Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2010, Vol. 5 Issue (6) : 516-523    https://doi.org/10.1007/s11515-010-7700-5
REVIEW
Heme regulates protein homeostasis at transcription, protein translation, and degradation levels
Fang YANG, En-Duo WANG()
State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
 Download: PDF(187 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Heme, as a prosthetic group of proteins, is an iron-protoporphyrin involved in a wide range of cellular functions. Cellular heme levels vary due to the accurate balance of its synthesis and degradation. The “heme sensor protein” is currently a focus of investigation because heme has been found as a cellular signaling messenger involved in various biologic processes, including gene expression, protein localization, protein stability and microRNA processing. Several eukaryotic transcriptional factors can be regulated by heme, including heme activator protein (Hap1), Bach1, REV-erbα, and neuronal PAS domain protein 2 (NPAS2). Especially, the two circadian transcriptional factors serving as the heme sensor, REV-erbα and NPAS2, coordinate the circadian clock with metabolic pathways. It is well established that heme regulates the activity of heme-regulated eukaryotic initiation factor 2α (eIF2α) kinase (HRI), which serves as a feedback inhibitor of protein translation in both erythroid and non- erythroid cells. Additionally, heme is involved in protein degradation by inducing the degradation of several proteins such as the iron response regulator (Irr), iron regulatory protein 2 (IRP2), Bach1, and circadian factor period 2 (Per2). The N-end rule ubiquitin-dependent protein degradation pathway has also been identified as a sensor of heme, which blocks the function of arginyl-tRNA protein transferase (ATE1) and E3 ubiquitin ligase. In this review, we summarize the regulatory roles of heme at the levels of transcription, protein translation, and protein degradation, highlighting the role of heme in maintaining cellular homeostasis.

Keywords heme      transcription      protein translation      protein degradation     
Corresponding Author(s): WANG En-Duo,Email:edwang@sibs.ac.cn   
Issue Date: 01 December 2010
 Cite this article:   
En-Duo WANG,Fang YANG. Heme regulates protein homeostasis at transcription, protein translation, and degradation levels[J]. Front Biol, 2010, 5(6): 516-523.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-7700-5
https://academic.hep.com.cn/fib/EN/Y2010/V5/I6/516
Fig.1  Heme regulates gene transcription by binding to Rev-erbα. Heme-bound Rev-erbα can recruit corepressor NcoR-HDAC3 complex and then suppress the transcription of target genes, including Bmal1, PGC1-α and metabolic genes. PGC1-α: PPARγ coactivator-1 α.
Fig.1  Heme regulates gene transcription by binding to Rev-erbα. Heme-bound Rev-erbα can recruit corepressor NcoR-HDAC3 complex and then suppress the transcription of target genes, including Bmal1, PGC1-α and metabolic genes. PGC1-α: PPARγ coactivator-1 α.
Fig.2  Heme regulates protein translation by binding to HRI: two heme- binding site model. HRI monomer is synthesized with one heme molecule binding to the N-terminal domain stably. In heme deficiency, the kinase is activated by autophosphorylation. The active HRI phosphorylates eIF2α at Ser-51 and results in decreased protein translation. Under heme-abundant conditions, heme binds to the other binding site in kinase insertion domain and inhibits the kinase activity of HRI, allowing protein translation going on. HRI: heme-regulated eukaryotic initiation factor 2α (eIF2α) kinase.
Fig.2  Heme regulates protein translation by binding to HRI: two heme- binding site model. HRI monomer is synthesized with one heme molecule binding to the N-terminal domain stably. In heme deficiency, the kinase is activated by autophosphorylation. The active HRI phosphorylates eIF2α at Ser-51 and results in decreased protein translation. Under heme-abundant conditions, heme binds to the other binding site in kinase insertion domain and inhibits the kinase activity of HRI, allowing protein translation going on. HRI: heme-regulated eukaryotic initiation factor 2α (eIF2α) kinase.
Fig.3  A portion of N-end rule pathway. Hemin blocks the function of ATE1 and E3 ubiquitin ligase. ATE1: Arginyl-tRNA protein transferase; ArgRS: arginyl-tRNA synthetase.
Fig.3  A portion of N-end rule pathway. Hemin blocks the function of ATE1 and E3 ubiquitin ligase. ATE1: Arginyl-tRNA protein transferase; ArgRS: arginyl-tRNA synthetase.
1 Acharya P, Chen J J, Correia M A (2010). Hepatic heme-regulated inhibitor (HRI) eukaryotic initiation factor 2alpha kinase: a protagonist of heme-mediated translational control of CYP2B enzymes and a modulator of basal endoplasmic reticulum stress tone.Mol Pharmacol , 77(4): 575–592
doi: 10.1124/mol.109.061259 pmid:20071449
2 Becerra M, Lombardía-Ferreira L J, Hauser N C, Hoheisel J D, Tizon B, Cerdán M E (2002). The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions.Mol Microbiol , 43(3): 545–555
doi: 10.1046/j.1365-2958.2002.02724.x pmid:11929514
3 Brower C S, Varshavsky A, Hansen I A (2009). Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations.PLoS ONE , 4(11): e7757
doi: 10.1371/journal.pone.0007757 pmid:19915679
4 Chen J J (2000). In: Soneberg N, Hershey J W B, Mathews M B, eds. Translational Control of Gene Expression. NY: Cold Spring Harbor Laboratory Press, 529–546
5 Chen J J (2007). Regulation of protein synthesis by the heme-regulated eIF2α kinase: relevance to anemias. Blood , 109(7): 2693–2699
6 Chen J J, London I M (1995). Regulation of protein synthesis by heme-regulated eIF-2 alpha kinase.Trends Biochem Sci , 20(3): 105–108
doi: 10.1016/S0968-0004(00)88975-6 pmid:7709427
7 Dever T E (2002). Gene-specific regulation by general translation factors.Cell , 108(4): 545–556
doi: 10.1016/S0092-8674(02)00642-6 pmid:11909525
8 Dioum E M, Rutter J, Tuckerman J R, Gonzalez G, Gilles-Gonzalez M A, McKnight S L (2002). NPAS2: a gas-responsive transcription factor.Science , 298(5602): 2385–2387
doi: 10.1126/science.1078456 pmid:12446832
9 Dohi Y, Ikura T, Hoshikawa Y, Katoh Y, Ota K, Nakanome A, Muto A, Omura S, Ohta T, Ito A, Yoshida M, Noda T, Igarashi K (2008). Bach1 inhibits oxidative stress-induced cellular senescence by impeding p53 function on chromatin.Nat Struct Mol Biol , 15(12): 1246–1254
doi: 10.1038/nsmb.1516 pmid:19011633
10 Dunbar A Y, Kamada Y, Jenkins G J, Lowe E R, Billecke S S, Osawa Y (2004). Ubiquitination and degradation of neuronal nitric-oxide synthase in vitro: dimer stabilization protects the enzyme from proteolysis.Mol Pharmacol , 66(4): 964–969
doi: 10.1124/mol.104.000125 pmid:15235101
11 Etlinger J D, Goldberg A L (1980). Control of protein degradation in reticulocytes and reticulocyte extracts by hemin.J Biol Chem , 255(10): 4563–4568
pmid:7372594
12 Faller M, Matsunaga M, Yin S, Loo J A, Guo F (2007). Heme is involved in microRNA processing.Nat Struct Mol Biol , 14(1): 23–29
doi: 10.1038/nsmb1182 pmid:17159994
13 Furuyama K, Kaneko K, Vargas P D (2007). Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis.Tohoku J Exp Med , 213(1): 1–16
doi: 10.1620/tjem.213.1 pmid:17785948
14 Gattoni M, Boffi A, Sarti P, Chiancone E (1996). Stability of the heme-globin linkage in alphabeta dimers and isolated chains of human hemoglobin. A study of the heme transfer reaction from the immobilized proteins to albumin.J Biol Chem , 271(17): 10130–10136
pmid:8626572
15 Guillaumond F, Dardente H, Giguère V, Cermakian N (2005). Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors.J Biol Rhythms , 20(5): 391–403
doi: 10.1177/0748730405277232 pmid:16267379
16 Haas A L, Rose I A (1981). Hemin inhibits ATP-dependent ubiquitin-dependent proteolysis: role of hemin in regulating ubiquitin conjugate degradation.Proc Natl Acad Sci USA , 78(11): 6845–6848
doi: 10.1073/pnas.78.11.6845 pmid:6273891
17 Hamza I, Chauhan S, Hassett R, O’Brian M R (1998). The bacterial irr protein is required for coordination of heme biosynthesis with iron availability.J Biol Chem , 273(34): 21669–21674
doi: 10.1074/jbc.273.34.21669 pmid:9705301
18 Hentze M W, Muckenthaler M U, Andrews N C (2004). Balancing acts: molecular control of mammalian iron metabolism.Cell , 117(3): 285–297
doi: 10.1016/S0092-8674(04)00343-5 pmid:15109490
19 Hickman M J, Winston F (2007). Heme levels switch the function of Hap1 of Saccharomyces cerevisiae between transcriptional activator and transcriptional repressor.Mol Cell Biol , 27(21): 7414–7424
doi: 10.1128/MCB.00887-07 pmid:17785431
20 Hoffman A E, Zheng T, Ba Y, Zhu Y (2008). The circadian gene NPAS2, a putative tumor suppressor, is involved in DNA damage response.Mol Cancer Res , 6(9): 1461–1468
doi: 10.1158/1541-7786.MCR-07-2094 pmid:18819933
21 Hou S, Reynolds M F, Horrigan F T, Heinemann S H, Hoshi T (2006). Reversible binding of heme to proteins in cellular signal transduction.Acc Chem Res , 39(12): 918–924
doi: 10.1021/ar040020w pmid:17176030
22 Hu R G, Wang H, Xia Z, Varshavsky A (2008). The N-end rule pathway is a sensor of heme.Proc Natl Acad Sci USA , 105(1): 76–81
doi: 10.1073/pnas.0710568105 pmid:18162538
23 Igarashi J, Murase M, Iizuka A, Pichierri F, Martinkova M, Shimizu T (2008). Elucidation of the heme binding site of heme-regulated eukaryotic initiation factor 2alpha kinase and the role of the regulatory motif in heme sensing by spectroscopic and catalytic studies of mutant proteins.J Biol Chem , 283(27): 18782–18791
doi: 10.1074/jbc.M801400200 pmid:18450746
24 Igarashi J, Sato A, Kitagawa T, Yoshimura T, Yamauchi S, Sagami I, Shimizu T (2004). Activation of heme-regulated eukaryotic initiation factor 2alpha kinase by nitric oxide is induced by the formation of a five-coordinate NO-heme complex: optical absorption, electron spin resonance, and resonance raman spectral studies.J Biol Chem , 279(16): 15752–15762
doi: 10.1074/jbc.M310273200 pmid:14752110
25 Inuzuka T, Yun B G, Ishikawa H, Takahashi S, Hori H, Matts R L, Ishimori K, Morishima I (2004). Identification of crucial histidines for heme binding in the N-terminal domain of the heme-regulated eIF2alpha kinase.J Biol Chem , 279(8): 6778–6782
doi: 10.1074/jbc.C300464200 pmid:14672943
26 Ishikawa H, Kato M, Hori H, Ishimori K, Kirisako T, Tokunaga F, Iwai K (2005). Involvement of heme regulatory motif in heme-mediated ubiquitination and degradation of IRP2.Mol Cell , 19(2): 171–181
doi: 10.1016/j.molcel.2005.05.027 pmid:16039587
27 Kaasik K, Lee C C (2004). Reciprocal regulation of haem biosynthesis and the circadian clock in mammals.Nature , 430(6998): 467–471
doi: 10.1038/nature02724 pmid:15269772
28 Kim Y M, Son K, Hong S J, Green A, Chen J J, Tzeng E, Hierholzer C, Billiar T R (1998). Inhibition of protein synthesis by nitric oxide correlates with cytostatic activity: nitric oxide induces phosphorylation of initiation factor eIF-2 alpha.Mol Med , 4(3): 179–190
pmid:9562976
29 Kurosaka S, Leu N A, Zhang F, Bunte R, Saha S, Wang J, Guo C, He W, Kashina A, Bronner-Fraser M (2010). Arginylation-dependent neural crest cell migration is essential for mouse development.PLoS Genet , 6(3): e1000878
doi: 10.1371/journal.pgen.1000878 pmid:20300656
30 Kwon Y T, Kashina A S, Davydov I V, Hu R G, An J Y, Seo J W, Du F, Varshavsky A (2002). An essential role of N-terminal arginylation in cardiovascular development.Science , 297(5578): 96–99
doi: 10.1126/science.1069531 pmid:12098698
31 Lamas S, Lowenstein C J, Michel T (2007). Nitric oxide signaling comes of age: 20 years and thriving.Cardiovasc Res , 75(2): 207–209
doi: 10.1016/j.cardiores.2007.05.023 pmid:17574221
32 Lan C, Lee H C, Tang S, Zhang L (2004). A novel mode of chaperone action: heme activation of Hap1 by enhanced association of Hsp90 with the repressed Hsp70-Hap1 complex.J Biol Chem , 279(26): 27607–27612
doi: 10.1074/jbc.M402777200 pmid:15102838
33 Lee K S, Raymond L D, Schoen B, Raymond G J, Kett L, Moore R A, Johnson L M, Taubner L, Speare J O, Onwubiko H A, Baron G S, Caughey W S, Caughey B (2007). Hemin interactions and alterations of the subcellular localization of prion protein.J Biol Chem , 282(50): 36525–36533
doi: 10.1074/jbc.M705620200 pmid:17925394
34 Leu N A, Kurosaka S, Kashina A, Bergmann A (2009). Conditional Tek promoter-driven deletion of arginyltransferase in the germ line causes defects in gametogenesis and early embryonic lethality in mice.PLoS ONE , 4(11): e7734
doi: 10.1371/journal.pone.0007734 pmid: PMID:19890395
35 Levicán G, Katz A, de Armas M, Nú?ez H, Orellana O (2007). Regulation of a glutamyl-tRNA synthetase by the heme status.Proc Natl Acad Sci USA , 104(9): 3135–3140
doi: 10.1073/pnas.0611611104 pmid: PMID:17360620
36 Liao M, Pabarcus M K, Wang Y, Hefner C, Maltby D A, Medzihradszky K F, Salas-Castillo S P, Yan J, Maher J J, Correia M A (2007). Impaired dexamethasone-mediated induction of tryptophan 2,3-dioxygenase in heme-deficient rat hepatocytes: translational control by a hepatic eIF2alpha kinase, the heme-regulated inhibitor.J Pharmacol Exp Ther , 323(3): 979–989
doi: 10.1124/jpet.107.124602 pmid:17761498
37 Lim E J, Joung Y H, Jung S M, Park S H, Park J H, Kim S Y, Hwang T S, Hong D Y, Chung S C, Ye S K, Moon E S, Park E U, Park T, Chung I M, Yang Y M (2010). Hemin inhibits cyclin D1 and IGF-1 expression via STAT5b under hypoxia in ERalpha-negative MDA-MB 231 breast cancer cells.Int J Oncol , 36(5): 1243–1251
pmid:20372799
38 Mense S M, Zhang L (2006). Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases.Cell Res , 16(8): 681–692
doi: 10.1038/sj.cr.7310086 pmid:16894358
39 Meyron-Holtz E G, Ghosh M C, Rouault T A (2004). Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo.Science , 306(5704): 2087–2090
doi: 10.1126/science.1103786 pmid:15604406
40 Monson E K, Weinstein M, Ditta G S, Helinski D R (1992). The FixL protein of Rhizobium meliloti can be separated into a heme-binding oxygen-sensing domain and a functional C-terminal kinase domain.Proc Natl Acad Sci USA , 89(10): 4280–4284
doi: 10.1073/pnas.89.10.4280 pmid:1584762
41 Ogawa K, Sun J, Taketani S, Nakajima O, Nishitani C, Sassa S, Hayashi N, Yamamoto M, Shibahara S, Fujita H, Igarashi K (2001). Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1.EMBO J , 20(11): 2835–2843
doi: 10.1093/emboj/20.11.2835 pmid:11387216
42 Oglesby-Sherrouse A G, Vasil M L, Rénia L (2010). Characterization of a heme-regulated non-coding RNA encoded by the prrF locus of Pseudomonas aeruginosa.PLoS ONE , 5(4): e9930
doi: 10.1371/journal.pone.0009930 pmid:20386693
43 Qi Z, Hamza I, O’Brian M R (1999). Heme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (Irr) protein.Proc Natl Acad Sci USA , 96(23): 13056–13061
doi: 10.1073/pnas.96.23.13056 pmid:10557272
44 Rafie-Kolpin M, Chefalo P J, Hussain Z, Hahn J, Uma S, Matts R L, Chen J J (2000). Two heme-binding domains of heme-regulated eukaryotic initiation factor-2alpha kinase. N terminus and kinase insertion.J Biol Chem , 275(7): 5171–5178
doi: 10.1074/jbc.275.7.5171 pmid:10671563
45 Raghuram S, Stayrook K R, Huang P, Rogers P M, Nosie A K, McClure D B, Burris L L, Khorasanizadeh S, Burris T P, Rastinejad F (2007). Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta.Nat Struct Mol Biol , 14(12): 1207–1213
doi: 10.1038/nsmb1344 pmid:18037887
46 Reichard J F, Sartor M A, Puga A (2008). BACH1 is a specific repressor of HMOX1 that is inactivated by arsenite.J Biol Chem , 283(33): 22363–22370
doi: 10.1074/jbc.M801784200 pmid:18550526
47 Ripperger J A (2006). Mapping of binding regions for the circadian regulators BMAL1 and CLOCK within the mouse Rev-erbalpha gene.Chronobiol Int , 23(1-2): 135–142
doi: 10.1080/07420520500464411 pmid:16687287
48 Salahudeen A A, Thompson J W, Ruiz J C, Ma H W, Kinch L N, Li Q, Grishin N V, Bruick R K (2009). An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis.Science , 326(5953): 722–726
doi: 10.1126/science.1176326 pmid:19762597
49 Severance S, Hamza I (2009). Trafficking of heme and porphyrins in metazoa.Chem Rev , 109(10): 4596–4616
doi: 10.1021/cr9001116 pmid:19764719
50 Severance S, Rajagopal A, Rao A U, Cerqueira G C, Mitreva M, El-Sayed N M, Krause M, Hamza I, Chisholm A D (2010). Genome-wide analysis reveals novel genes essential for heme homeostasis in Caenorhabditis elegans.PLoS Genet , 6(7): e1001044
doi: 10.1371/journal.pgen.1001044 pmid:20686661
51 Sun J, Hoshino H, Takaku K, Nakajima O, Muto A, Suzuki H, Tashiro S, Takahashi S, Shibahara S, Alam J, Taketo M M, Yamamoto M, Igarashi K (2002). Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene.EMBO J , 21(19): 5216–5224
doi: 10.1093/emboj/cdf516 pmid:12356737
52 Suzuki H, Tashiro S, Hira S, Sun J, Yamazaki C, Zenke Y, Ikeda-Saito M, Yoshida M, Igarashi K (2004). Heme regulates gene expression by triggering Crm1-dependent nuclear export of Bach1.EMBO J , 23(13): 2544–2553
doi: 10.1038/sj.emboj.7600248 pmid:15175654
53 Tsai A (1994). How does NO activate hemeproteins?FEBS Lett , 341(2-3): 141–145
doi: 10.1016/0014-5793(94)80445-1 pmid:8137931
54 Uma S, Yun B G, Matts R L (2001). The heme-regulated eukaryotic initiation factor 2alpha kinase. A potential regulatory target for control of protein synthesis by diffusible gases.J Biol Chem , 276(18): 14875–14883
doi: 10.1074/jbc.M011476200 pmid:11278914
55 Varshavsky A (1996). The N-end rule: functions, mysteries, uses.Proc Natl Acad Sci USA , 93(22): 12142–12149
doi: 10.1073/pnas.93.22.12142 pmid:8901547
56 Vierstra R D, Sullivan M L (1988). Hemin inhibits ubiquitin-dependent proteolysis in both a higher plant and yeast.Biochemistry , 27(9): 3290–3295
doi: 10.1021/bi00409a025 pmid:2839230
57 Wakasugi K (2007). Human tryptophanyl-tRNA synthetase binds with heme to enhance its aminoacylation activity.Biochemistry , 46(40): 11291–11298
doi: 10.1021/bi7012068 pmid:17877375
58 Wehner K A, Schütz S, Sarnow P (2010). OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress.Mol Cell Biol , 30(8): 2006–2016
doi: 10.1128/MCB.01350-09 pmid:20154146
59 Wu N, Yin L, Hanniman E A, Joshi S, Lazar M A (2009). Negative feedback maintenance of heme homeostasis by its receptor, Rev-erbalpha.Genes Dev , 23(18): 2201–2209
doi: 10.1101/gad.1825809 pmid:19710360
60 Yang F, Xia X, Lei H Y, Wang E D (2010). Hemin binds to human cytoplasmic arginyl-tRNA synthetase and inhibits its catalytic activity.J Biol Chem ,
doi: 10.1074/jbc.M110.159913 (in press)
doi: 10.1074/jbc.M110.159913
61 Yang J, Ishimori K, O’Brian M R (2005). Two heme binding sites are involved in the regulated degradation of the bacterial iron response regulator (Irr) protein.J Biol Chem , 280(9): 7671–7676
doi: 10.1074/jbc.M411664200 pmid:15613477
62 Yang J, Kim K D, Lucas A, Drahos K E, Santos C S, Mury S P, Capelluto D G, Finkielstein C V (2008). A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2.Mol Cell Biol , 28(15): 4697–4711
doi: 10.1128/MCB.00236-08 pmid:18505821
63 Yang J, Panek H R, O’Brian M R (2006). Oxidative stress promotes degradation of the Irr protein to regulate haem biosynthesis in Bradyrhizobium japonicum.Mol Microbiol , 60(1): 209–218
doi: 10.1111/j.1365-2958.2006.05087.x pmid:16556232
64 Yin L, Wu N, Curtin J C, Qatanani M, Szwergold N R, Reid R A, Waitt G M, Parks D J, Pearce K H, Wisely G B, Lazar M A (2007). Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways.Science , 318(5857): 1786–1789
doi: 10.1126/science.1150179 pmid:18006707
65 Yin L, Wu N, Lazar M A (2010). Nuclear receptor Rev-erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. Nucl Recept Signal , 8: e001
66 Zenke-Kawasaki Y, Dohi Y, Katoh Y, Ikura T, Ikura M, Asahara T, Tokunaga F, Iwai K, Igarashi K (2007). Heme induces ubiquitination and degradation of the transcription factor Bach1.Mol Cell Biol , 27(19): 6962–6971
doi: 10.1128/MCB.02415-06 pmid:17682061
67 Zhang L, Guarente L (1995). Heme binds to a short sequence that serves a regulatory function in diverse proteins.EMBO J , 14(2): 313–320
pmid:7835342
68 Zhang L, Hach A (1999). Molecular mechanism of heme signaling in yeast: the transcriptional activator Hap1 serves as the key mediator.Cell Mol Life Sci , 56(5-6): 415–426
doi: 10.1007/s000180050442 pmid:11212295
[1] Johanna Morrow, Kyle T. Willenburg, Emmanuel Liscum. Phototropism in land plants: Molecules and mechanism from light perception to response[J]. Front. Biol., 2018, 13(5): 342-357.
[2] D. Brooke Widner, D. Clark Files, Kathryn E. Weaver, Yusuke Shiozawa. Preclinical and clinical studies on cancer-associated cachexia[J]. Front. Biol., 2018, 13(1): 11-18.
[3] Yujie Deng, Caixia Lin, Huanjiao Jenny Zhou, Wang Min. Smooth muscle cell differentiation: Mechanisms and models for vascular diseases[J]. Front. Biol., 2017, 12(6): 392-405.
[4] Jian Li,Chun Guo,Nickolas Steinauer,Jinsong Zhang. New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins[J]. Front. Biol., 2016, 11(4): 285-304.
[5] Pijush Basak,Tanay Debnath,Rajat Banerjee,Maitree Bhattacharyya. Selective binding of divalent cations toward heme proteins[J]. Front. Biol., 2016, 11(1): 32-42.
[6] Meng WANG,Kasturi BANERJEE,Harriet BAKER,John W. CAVE. Nucleotide sequence conservation of novel and established cis-regulatory sites within the tyrosine hydroxylase gene promoter[J]. Front. Biol., 2015, 10(1): 74-90.
[7] Rebecca M. FOX,Deborah J. ANDREW. Transcriptional regulation of secretory capacity by bZip transcription factors[J]. Front. Biol., 2015, 10(1): 28-51.
[8] Nidhi VISHNOI,Jie YAO. Gene positioning and genome function[J]. Front. Biol., 2014, 9(4): 255-268.
[9] Vipul SHUKLA,Runqing LU. IRF4 and IRF8: governing the virtues of B lymphocytes[J]. Front. Biol., 2014, 9(4): 269-282.
[10] Yaojuan LU,Longwei QIAO,Guanghua LEI,Ranim R. MIRA,Junxia GU,Qiping ZHENG. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease[J]. Front. Biol., 2014, 9(3): 195-204.
[11] Yunsong LAI, Huanxiu LI, Masumi YAMAGISHI. A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity[J]. Front Biol, 2013, 8(6): 577-598.
[12] P. Shannon PENDERGRAST, Tom VOLPE. MicroRNA rules: Made to be broken[J]. Front Biol, 2013, 8(5): 468-474.
[13] Li FAN. How two helicases work together within the TFIIH complex, a perspective from structural studies of XPB and XPD helicases[J]. Front Biol, 2013, 8(4): 363-368.
[14] Iouri CHEPELEV, Xin CHEN. Alternative splicing switching in stem cell lineages[J]. Front Biol, 2013, 8(1): 50-59.
[15] Kazuhiro TANAKA, Nikhat J. SIDDIQI, Abdullah S. ALHOMIDA, Akhlaq A. FAROOQUI, Wei-Yi ONG. Differential regulation of cPLA2 and iPLA2 expression in the brain[J]. Front Biol, 2012, 7(6): 514-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed