Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2018, Vol. 13 Issue (4) : 893-911    https://doi.org/10.1007/s11464-018-0695-y
RESEARCH ARTICLE
Generalized inverses of tensors via a general product of tensors
Lizhu SUN1, Baodong ZHENG2, Yimin WEI3, Changjiang BU1()
1. College of Science, Harbin Engineering University, Harbin 150001, China
2. School of Science, Harbin Institute of Technology, Harbin 150001, China
3. School of Mathematical Sciences, Shanghai Key Laboratory of Contemporary Applied Mathematics, Fudan University, Shanghai 200433, China
 Download: PDF(308 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We define the {i}-inverse (i = 1; 2; 5) and group inverse of tensors based on a general product of tensors. We explore properties of the generalized inverses of tensors on solving tensor equations and computing formulas of block tensors. We use the {1}-inverse of tensors to give the solutions of a multilinear system represented by tensors. The representations for the {1}-inverse and group inverse of some block tensors are established.

Keywords Tensor      generalized inverse      tensor equation      general product of tensor     
Corresponding Author(s): Changjiang BU   
Issue Date: 14 August 2018
 Cite this article:   
Lizhu SUN,Baodong ZHENG,Yimin WEI, et al. Generalized inverses of tensors via a general product of tensors[J]. Front. Math. China, 2018, 13(4): 893-911.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-018-0695-y
https://academic.hep.com.cn/fmc/EN/Y2018/V13/I4/893
1 Behera R, Mishra D. Further results on generalized inverses of tensors via Einstein product. Linear Multilinear Algebra, 2017, 65(8): 1662–1682
2 Beltrán C, Shub M. On the geometry and topology of the solution variety for polynomial system solving. Found Comput Math, 2017, 12(6): 719–763
3 Ben-Isral A, Greville T N E. Generalized Inverse: Theory and Applications. New York: Wiley-Interscience, 1974
4 Brazell M, Li N, Navasca C, Tamon C. Solving multilinear systems via tensor inversion. SIAM J Matrix Anal Appl, 2013, 34(2): 542–570
5 Bu C, Wang W, Sun L, Zhou J. Minimum (maximum) rank of sign pattern tensors and sign nonsingular tensors. Linear Algebra Appl, 2015, 483: 101–114
6 Bu C, Wei Y P, Sun L, Zhou J. Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl, 2015, 480: 168–175
7 Bu C, Zhang X, Zhou J, Wang W, Wei Y. The inverse, rank and product of tensors. Linear Algebra Appl, 2014, 446: 269–280
8 Campbell S L. The Drazin inverse and systems of second order linear differential equations. Linear Multilinear Algebra, 1983, 14: 195–198
9 Campbell S L, Meyer C D. Generalized Inverses of Linear Transformations. London: Pitman, 1979
10 Chang K C, Pearson K, Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl, 2011, 32(3): 806–819
11 Che M, Bu C, Qi L, Wei Y. Nonnegative tensors revisited: plane stochastic tensors. Linear Multilinear Algebra,
https://doi.org/10.1080/03081087.2018.1453469
12 Chen J, Saad Y. On the tensor SVD and the optimal low rank orthogonal approximation of tensors. SIAM J Matrix Anal Appl, 2009, 30(4): 1709–1734
13 Chen Y, Qi L, Zhang X. The fielder vector of a Laplacian tensor for hypergraph partitioning. SIAM J Sci Comput, 2017, 39(6): A2508–A2537
14 Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436: 3268–3292
15 Ding W, Wei Y. Solving multi-linear systems with M-tensors. J Sci Comput, 2016, 68: 689–715
16 Fan Z, Deng C, Li H, Bu C. Tensor representations of quivers and hypermatrices. Preprint
17 Hartwig R E,Shoaf J M. Group inverse and Drazin inverse of bidiagonal and triangular Toeplitz matrices. Aust J Math, 1977, 24(A): 10–34
18 Hu S, Huang Z, Ling C, Qi L. On determinants and eigenvalue theory of tensors. J Symbolic Comput, 2013, 50: 508–531
19 Huang S, Zhao G, Chen M. Tensor extreme learning design via generalized Moore-Penrose inverse and triangular type-2 fuzzy sets. Neural Comput Appl,
https://doi.org/10.1007/s00521-018-3385-5
20 Hunter J J. Generalized inverses of Markovian kernels in terms of properties of the Markov chain. Linear Algebra Appl, 2014, 447: 38–55
21 Ji J,Wei Y. Weighted Moore-Penrose inverses and fundamental theorem of even-order tensors with Einstein product. Front Math China, 2017, 12(6): 1319–1337
22 Ji J, Wei Y. The Drazin inverse of an even-order tensor and its application to singular tensor equations. Comput Math Appl, 2018, 75: 3402–3413
23 Kirkland S J, Neumann M, Shader B L. On a bound on algebraic connectivity: the case of equality. Czechoslovak Math J, 1998, 48: 65–76
24 Kroonenberg P M. Applied Multiway Data Analysis. New York: Wiley-Interscience, 2008
https://doi.org/10.1002/9780470238004
25 Liu W, Li W. On the inverse of a tensor. Linear Algebra Appl, 2016, 495: 199–205
26 Lu H, Plataniotis K N, Venetsanopoulos A. Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data. New York: CRC Press, 2013
https://doi.org/10.1201/b16252
27 Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324
28 Qi L, Luo Z. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017
https://doi.org/10.1137/1.9781611974751
29 Shao J. A general product of tensors with applications. Linear Algebra Appl, 2013, 439: 2350–2366
30 Shao J, You L. On some properties of three different types of triangular blocked tensors. Linear Algebra Appl, 2016, 511: 110–140
31 Sidiropoulos N D, Lathauwer L D, Fu X, Huang K, Papalexakis E E, Faloutsos C. Tensor decomposition for signal processing and machine learning. IEEE Trans Signal Process, 2017, 65(13): 3551–3582
32 Sun L, Wang W, Zhou J,Bu C. Some results on resistance distances and resistance matrices. Linear Multilinear Algebra, 2015, 63(3): 523–533
33 Sun L, Zheng B, Bu C, Wei Y. Moore-Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra, 2016, 64(4): 686–698
34 Wei Y. Generalized inverses of matrices. In: Hogben L, ed. Handbook of Linear Algebra. 2nd ed. Boca Raton: Chapman and Hall/CRC, 2014, Chapter 27
[1] Saeed RAHMATI, Mohamed A. TAWHID. On intervals and sets of hypermatrices (tensors)[J]. Front. Math. China, 2020, 15(6): 1175-1188.
[2] Mengyan XIE, Qing-Wen WANG. Reducible solution to a quaternion tensor equation[J]. Front. Math. China, 2020, 15(5): 1047-1070.
[3] Yizheng FAN, Zhu ZHU, Yi WANG. Least H-eigenvalue of adjacency tensor of hypergraphs with cut vertices[J]. Front. Math. China, 2020, 15(3): 451-465.
[4] Hongmei YAO, Li MA, Chunmeng LIU, Changjiang BU. Brualdi-type inclusion sets of Z-eigenvalues and lk,s-singular values for tensors[J]. Front. Math. China, 2020, 15(3): 601-612.
[5] Gang WANG, Yuan ZHANG, YijuWANG WANG. Brauer-type bounds for Hadamard product of nonnegative tensors[J]. Front. Math. China, 2020, 15(3): 555-570.
[6] Ziyan LUO, Liqun QI, Philippe L. TOINT. Tensor Bernstein concentration inequalities with an application to sample estimators for high-order moments[J]. Front. Math. China, 2020, 15(2): 367-384.
[7] Haibin CHEN, Yiju WANG, Guanglu ZHOU. High-order sum-of-squares structured tensors: theory and applications[J]. Front. Math. China, 2020, 15(2): 255-284.
[8] Lihua YOU, Xiaohua HUANG, Xiying YUAN. Sharp bounds for spectral radius of nonnegative weakly irreducible tensors[J]. Front. Math. China, 2019, 14(5): 989-1015.
[9] Qingzhi YANG, Yiyong LI. Standard tensor and its applications in problem of singular values of tensors[J]. Front. Math. China, 2019, 14(5): 967-987.
[10] Dong LIU, Xiufu ZHANG. Tensor product weight modules of Schrödinger-Virasoro algebras[J]. Front. Math. China, 2019, 14(2): 381-393.
[11] Lubin Cui, Minghui Li. Jordan canonical form of three-way tensor with multilinear rank (4,4,3)[J]. Front. Math. China, 2019, 14(2): 281-300.
[12] Guimei ZHANG, Shenglong HU. Characteristic polynomial and higher order traces of third order three dimensional tensors[J]. Front. Math. China, 2019, 14(1): 225-237.
[13] Zonglin JI, Boling GUO. Landau-Lifshitz-Bloch equation on Riemannian manifold[J]. Front. Math. China, 2019, 14(1): 45-76.
[14] Jun HE, Yanmin LIU, Junkang TIAN, Xianghu LIU. Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs[J]. Front. Math. China, 2019, 14(1): 17-24.
[15] Yannan CHEN, Shenglong HU, Liqun QI, Wennan ZOU. Irreducible function bases of isotropic invariants of a third order three-dimensional symmetric and traceless tensor[J]. Front. Math. China, 2019, 14(1): 1-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed