Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

Postal Subscription Code 80-964

2018 Impact Factor: 0.565

Front. Math. China    2021, Vol. 16 Issue (4) : 1191-1210    https://doi.org/10.1007/s11464-021-0934-5
RESEARCH ARTICLE
Fixed points of smoothing transformation in random environment
Xiaoyue ZHANG1, Wenming HONG2()
1. School of Statistics, Capital University of Economics and Business, Beijing 100070, China
2. School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, China
 Download: PDF(314 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

At each time nN,letY¯(n)(ξ)=(y1(n)(ξ),y2(n)(ξ),) be a random sequence of non-negative numbers that are ultimately zero in a random environmentξ=ξnnN. The existence and uniqueness of the nonnegative fixed points of the associated smoothing transformation in random environment are considered. These fixed points are solutions to the distributional equation for a.e.ξ,Z(ξ)=di+yi(0)(ξ)Zi(1)(ξ),where Zi(1):i+ are random variables in random environment which satisfy that for any environmentξ; under Pξ; Zi(1):i+are independent of each other and Y(0)(ξ), and have the same conditional distribution Pξ(Zi(1)(ξ))=PTξ(Z(Tξ)) where T is the shift operator. This extends the classical results of J. D. Biggins [J. Appl. Probab., 1977, 14: 25-37] to the random environment case. As an application, the martingale convergence of the branching random walk in random environment is given as well.

Keywords Smoothing transformation      functional equation      branching random walk      random environment      martingales     
Corresponding Author(s): Wenming HONG   
Issue Date: 11 October 2021
 Cite this article:   
Xiaoyue ZHANG,Wenming HONG. Fixed points of smoothing transformation in random environment[J]. Front. Math. China, 2021, 16(4): 1191-1210.
 URL:  
https://academic.hep.com.cn/fmc/EN/10.1007/s11464-021-0934-5
https://academic.hep.com.cn/fmc/EN/Y2021/V16/I4/1191
1 G Alsmeyer, J D Biggins, M Meiners. The functional equation of the smoothing transform. Ann Probab, 2012, 40: 2069–2105
https://doi.org/10.1214/11-AOP670
2 J D Biggins. Martingale convergence in the branching random walk. J Appl Probab, 1977, 14: 25–37
https://doi.org/10.1017/S0021900200104644
3 J D Biggins, A E Kyprianou. Seneta-Heyde norming in the branching random walk. Ann Probab, 1997, 25: 337–360
https://doi.org/10.1214/aop/1024404291
4 J D Biggins, A E Kyprianou. Measure change in multitype branching. Adv in Appl Probab, 2004, 36: 544–581
https://doi.org/10.1017/S0001867800013604
5 J D Biggins, A E Kyprianou. Fixed points of the smoothing transform: the boundary case. Electron J Probab, 2005, 10: 609–631
https://doi.org/10.1214/EJP.v10-255
6 A Caliebe. Symmetric fixed points of a smoothing transformation. Adv in Appl Probab, 2003, 35: 377–394
https://doi.org/10.1017/S0001867800012301
7 A Caliebe, U Rösler. Fixed points with finite variance of a smoothing transform. Stochastic Process Appl, 2003, 107: 105–129
https://doi.org/10.1016/S0304-4149(03)00075-9
8 R A Doney. A limit theorem for a class of supercritical branching processes. J Appl Probab, 1972, 9: 707–724
https://doi.org/10.1017/S002190020003610X
9 R Durrett, M Liggett. Fixed points of the smoothing transform. Z Wahrsch Gebiete, 1983, 64: 275–301
https://doi.org/10.1007/BF00532962
10 A M Iksanov. Elementary fixed points of the BRW smoothing transforms with infinite number of summands. Stochastic Process Appl, 2004, 114: 27–50
https://doi.org/10.1016/j.spa.2004.06.002
11 A M Iksanov, Z J Jurek. On fixed points of Poisson shot noise transform. Adv in Appl Probab, 2002, 34: 798–825
https://doi.org/10.1017/S0001867800011927
12 D Kuhlbusch. On weighted branching processes in random environment. Stochastic Process Appl, 2004, 109: 113–144
https://doi.org/10.1016/j.spa.2003.09.004
13 Q S Liu. Fixed points of a generalized smoothing transformation and applications to the branching random walk. Adv in Appl Probab, 1998, 30: 85–112
https://doi.org/10.1017/S0001867800008090
14 Q S Liu. On generalized multiplicative cascades. Stochastic Process Appl, 2000, 86: 263–286
https://doi.org/10.1016/S0304-4149(99)00097-6
[1] Xiaofeng XUE, Yumeng SHEN. Large and moderate deviation principles for susceptible-infected-removed epidemic in a random environment[J]. Front. Math. China, 2021, 16(4): 1117-1161.
[2] Wanting HOU, Xiaoyue ZHANG, Wenming HONG. Extremum of a time-inhomogeneous branching random walk[J]. Front. Math. China, 2021, 16(2): 459-478.
[3] Xin WANG, Xingang LIANG, Chunmao HUANG. Convergence of complex martingale for a branching random walk in an independent and identically distributed environment[J]. Front. Math. China, 2021, 16(1): 187-209.
[4] Xiequan FAN, Haijuan HU, Quansheng LIU. Uniform Cramér moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment[J]. Front. Math. China, 2020, 15(5): 891-914.
[5] Jingning LIU, Mei ZHANG. Critical survival barrier for branching random walk[J]. Front. Math. China, 2019, 14(6): 1259-1280.
[6] Wenming HONG, Hui YANG. Scaling limit theorem for transient random walk in random environment[J]. Front. Math. China, 2018, 13(5): 1033-1044.
[7] Wenming HONG,Hui YANG,Ke ZHOU. Scaling limit of local time of Sinai’s random walk[J]. Front. Math. China, 2015, 10(6): 1313-1324.
[8] Fuqing GAO. Laws of iterated logarithm for transient random walks in random environments[J]. Front. Math. China, 2015, 10(4): 857-874.
[9] Chunmao HUANG,Xingang LIANG,Quansheng LIU. Branching random walks with random environments in time[J]. Front. Math. China, 2014, 9(4): 835-842.
[10] Zhen-Qing CHEN,Wai-Tong(Louis) FAN. Scaling limits of interacting diffusions in domains[J]. Front. Math. China, 2014, 9(4): 717-736.
[11] Yingqiu LI,Quansheng LIU,Zhiqiang GAO,Hesong WANG. Asymptotic properties of supercritical branching processes in random environments[J]. Front. Math. China, 2014, 9(4): 737-751.
[12] Marek KOLK, Arvet PEDAS. Numerical solution of Volterra integral equations with singularities[J]. Front Math Chin, 2013, 8(2): 239-259.
[13] Zhichao SHAN, Dayue CHEN. Voter model in a random environment in ?d[J]. Front Math Chin, 2012, 7(5): 895-905.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed