 37(3): 209–217
https://doi.org/10.3354/ame037209
82 V L Negrin, B Teixeira, R M Godinho, R Mendes, C Vale (2017). Phytochelatins and monothiols in salt marsh plants and their relation with metal tolerance. Marine Pollution Bulletin, 121(1–2): 78–84
https://doi.org/10.1016/j.marpolbul.2017.05.045 pmid: 28554828
83 L N Neretin, M E Böttcher, B B Jørgensen, I I Volkov, H Lüschen, K Hilgenfeldt (2004). Pyritization processes and Greigite formation in the advancing sulfidization front in the upper Pleistocene sediments of the Black Sea. Geochimica et Cosmochimica Acta, 68(9): 2081–2093
https://doi.org/10.1016/S0016-7037(03)00450-2
84 N K Niazi, E D Burton (2016). Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition. Environmental Pollution, 218: 111–117
https://doi.org/10.1016/j.envpol.2016.08.031 pmid: 27552044
85 G C Nikalje, P Suprasanna (2018). Coping with metal toxicity: Cues from halophytes. Frontiers in Plant Science, 9(777): 777
https://doi.org/10.3389/fpls.2018.00777 pmid: 29971073
86 Z S Niu, H Pan, X P Guo, D P Lu, J N Feng, Y R Chen, F Y Tou, M Liu, Y Yang (2018). Sulphate-reducing bacteria (SRB) in the Yangtze Estuary sediments: Abundance, distribution and implications for the bioavailibility of metals. Science of the Total Environment, 634: 296–304
https://doi.org/10.1016/j.scitotenv.2018.03.345 pmid: 29627553
87 Z S Niu, Y Yang, F Y Tou, X P Guo, R Huang, J Xu, Y R Chen, L J Hou, M Liu, M F Hochella (2020). Sulfate-reducing bacteria (SRB) can enhance the uptake of silver-containing nanoparticles by a wetland plant. Environmental Science. Nano, 7(3): 912–925
https://doi.org/10.1039/C9EN01162E
88 E C Nizoli, W Luiz-Silva (2012). Seasonal AVS-SEM relationship in sediments and potential bioavailability of metals in industrialized estuary, southeastern Brazil. Environmental Geochemistry and Health, 34(2): 263–272
https://doi.org/10.1007/s10653-011-9430-2 pmid: 21964870
89 A T O'Geen, R Budd, J Gan, J J Maynard, S J Parikh, R A Dahlgren (2010). Advances in Agronomy. Sparks D L, ed.: Academic Press,1–76
90 C Pallud, P Van Cappellen (2006). Kinetics of microbial sulfate reduction in estuarine sediments. Geochimica et Cosmochimica Acta, 70(5): 1148–1162
https://doi.org/10.1016/j.gca.2005.11.002
91 J H Pardue, W H Patrick (2018). Metal contaminated aquatic sediments. Routledge,169–185
92 J R Peralta-Videa, M L Lopez, M Narayan, G Saupe, J Gardea-Torresdey (2009). The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. The International Journal of Biochemistry & Cell Biology, 41(8-9): 1665–1677
https://doi.org/10.1016/j.biocel.2009.03.005 pmid: 19433308
93 M Pester, K H Knorr, M W Friedrich, M Wagner, A Loy (2012). Sulfate-reducing microorganisms in wetlands- fameless actors in carbon cycling and climate change. Frontiers in Microbiology, 3: 72
https://doi.org/10.3389/fmicb.2012.00072 pmid: 22403575
94 E Pignotti, R Guerra, S Covelli, E Fabbri, E Dinelli (2018). Sediment quality assessment in a coastal lagoon (Ravenna, NE Italy) based on SEM-AVS and sequential extraction procedure. Science of the Total Environment, 635: 216–227
https://doi.org/10.1016/j.scitotenv.2018.04.093 pmid: 29665542
95 D Rickard (1995). Kinetics of FeS precipitation: Part 1. Competing reaction mechanisms. Geochimica et Cosmochimica Acta, 59(21): 4367–4379
https://doi.org/10.1016/0016-7037(95)00251-T
96 D Rickard, J W Morse (2005). Acid volatile sulfide (AVS). Marine Chemistry, 97(3–4): 141–197
https://doi.org/10.1016/j.marchem.2005.08.004
97 D Rickard, M Mussmann, J A Steadman (2017). Sedimentary sulfides. Elements, 13(2): 117–122
https://doi.org/10.2113/gselements.13.2.117
98 D T Rickard (1975). Kinetics and mechanism of pyrite formation at low temperatures. American Journal of Science, 275(6): 636–652
https://doi.org/10.2475/ajs.275.6.636
99 L C Romero, M Á Aroca, A M Laureano-Marín, I Moreno, I García, C Gotor (2014). Cysteine and cysteine-related signaling pathways in Arabidopsis thaliana. Molecular Plant, 7(2): 264–276
https://doi.org/10.1093/mp/sst168 pmid: 24285094
100 H Rousseau, M Rousseau-Gueutin, X Dauvergne, J Boutte, G Simon, N Marnet, A Bouchereau, S Guiheneuf, J P Bazureau, J Morice, S Ravanel, F Cabello-Hurtado, A Ainouche, A Salmon, J F Wendel, M L Ainouche (2017). Evolution of DMSP (dimethylsulfoniopropionate) biosynthesis pathway: Origin and phylogenetic distribution in polyploid Spartina (Poaceae, Chloridoideae). Molecular Phylogenetics and Evolution, 114: 401–414
https://doi.org/10.1016/j.ympev.2017.07.003 pmid: 28694102
101 A N Roychoudhury, D Cowan, D Porter, A Valverde (2013). Dissimilatory sulphate reduction in hypersaline coastal pans: an integrated microbiological and geochemical study. Geobiology, 11(3): 224–233
https://doi.org/10.1111/gbi.12027 pmid: 23374224
102 SEPA (2002). Marine Sediment Quality (GB 18668–2002). Beijing: Standards Press of China
103 C Shi, H Ding, Q Zan, R Li (2019). Spatial variation and ecological risk assessment of heavy metals in mangrove sediments across China. Marine Pollution Bulletin, 143: 115–124
https://doi.org/10.1016/j.marpolbul.2019.04.043 pmid: 31789145
104 M N Shyleshchandran, M Mohan, E V Ramasamy (2018). Risk assessment of heavy metals in Vembanad Lake sediments (south-west coast of India), based on acid-volatile sulfide (AVS)-simultaneously extracted metal (SEM) approach. Environmental Science and Pollution Research International, 25(8): 7333–7345
https://doi.org/10.1007/s11356-017-0997-8 pmid: 29275481
105 V P Singh, S Singh, J Kumar, S M Prasad (2015). Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate-glutathione cycle: Possible involvement of nitric oxide. Journal of Plant Physiology, 181: 20–29
https://doi.org/10.1016/j.jplph.2015.03.015 pmid: 25974366
106 R Singleton (1993). The Sulfate-Reducing Bacteria: Contemporary Perspectives. New York: Springer, 1–20
107 K L Spencer (2002). Spatial variability of metals in the inter-tidal sediments of the Medway Estuary, Kent, UK. Marine Pollution Bulletin, 44(9): 933–944
https://doi.org/10.1016/S0025-326X(02)00129-7 pmid: 12405218
108 P S Stewart, M J Franklin (2008). Physiological heterogeneity in biofilms. Nature Reviews. Microbiology, 6(3): 199–210
https://doi.org/10.1038/nrmicro1838 pmid: 18264116
109 Z Sun, J Li, T He, P Ren, H Zhu, H Gao, L Tian, X Hu (2017). Spatial variation and toxicity assessment for heavy metals in sediments of intertidal zone in a typical subtropical estuary (Min River) of China. Environmental Science and Pollution Research International, 24(29): 23080–23095
https://doi.org/10.1007/s11356-017-9897-1 pmid: 28825222
110 Z Sun, X Mou, C Tong, C Wang, Z Xie, H Song, W Sun, Y Lv (2015). Spatial variations and bioaccumulation of heavy metals in intertidal zone of the Yellow River Estuary, China. Catena, 126: 43–52
https://doi.org/10.1016/j.catena.2014.10.037
111 H Takahashi, S Kopriva, M Giordano, K Saito, R Hell (2011). Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annual Review of Plant Biology, 62(1): 157–184
https://doi.org/10.1146/annurev-arplant-042110-103921 pmid: 21370978
112 F Thomas, A E Giblin, Z G Cardon, S M Sievert (2014). Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments. Frontiers in Microbiology, 5: 309
https://doi.org/10.3389/fmicb.2014.00309 pmid: 25009538
113 T P Tourova, O L Kovaleva, D Y Sorokin, G Muyzer (2010). Ribulose-1,5-bisphosphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology, 156(7): 2016–2025
https://doi.org/10.1099/mic.0.034603-0 pmid: 20299400
114 R D Tripathi, S Srivastava, S Mishra, N Singh, R Tuli, D K Gupta, F J Maathuis (2007). Arsenic hazards: strategies for tolerance and remediation by plants. Trends in Biotechnology, 25(4): 158–165
https://doi.org/10.1016/j.tibtech.2007.02.003 pmid: 17306392
115 K Viehweger (2014). How plants cope with heavy metals. Botanical Studies, 55(1): 35
https://doi.org/10.1186/1999-3110-55-35 pmid: 28510963
116 C Wang, D Lin, P Wang, Y Ao, J Hou, H Zhu (2015a). Seasonal and spatial variations of acid-volatile sulphide and simultaneously extracted metals in the Yangtze River Estuary. Chemistry and Ecology, 31(5): 466–477
https://doi.org/10.1080/02757540.2015.1061512
117 P Wang, N W Menzies, E Lombi, R Sekine, F P C Blamey, M C Hernandez-Soriano, M Cheng, P Kappen, W J Peijnenburg, C Tang, P M Kopittke (2015b). Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology, 9(8): 1041–1049
https://doi.org/10.3109/17435390.2014.999139 pmid: 25686712
118 Y Wang, L Zhou, X Zheng, P Qian, Y Wu (2013). Influence of Spartina alterniflora on the mobility of heavy metals in salt marsh sediments of the Yangtze River Estuary, China. Environmental Science and Pollution Research International, 20(3): 1675–1685
https://doi.org/10.1007/s11356-012-1082-y pmid: 22821343
119 B Weng, X Xie, D J Weiss, J Liu, H Lu, C Yan (2012). Kandelia obovata (S. L.) Yong tolerance mechanisms to Cadmium: Subcellular distribution, chemical forms and thiol pools. Marine Pollution Bulletin, 64(11): 2453–2460
https://doi.org/10.1016/j.marpolbul.2012.07.047 pmid: 22910331
120 R T Wilkin, D G Beak (2017). Uptake of nickel by synthetic mackinawite. Chemical Geology, 462: 15–29
https://doi.org/10.1016/j.chemgeo.2017.04.023 pmid: 30245527
121 L G Wilson, R A Bressan, P Filner (1978). Light-dependent emission of hydrogen sulfide from plants. Plant Physiology, 61(2): 184–189
https://doi.org/10.1104/pp.61.2.184 pmid: 16660257
122 D J Wright, M L Otte (1999). Wetland plant effects on the biogeochemistry of metals beyond the rhizosphere. JSTOR, 3–10
123 Q Wu, Q Ma, J Wang, Z Jiang, X L Wang (2007). The AVS in surface sediment of near sea area of Huanghe Estuary. Marine Environmental Science, 26(2): 126–129 (in Chinese)
124 S Wu, R Li, S Xie, C Shi (2019). Depth-related change of sulfate-reducing bacteria community in mangrove sediments: The influence of heavy metal contamination. Marine Pollution Bulletin, 140: 443–450
https://doi.org/10.1016/j.marpolbul.2019.01.042 pmid: 30803665
125 Y Wu, Z Leng, J Li, H Jia, C Yan, H Hong, Q Wang, Y Lu, D Du (2022). Increased fluctuation of sulfur alleviates cadmium toxicity and exacerbates the expansion of Spartina alterniflora in coastal wetlands. Environmental Pollution, 292(Pt B): 118399
https://doi.org/10.1016/j.envpol.2021.118399 pmid: 34695515
126 Z Wu, S Naveed, C Zhang, Y Ge (2020). Adequate supply of sulfur simultaneously enhances iron uptake and reduces cadmium accumulation in rice grown in hydroponic culture. Environmental Pollution, 262: 114327
https://doi.org/10.1016/j.envpol.2020.114327 pmid: 32179232
127 L Xia, W Yang, H Zhao, Y Xiao, H Qing, C Zhou, S An (2015). High soil sulfur promotes invasion of exotic Spartina alterniflora into native Phragmites australis marsh. Clean (Weinheim), 43(12): 1666–1671
https://doi.org/10.1002/clen.201300883
128 X Xie, D J Weiss, B Weng, J Liu, H Lu, C Yan (2013). The short-term effect of cadmium on low molecular weight organic acid and amino acid exudation from mangrove (Kandelia obovata (S. L.) Yong) roots. Environmental Science and Pollution Research International, 20(2): 997–1008
https://doi.org/10.1007/s11356-012-1031-9 pmid: 22729874
129 S Yadav (2010). Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76(2): 167–179
https://doi.org/10.1016/j.sajb.2009.10.007
130 N Yamaguchi, T Ohkura, Y Takahashi, Y Maejima, T Arao (2014). Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environmental Science & Technology, 48(3): 1549–1556
https://doi.org/10.1021/es402739a pmid: 24384039
131 T Yamauchi, A Fukazawa, M Nakazono (2017). METALLOTHIONEIN genes encoding ROS scavenging enzymes are down-regulated in the root cortex during inducible aerenchyma formation in rice. Plant Signaling & Behavior, 12(11): e1388976
https://doi.org/10.1080/15592324.2017.1388976 pmid: 29035627
132 J Yang, Z Ma, Z Ye, X Guo, R Qiu (2010). Heavy metal (Pb, Zn) uptake and chemical changes in rhizosphere soils of four wetland plants with different radial oxygen loss. Journal of Environmental Sciences (China), 22(5): 696–702
https://doi.org/10.1016/S1001-0742(09)60165-0 pmid: 20608505
133 J Yang, Z Ye (2009). Metal accumulation and tolerance in wetland plants. Frontiers of Biology in China, 4(3): 282–288
https://doi.org/10.1007/s11515-009-0024-7
134 X Yang, Q He, F Guo, X Liu, Y Chen (2021). Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system. Frontiers of Environmental Science & Engineering, 15(6): 138
https://doi.org/10.1007/s11783-021-1432-4
135 Y Yang, T Chen, M Sumona, B S Gupta, Y Sun, Z Hu, X Zhan (2017). Utilization of iron sulfides for wastewater treatment: A critical review. Reviews in Environmental Science and Biotechnology, 16(2): 289–308
https://doi.org/10.1007/s11157-017-9432-3
136 Z Youli, L Jian, L Zhanrui, D Daolin (2020). The influence of root exudate flavonoids on sulfur species distribution in mangrove sediments polluted with cadmium. Wetlands, 40(6): 2671–2678
137 A M Younis, G M El-Zokm, M A Okbah (2014). Spatial variation of acid-volatile sulfide and simultaneously extracted metals in Egyptian Mediterranean Sea lagoon sediments. Environmental Monitoring and Assessment, 186(6): 3567–3579
https://doi.org/10.1007/s10661-014-3639-3 pmid: 24519634
138 T Youssef, P Saenger (1998). Photosynthetic gas exchange and accumulation of phytotoxins in mangrove seedlings in response to soil physico-chemical characteristics associated with waterlogging. Tree Physiology, 18(5): 317–324
https://doi.org/10.1093/treephys/18.5.317 pmid: 12651371
139 Q Yu, G Si, T Zong, J Mulder, L Duan (2019). High hydrogen sulfide emissions from subtropical forest soils based on field measurements in south China. Science of the Total Environment, 651(Pt 1): 1302–1309
https://doi.org/10.1016/j.scitotenv.2018.09.301 pmid: 30360262
140 X Z Yu, M R Lu, X H Zhang (2017). The role of iron plaque in transport and distribution of chromium by rice seedlings. Cereal Research Communications, 45(4): 598–609
https://doi.org/10.1556/0806.45.2017.040
141 P Zandi, J Yang, X Xia, Y Tian, Q Li, K Możdżeń, B Barabasz-Krasny, Y Wang (2020). Do sulfur addition and rhizoplane iron plaque affect chromium uptake by rice (Oryza sativa L.) seedlings in solution culture? Journal of Hazardous Materials, 388: 121803
https://doi.org/10.1016/j.jhazmat.2019.121803 pmid: 31836363
142 S Zecchin, M Colombo, L Cavalca (2019). Exposure to different arsenic species drives the establishment of iron- and sulfur-oxidizing bacteria on rice root iron plaques. World Journal of Microbiology & Biotechnology, 35(8): 117
https://doi.org/10.1007/s11274-019-2690-1 pmid: 31332532
143 J Zeleke, Q Sheng, J G Wang, M Y Huang, F Xia, J H Wu, Z X Quan (2013). Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments. Frontiers in Microbiology, 4: 243
https://doi.org/10.3389/fmicb.2013.00243 pmid: 23986751
144 C Zhang, Z G Yu, G M Zeng, M Jiang, Z Z Yang, F Cui, M Y Zhu, L Q Shen, L Hu (2014). Effects of sediment geochemical properties on heavy metal bioavailability. Environment International, 73: 270–281
https://doi.org/10.1016/j.envint.2014.08.010 pmid: 25173943
145 H Zhang, B Cui, R Xiao, H Zhao (2010). Heavy metals in water, soils and plants in riparian wetlands in the Pearl River Estuary, South China. Procedia Environmental Sciences, 2(5): 1344–1354
https://doi.org/10.1016/j.proenv.2010.10.145
146 L Zhang, Z Ni, Y Wu, C Zhao, S Liu, X Huang (2020). Concentrations of porewater heavy metals, their benthic fluxes and the potential ecological risks in Daya Bay, South China. Marine Pollution Bulletin, 150: 110808
https://doi.org/10.1016/j.marpolbul.2019.110808 pmid: 31910532
147 L Zhang, X Ye, H Feng, Y Jing, T Ouyang, X Yu, R Liang, C Gao, W Chen (2007). Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China. Marine Pollution Bulletin, 54(7): 974–982
https://doi.org/10.1016/j.marpolbul.2007.02.010 pmid: 17433373
148 M Zhang, P He, G Qiao, J Huang, X Yuan, Q Li (2019a). Heavy metal contamination assessment of surface sediments of the Subei Shoal, China: Spatial distribution, source apportionment and ecological risk. Chemosphere, 223: 211–222
https://doi.org/10.1016/j.chemosphere.2019.02.058 pmid: 30784728
149 Q Zhang, Z Yan, X Li (2021). Iron plaque formation and rhizosphere iron bacteria in Spartina alterniflora and Phragmites australis on the redoxcline of tidal flat in the Yangtze River Estuary. Geoderma, 392: 115000
https://doi.org/10.1016/j.geoderma.2021.115000
150 Y Zhang, D Wei, L Morrison, Z Ge, X Zhan, R Li (2019b). Nutrient removal through pyrrhotite autotrophic denitrification: Implications for eutrophication control. Science of the Total Environment, 662: 287–296
https://doi.org/10.1016/j.scitotenv.2019.01.230 pmid: 30690363
151 Y Zheng, N S Bu, X E Long, J Sun, C Q He, X Y Liu, J Cui, D X Liu, X P Chen (2017). Sulfate reducer and sulfur oxidizer respond differentially to the invasion of Spartina alterniflora in estuarine salt marsh of China. Ecological Engineering, 99: 182–190
https://doi.org/10.1016/j.ecoleng.2016.11.031
152 Y W Zhou, Y S Peng, X L Li, G Z Chen (2011). Accumulation and partitioning of heavy metals in mangrove rhizosphere sediments. Environmental Earth Sciences, 64(3): 799–807
https://doi.org/10.1007/s12665-011-0904-4
153 R Zou, L Wang, Y C Li, Z Tong, W Huo, K Chi, H Fan (2020). Cadmium absorption and translocation of amaranth (Amaranthus mangostanus L.) affected by iron deficiency. Environmental Pollution, 256: 113410
https://doi.org/10.1016/j.envpol.2019.113410 pmid: 31679873
[1] Yuchen Gao, Jianguo Jiang, Yuan Meng, Tongyao Ju, Siyu Han. Influence of H2S and NH3 on biogas dry reforming using Ni catalyst: a study on single and synergetic effect[J]. Front. Environ. Sci. Eng., 2023, 17(3): 32-.
[2] Qian Li, Zhaoping Zhong, Haoran Du, Xiang Zheng, Bo Zhang, Baosheng Jin. Co-pyrolysis of sludge and kaolin/zeolite in a rotary kiln: Analysis of stabilizing heavy metals[J]. Front. Environ. Sci. Eng., 2022, 16(7): 85-.
[3] Yanlin Li, Bo Wang, Lei Zhu, Yixing Yuan, Lujun Chen, Jun Ma. Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metal oxides[J]. Front. Environ. Sci. Eng., 2022, 16(6): 68-.
[4] Kehui Liu, Xiaojin Guan, Chunming Li, Keyi Zhao, Xiaohua Yang, Rongxin Fu, Yi Li, Fangming Yu. Global perspectives and future research directions for the phytoremediation of heavy metal-contaminated soil: A knowledge mapping analysis from 2001 to 2020[J]. Front. Environ. Sci. Eng., 2022, 16(6): 73-.
[5] Lihui Gao, Yijun Cao, Lizhang Wang, Shulei Li. A review on sustainable reuse applications of Fenton sludge during wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(6): 77-.
[6] Liang Cui, Ji Li, Xiangyun Gao, Biao Tian, Jiawen Zhang, Xiaonan Wang, Zhengtao Liu. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake[J]. Front. Environ. Sci. Eng., 2022, 16(4): 41-.
[7] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[8] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[9] Hefu Pu, Aamir Khan Mastoi, Xunlong Chen, Dingbao Song, Jinwei Qiu, Peng Yang. An integrated method for the rapid dewatering and solidification/stabilization of dredged contaminated sediment with a high water content[J]. Front. Environ. Sci. Eng., 2021, 15(4): 67-.
[10] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[11] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[12] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[13] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[14] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[15] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed