Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2016, Vol. 11 Issue (2) : 279-289    https://doi.org/10.1007/s11464-016-0530-2
RESEARCH ARTICLE
Minimum distances of three families of low-density parity-check codes based on finite geometries
Yanan FENG1,Shuo DENG2,Lu WANG3,Changli MA1,*()
1. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China
2. School of Mathematics and Science, Shijiazhuang University of Economics, Shijiazhuang 050031, China
3. Department of Mathematics and Computer Science, Hengshui University, Hengshui 053000, China
 Download: PDF(130 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Three families of low-density parity-check (LDPC) codes are constructed based on the totally isotropic subspaces of symplectic, unitary, and orthogonal spaces over finite fields, respectively. The minimum distances of the three families of LDPC codes in some special cases are settled.

Keywords low-density parity-check (LDPC) code      minimum distance      symplectic      unitary      orthogonal     
Corresponding Author(s): Changli MA   
Issue Date: 18 April 2016
 Cite this article:   
Yanan FENG,Shuo DENG,Lu WANG, et al. Minimum distances of three families of low-density parity-check codes based on finite geometries[J]. Front. Math. China, 2016, 11(2): 279-289.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-016-0530-2
https://academic.hep.com.cn/fmc/EN/Y2016/V11/I2/279
1 Aly S A. A class of quantum LDPC codes constructed from finite geometries. Global Telecomm Conf, 2008, 1–5
https://doi.org/10.1109/glocom.2008.ecp.217
2 Gallager R G. Low density parity check codes. IRE Trans Inform Theory, 1962, 8: 21–28
https://doi.org/10.1109/TIT.1962.1057683
3 Keha A B, Duman T M. Minimum distance computation of LDPC codes using a branch and cut algorithm. IEEE Trans Commun, 2010, 58: 1072–1079
https://doi.org/10.1109/TCOMM.2010.04.090164
4 Kim J L, Mellinger K E, Storme L. Small weight codewords in LDPC codes defined by (dual) classical generalized quadrangles. Des Codes Cryptogr, 2007, 42: 73–92
https://doi.org/10.1007/s10623-006-9017-6
5 Kim J L, Peled U N, Perepelitsa I, Pless V, Friedland S. Explicit construction of families of LDPC codes with no 4-cycles. IEEE Trans Inform Theory, 2004, 50: 2378–2388
https://doi.org/10.1109/TIT.2004.834760
6 Kou Y, Lin S, Fossorier M.P. Low-density parity-check codes based on finite geometries: a rediscovery and new results. IEEE Trans Inform Theory, 2001, 47: 2711–2736
https://doi.org/10.1109/18.959255
7 Liu L, Huang J, Zhou W, Zhou S. Computing the minimum distance of nonbinary LDPC codes. IEEE Trans Commun, 2012, 60: 1753–1758
https://doi.org/10.1109/TCOMM.2012.050812.110073A
8 Liva G, Song S, Lan L, Zhang Y, Ryan W, Lin S, Ryan W E. Design of LDPC codes: a survey and new results. J Commun Softw Syst, 2006, 2: 191–211
9 Sin P, Xiang Q. On the dimensions of certain LDPC codes based on q-regular bipartite graphs. IEEE Trans Inform Theory, 2006, 52: 3735–3737
https://doi.org/10.1109/TIT.2006.878231
10 Wan Z. Geometry of Classical Groups over Finite Fields. Beijing: Science Press, 2002
11 Yang K, Helleseth T. On the minimum distance of array codes as LDPC codes. IEEE Trans Inform Theory, 2003, 49: 3268–3271
https://doi.org/10.1109/TIT.2003.820053
[1] Shiyun WEN, Jun MA. Number of fixed points for unitary Tn−1-manifold[J]. Front. Math. China, 2019, 14(4): 819-831.
[2] Hai-Long HER. Contact-pair neighborhood theorem for submanifolds in symplectic pairs[J]. Front. Math. China, 2019, 14(4): 781-791.
[3] Jiashun HU, Xiang MA, Chunxiong ZHENG. Global geometrical optics method for vector-valued Schrödinger problems[J]. Front. Math. China, 2018, 13(3): 579-606.
[4] Yuting ZHOU, Li WU, Chaofeng ZHU. Hörmander index in finite-dimensional case[J]. Front. Math. China, 2018, 13(3): 725-761.
[5] Lei CHEN, Shaochen WANG. Asymptotic behavior for log-determinants of several non-Hermitian rand om matrices[J]. Front. Math. China, 2017, 12(4): 805-819.
[6] Wenfeng JIANG. Analysis and geometry of Floer theory of Landau-Ginzburg model on n[J]. Front. Math. China, 2016, 11(6): 1569-1602.
[7] Qiang TAN,Haifeng XU. Lefschetz decomposition for de Rham cohomology on weakly Lefschetz symplectic manifolds[J]. Front. Math. China, 2015, 10(5): 1169-1178.
[8] Jing AN,Zhendong LUO,Hong LI,Ping SUN. Reduced-order extrapolation spectral-finite difference scheme based on POD method and error estimation for three-dimensional parabolic equation[J]. Front. Math. China, 2015, 10(5): 1025-1040.
[9] Guangzhou CHEN,Kejun CHEN,Yong ZHANG. Super-simple (5, 4)-GDDs of group type gu[J]. Front. Math. China, 2014, 9(5): 1001-1018.
[10] Lijun HUO,Wenbin GUO,Gengsheng ZHANG. Automorphisms of generalized orthogonal graphs of characteristic 2[J]. Front. Math. China, 2014, 9(2): 303-319.
[11] Yihua LIAO, Jianlong CHEN. Approximations and cotorsion pairs related to a tilting pair[J]. Front Math Chin, 2013, 8(6): 1367-1376.
[12] Yan LIU, Dianhua WU. Constructions of optimal variable-weight OOCs via quadratic residues[J]. Front Math Chin, 2013, 8(4): 869-890.
[13] Mingjing ZHANG. Theta-lifting and geometric quantization for GL(n, ?)[J]. Front Math Chin, 2012, 7(4): 785-793.
[14] Melvin LEOK, Tatiana SHINGEL. General techniques for constructing variational integrators[J]. Front Math Chin, 2012, 7(2): 273-303.
[15] Yuanzhen HE, Mingyao AI. A new class of Latin hypercube designs with high-dimensional hidden projective uniformity[J]. Front Math Chin, 2011, 6(6): 1085-1093.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed