Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2022, Vol. 16 Issue (4) : 551-573    https://doi.org/10.1007/s11684-022-0928-z
REVIEW
Bone metastasis of hepatocellular carcinoma: facts and hopes from clinical and translational perspectives
Zhao Huang1,2,3, Jingyuan Wen1,2,3, Yufei Wang1,2,3, Shenqi Han1,2,3, Zhen Li4, Xuemei Hu4, Dongling Zhu5, Zhenxiong Wang6, Junnan Liang1,2,3, Huifang Liang1,2,3, Xiao-ping Chen1,2,3,7(), Bixiang Zhang1,2,3,7()
1. Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
2. Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China
3. Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
4. Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
5. Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
6. Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
7. Key Laboratory of Organ Transplantation, Ministry of Education; Key Laboratory of Organ Transplantation, National Health Commission; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
 Download: PDF(5180 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Patients with hepatocellular carcinoma (HCC) and bone metastasis (BM) suffer from greatly reduced life quality and a dismal prognosis. However, BM in HCC has long been overlooked possibly due to its relatively low prevalence in previous decades. To date, no consensus or guidelines have been reached or formulated for the prevention and management of HCC BM. Our narrative review manifests the increasing incidence of HCC BM to sound the alarm for additional attention. The risk factors, diagnosis, prognosis, and therapeutic approaches of HCC BM are detailed to provide a panoramic view of this disease to clinicians and specialists. We further delineate an informative cancer bone metastatic cascade based on evidence from recent studies and point out the main factors responsible for the tumor-associated disruption of bone homeostasis and the formation of skeletal cancer lesions. We also present the advances in the pathological and molecular mechanisms of HCC BM to shed light on translational opportunities. Dilemmas and challenges in the treatment and investigation of HCC BM are outlined and discussed to encourage further endeavors in the exploration of underlying pathogenic and molecular mechanisms, as well as the development of novel effective therapies for HCC patients with BM.

Keywords HCC      bone      osteotropism      clinical      basic researches      advances     
Corresponding Author(s): Xiao-ping Chen,Bixiang Zhang   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Just Accepted Date: 19 May 2022   Online First Date: 20 July 2022    Issue Date: 02 September 2022
 Cite this article:   
Zhao Huang,Jingyuan Wen,Yufei Wang, et al. Bone metastasis of hepatocellular carcinoma: facts and hopes from clinical and translational perspectives[J]. Front. Med., 2022, 16(4): 551-573.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-022-0928-z
https://academic.hep.com.cn/fmd/EN/Y2022/V16/I4/551
Period Center Diagnostic approaches Incidence of BM Rate of BM in EhMs
1962–1981 [16] Single Autopsy 16.10% (14/87) N.A.
1969–1978 [9] Single Autopsy 5.33% (12/225) 8.33% (12/144)
1969–1983 [4] Single Autopsy N.A. 20%
1978–1987 [11] Single BS, radiography, CT, and/or MRI 4.46% (12/269) N.A.
1983–1987 [10] Single Plain films, bone scans, or CT 5.06% (20/395) N.A.
1988–1997 [11] Single BS, radiography, CT, and/or MRI 12.87% (52/404) N.A.
1988–2012 [4] Single Autopsy N.A. 32.1%
1990–2005 [17] Single CT, MRI, BS, and/or PET with FDG 5.63% (56/995) 37.09% (56/151)
1990–2006 [18] Single Bone X-ray, BS, and CT or MRI 3.65% (87/2386) 25.44% (87/342)
1992–1997 [19] Single CT 10.17% (41/403) 27.70% (41/148)
2002–2014 [15] Single At least one imaging modality 23.59% (151/640) 32.90% (151/459)
2005–2015 [20] Single Symptoms, and CT or MRI 1.97% (20/1017) N.A.
2006–2009 [21] Single PET/CT N.A. 19.07% (49/257)
2009–2016 [5] Single Radiological images or pathological findings 9.71% (76/783) N.A.
2010–2013 [12] Multiple Unknown N.A. 22.93% (1008/4396)
2010–2014 [22] Multiple Unknown 4.29% (1567/36 507) N.A.
2010–2015 [13] Multiple Unknown N.A. 32.47% (1015/3126)
Tab.1  Reported incidences of HCC BM in various patient cohorts
Fig.1  Imaging techniques for the diagnosis of HCC BM. (A) X-ray images of metastatic HCC lesions in the right humerus (left image) and in the L1 vertebral body (right image). (B) Anterior and posterior positions of BS for a patient with multiple BM (left panel) and a patient with a bone lesion in the right scapula (right panel). (C) MRI of skeletal HCC lesions in the L1 vertebral body (upper row) and L3 vertebral body (lower row). (D) CT scans of BM in the right humerus (upper row) and the spine (lower row). (E) Whole-body 18F-FDG PET/CT images of BM in the fifth right rib (left panel) and right ilium (right panel). Arrows point to metastatic HCC bone lesions. Abbreviations: CT, computed tomography; BS, bone scintigraphy; MRI, magnetic resonance imaging; PET, positron emission tomography; BM, bone metastasis; LT, left; RT, right; AP, anteroposterior; TS, transverse section; T1WI, T1 weighted image; T2WI, T2 weighted image; STIR, short time inversion recovery; MIP, maximum intensity projection.
Period Treatment Prognosis   Independent risk factors
1978–1987 [11] RT, surgery, ethanol injection, and supportive care Median OS: 170 days   –
1981–1997 [48] Palliative RT Median OS from the diagnosis of spinal metastasis: 3 months   Responssive RT (complete   response, partial response)   and good performance   status (score < 2)
1988–1997 [11] RT, surgery, ethanol injection, and supportive care Median OS: 227 days   –
1991–2000 [25] RT OS rates at 1 and 2 years of 50% and 20%, respectively, with a median OS of 12 months from the time of HCC diagnosis; OS rates from the occurrence of BM at 1 and 2 years of 15% and 4%, respectively, with the median OS of 5 months   Tumor stage within the liver   and the presence of   metastases to organs
1992–2012 [49] RT Median OS from diagnosis of spinal metastases: 4.5 months; 1- and 2-year OS rates of 18.1% and 6.3%, respectively   Performance status (ECOG),   presence of uncontrolled   primary HCC, and presence   of extrahepatic metastases
1993–2013 [14] Sorafenib, RT, BP and surgery Median OS from the diagnosis of BM: 7 months   HCC etiology, performance   status (ECOG), BM   localized to the spine and   not receiving any BP   treatment
1997–2007 [44] RT Median OS after the diagnosis of BM: 7.4 months; 1-year and 2-year OS rates of 32.4% and 13.2%, respectively   Low KPS, high AFP levels,   uncontrolled intrahepatic   tumor, and receiving   treatment within the past 5   years
2000–2011 [50] RT Median OS: 7.0 months; OS rates at 1 and 2 years of 13.8% and 6.9%, respectively   –
2000–2018 [45] Surgery, RT, chemotherapy, and bone-modifying agents Median OS from the initiation of treatment: 7.4 ± 8.2 months (range 0.3–36 months) for all; 10.46 ± 8.05 months for surgical groups, and 5.19 ± 7.72 months for the conservative treatment groups   Patient’s general condition,   the serum albumin level,   and bone-modifying agent   treatment
2002–2009 [51] Irradiation/zoledronic acid Median OS from the initial date of therapy: 6.0 months (95% CI 0.0–12.7 months) for patients treated with zoledronic acid, and 4.2 months (95% CI 1.2–7.2 months) for patients treated with non-zoledronic acid; cumulative OS rates at 3 months of 74% and 44% and at 6 months of 79% and 37%   –
2002–2011 [52] SRS, cRT Median OS: 3 months in the cRT group and 7 months in the SRS group   Child–Pugh class and KPS
2002–2014 [15] Radiation, surgical resection, BPs, and sorafenib Median OS after the diagnosis of any type of metastasis: 5.6 months (95% CI 4.6–6.9)   AFP levels, Child–Pugh   score, and SREs
2005–2011 [53] EBRT Median OS after the first EBRT: 3.8 months   –
2006–2013 [54] Surgery, EBRT Median OS: 261 days (range 22–1359 days) after the diagnosis of metastasis, and 180 days (range 19–1351 days) after the initial operation   Tomita scoring system
2009–2014 [55] EBRT Median OS for the entire cohort: 8.0 months; 1-year and 2-year survival rates of 35.1% and 10.8%, respectively in patients receiving conventional fraction EBRT, and of 38.7% and 15.1%, respectively, in patients receiving hypofraction RT   KPS, TB, and intrahepatic   tumor control
2009–2016 [5] Sorafenib, sunitinib or lenvatinib RT, zoledronic acid and denosumab Median OS after the diagnosis of BM: 11.7 months (range 0.2–94.5 months)   Age over 75 years, HCV,   and Child–Pugh class B/C
2010–2014 [22] Surgery and other N/A Median OS from the time of diagnosis of HCC: 3.00 months (95% CI 2.77–3.24 months)   Unmarried, uninsured, high  primary tumor stage, high   regional lymph node (N1),   lung metastases, poor tumor   differentiated grade, and   elevated AFP, without surgery
2010–2014 [56] Zoledronic acid, palliative RT, curettage, and wide resection Median OS after BM diagnosis: 11 months (range 4–52); 1- and 2-year survival rates of 44.2% and 11.6%, respectively   Progression beyond the  University of California San   Francisco criteria and the   treatment of the primary   tumors
2011–2016 [57] RT Median OS after RT: 13.6, 4.8, and 2.6 months for the low-, intermediate-, and high-risk groups, respectively   ECOG performance status,   controlled primary HCC, and   extrahepatic metastases other   than bone
2014–2017 [58] RT and other N/A Median OS from the start of the RT for BM: 6.5 months; 1- and 2-year survival rates after diagnosis of BM of 35.5% and 13.5%, respectively   Child–Pugh class A group,   increase in AFP beyond 30 ng/mL,  and HCC size of   more than 5 cm
Abbreviations: RT, radiotherapy; OS, overall survival time; BM, bone metastases; ECOG, Eastern Cooperative Oncology Group; KPS, Karnofsky performance status; TB, total bilirubin; SRS, stereotactic radiosurgery; cRT, conventional radiation therapy; BP, bisphosphonate.
Tab.2  Prognosis and risk factors for HCC patients with BM
Fig.2  Outline of the multidisciplinary treatment options for patients with HCC and BM. Therapeutic strategies for HCC BM should be determined in accordance with the systematic evaluation of each patient’s general condition by a multidisciplinary team. BTAs are recommended to be started at the definite diagnosis of BM. Treatments for primary HCC, BM, and systematic symptoms are the three approaches for controlling disease progression and alleviating cancer-induced bone pain. Abbreviations: BM, bone metastases; BTAs, bone-targeting agents; EBRT, external beam radiotherapy; BPs, bisphosphonates; SRE, skeleton-related events.
Fig.3  Hypothetical bone metastatic cascade of HCC. On the basis of the academic advances in cancer BM, an integrated metastatic process was proposed for HCC bone lesion formation. (A) The malignant transformation of liver cells and microenvironment predispose HCC cells to metastasis by augmenting their mobility and inducing angiogenesis. HCC cells exploit the arterial bloodstream and vertebral venous system to spread to the bone cavity. The dysregulation and immunosuppressive status of the bone microenvironment benefit the settlement, proliferation, and further metastasis of disseminated tumor cells in the bone. Additionally, signals that induce the osteotropism of cancer cells are predelivered to the bone from the primary tumor site and prepare metastatic niches. Conversely, the bone microenvironment modulates the behavior of tumor cells at the primary site via the secretion of various bioactive substances. (B) The formation of a metastatic lesion in bone. The disseminated tumor cells first home to the bone cavity and adhere to bone stromal cells to settle inside the bone. Bone metastatic tumor cells either remain dormant or directly start to colonize and form micro-metastatic lesions. By interacting with various bone stromal cells, the migrated tumor cells finally thrive inside the bone and expand into a macrometastatic lesion.
Fig.4  Disturbed homeostasis of the bone microenvironment driven by tumor cells. Bone-metastasized tumor cells trigger the imbalances of immune-suppressive/immune-active and osteoclastic/osteoblastic activities to escape from immune elimination and initiate excessive bone reconstruction. Thriving tumor cells, the immune-privileged microenvironment, and uncoupled bone remodeling benefit each other through various bioactive molecules to perpetuate the destructive vicious cycle. Abbreviations: TAMs, tumor associated macrophages; Tregs, regulatory T cells; Th17, CD4+ T helper cells 17; MDSCs, myeloid-derived suppressor cells; DCs, dendritic cells; pDCs, plasmacytoid DCs; TI-DCs, tumor-infiltrating DCs; NK cells, natural killer cells; TIMs, tumor inflammatory macrophages.
Gene Subject Expression pattern Biological function/molecular mechanism Potential application
CTGF [137,139] Primary tumor Highly expressed in patients with HCC and BM Risk factor of BM
IL-11 [137,139] Primary tumor Highly expressed in patients with HCC and BM Risk factor of BM
MMP-1 [137,140] Peritumor/HCC cell lines Highly expressed in patients with HCC and BM/in osteotropic cells lines Risk factor of BM
CXCR4 [139,141] Primary tumor Highly expressed in patients with HCC and BM Risk factor of BM
FRZB [136] BM Highly expressed in bone metastatic lesions
PNI [142] BM High density in bone metastatic lesions
RNF219 [134] Primary tumor/BM/HCC cell lines Highly expressed in patients with HCC and BM/in bone metastatic lesions/in osteotropic cell lines Promotes osteoclastogenesis by upregulating LGALS3 in a YAP1/β-catenin complex-dependent manner Therapeutic target
LGALS3 [134] Primary tumor/BM/HCC cell lines Highly expressed in patients with HCC and BM/in bone metastatic lesions/in osteotropic cell lines Promotes osteoclastogenesis and aggravate SREs Therapeutic target
miR-34a [143] Serum/primary tumor Low expression in the serum and in the primary tumor of patients with HCC and BM Promotes the migration and invasion of HCC cells by upregulating SMAD4 to further activate TGFβ signaling and upregulate its downstream effectors Risk factor of BM and therapeutic target
lnc34a [144] Serum/primary tumor Highly expressed in the serum and primary tumor of patients and HCC and BM Suppresses miR-34a expression epigenetically through DNMT3A/PHB2 and HDAC1 and sponging miR-34a Risk factor of BM
lncZEB1-AS1 [145] Primary tumor Highly expressed in patients with HCC and BM Promotes the migration and invasion of HCC cells by sponging miR-302b to activate PI3K/AKT signaling and increase EGFR expression Therapeutic target
H19 [133] Primary tumor/BM/HCC cell lines Highly expressed in patients with HCC and BM/in bone metastatic lesions/in osteotropic cell lines Promotes the migration and invasion of HCC cells by sponging miR-200b-3p and inducing osteoclastogenesis through the PPP1CA/p38MAPK axis Therapeutic target
CCL2 [146] CAFs Highly expressed in CAFs in primary site Promotes the migration of HCC cells by activating hedgehog signaling Therapeutic target
CCL5 [146] CAFs Highly expressed in CAFs in primary site Promotes the migration of HCC cells by activating hedgehog signaling Therapeutic target
CCL7 [146] CAFs Highly expressed in CAFs in primary site Promotes the invasion of HCC cells by activating TGFβ signaling Therapeutic target
CXCL16 [146] CAFs Highly expressed in CAFs in primary site Promotes the invasion of HCC cells by activating TGFβ signaling Therapeutic target
MAPK14 [147] BMECs Excessive activation in BMECs Upregulates ADAM17 expression Therapeutic target
ADAM17 [147] BMECs Highly expressed in BMECs Promotes the secretion of CX3CL1 Therapeutic target
CX3CL1 [147] HCC/BMECs Highly expressed in bone metastatic lesions/in BMECs Promotes the migration and invasion of HCC cells by activating PIK3CA/AKT1 and RHOA/ROCK2 signaling Therapeutic target
CX3CL1R [147] HCC Highly expressed in bone metastatic lesions Promotes the migration and invasion of HCC cells by activating PIK3CA/AKT1 and RHOA/ROCK2 signaling Therapeutic target
Tab.3  Biomarkers for the prediction of diagnosis and prognosis of HCC BM
Fig.5  Molecular mechanism of HCC BM. Elevated expression levels of H19, lnc34a, lncZEB1, and RNF219 in HCC cells contribute to strengthened bone metastatic ability by enhancing the migration, invasion, and metastasis ability of HCC cells and inducing osteolytic activities in bone. CCL2, CCL5, CCL7, and CXCL16 secreted by CAFs in primary sites activate Hh and TGFβ signaling in HCC cells to facilitate their metastatic capacities. High levels of IL11, CTGF, and MMP-1 have been found in primary HCCs with bone lesions and predict bone metastatic events. Various cytokines released from bone remodeling and bone stromal cells, such as BMECs, support the outgrowth of disseminated HCC cells in bone. Abbreviations: CAFs, cancer-associated fibroblasts; BMEC, bone marrow endothelial cells; OC, osteoclasts.
1 RE Coleman, PI Croucher, AR Padhani, P Clézardin, E Chow, M Fallon, T Guise, S Colangeli, R Capanna, L Costa. Bone metastases. Nat Rev Dis Primers 2020; 6( 1): 83
https://doi.org/10.1038/s41572-020-00216-3
2 S Paget. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 1989; 8( 2): 98– 101
3 V Longo, O Brunetti, S D’Oronzo, C Ostuni, P Gatti, F Silvestris. Bone metastases in hepatocellular carcinoma: an emerging issue. Cancer Metastasis Rev 2014; 33( 1): 333– 342
https://doi.org/10.1007/s10555-013-9454-4
4 M Schlageter, L Quagliata, M Matter, V Perrina, L Tornillo, L Terracciano. Clinicopathological features and metastatic pattern of hepatocellular carcinoma: an autopsy study of 398 patients. Pathobiology 2016; 83( 6): 301– 307
https://doi.org/10.1159/000446245
5 T Hirai, Y Shinoda, R Tateishi, Y Asaoka, K Uchino, T Wake, H Kobayashi, M Ikegami, R Sawada, N Haga, K Koike, S Tanaka. Early detection of bone metastases of hepatocellular carcinoma reduces bone fracture and paralysis. Jpn J Clin Oncol 2019; 49( 6): 529– 536
https://doi.org/10.1093/jjco/hyz028
6 W Heindel, R Gübitz, V Vieth, M Weckesser, O Schober, M Schäfers. The diagnostic imaging of bone metastases. Dtsch Arztebl Int 2014; 111( 44): 741– 747
7 L Xiang, DM Gilkes. The contribution of the immune system in bone metastasis pathogenesis. Int J Mol Sci 2019; 20( 4): 999
https://doi.org/10.3390/ijms20040999
8 K Wang, Y Gu, Y Liao, S Bang, CR Donnelly, O Chen, X Tao, AJ Mirando, MJ Hilton, RR Ji. PD-1 blockade inhibits osteoclast formation and murine bone cancer pain. J Clin Invest 2020; 130( 7): 3603– 3620
https://doi.org/10.1172/JCI133334
9 T Nakashima, K Okuda, M Kojiro, A Jimi, R Yamaguchi, K Sakamoto, T Ikari. Pathology of hepatocellular carcinoma in Japan. 232 Consecutive cases autopsied in ten years. Cancer 1983; 51( 5): 863– 877
https://doi.org/10.1002/1097-0142(19830301)51:5<863::AID-CNCR2820510520>3.0.CO;2-D
10 CC Liaw, KT Ng, TJ Chen, YF Liaw. Hepatocellular carcinoma presenting as bone metastasis. Cancer 1989; 64( 8): 1753– 1757
https://doi.org/10.1002/1097-0142(19891015)64:8<1753::AID-CNCR2820640833>3.0.CO;2-N
11 M Fukutomi, M Yokota, H Chuman, H Harada, Y Zaitsu, A Funakoshi, H Wakasugi, H Iguchi. Increased incidence of bone metastases in hepatocellular carcinoma. Eur J Gastroenterol Hepatol 2001; 13( 9): 1083– 1088
https://doi.org/10.1097/00042737-200109000-00015
12 H Oweira, U Petrausch, D Helbling, J Schmidt, A Mehrabi, O Schöb, A Giryes, O Abdel-Rahman. Prognostic value of site-specific extra-hepatic disease in hepatocellular carcinoma: a SEER database analysis. Expert Rev Gastroenterol Hepatol 2017; 11( 7): 695– 701
https://doi.org/10.1080/17474124.2017.1294485
13 H Zhan, X Zhao, Z Lu, Y Yao, X Zhang. Correlation and survival analysis of distant metastasis site and prognosis in patients with hepatocellular carcinoma. Front Oncol 2021; 11 : 652768
https://doi.org/10.3389/fonc.2021.652768
14 D Santini, F Pantano, F Riccardi, GG Di Costanzo, R Addeo, FM Guida, MS Ceruso, S Barni, P Bertocchi, S Marinelli, P Marchetti, A Russo, M Scartozzi, L Faloppi, M Santoni, S Cascinu, E Maiello, F Silvestris, M Tucci, T Ibrahim, G Masi, A Gnoni, A Comandone, N Fazio, A Conti, I Imarisio, S Pisconti, E Giommoni, S Cinieri, V Catalano, VO Palmieri, G Infante, M Aieta, A Trogu, CD Gadaleta, AE Brunetti, V Lorusso, N Silvestris. Natural history of malignant bone disease in hepatocellular carcinoma: final results of a multicenter bone metastasis survey. PLoS One 2014; 9( 8): e105268
https://doi.org/10.1371/journal.pone.0105268
15 JJ Harding, G Abu-Zeinah, JF Chou, DH Owen, M Ly, MA Lowery, M Capanu, R Do, NE Kemeny, EM O’Reilly, LB Saltz, GK Abou-Alfa. Frequency, morbidity, and mortality of bone metastases in advanced hepatocellular carcinoma. J Natl Compr Canc Netw 2018; 16( 1): 50– 58
https://doi.org/10.6004/jnccn.2017.7024
16 N Okazaki, M Yoshino, T Yoshida, S Hirohashi, K Kishi, Y Shimosato. Bone metastasis in hepatocellular carcinoma. Cancer 1985; 55( 9): 1991– 1994
https://doi.org/10.1002/1097-0142(19850501)55:9<1991::AID-CNCR2820550927>3.0.CO;2-F
17 K Uka, H Aikata, S Takaki, H Shirakawa, SC Jeong, K Yamashina, A Hiramatsu, H Kodama, S Takahashi, K Chayama. Clinical features and prognosis of patients with extrahepatic metastases from hepatocellular carcinoma. World J Gastroenterol 2007; 13( 3): 414– 420
https://doi.org/10.3748/wjg.v13.i3.414
18 K Uchino, R Tateishi, S Shiina, M Kanda, R Masuzaki, Y Kondo, T Goto, M Omata, H Yoshida, K Koike. Hepatocellular carcinoma with extrahepatic metastasis: clinical features and prognostic factors. Cancer 2011; 117( 19): 4475– 4483
https://doi.org/10.1002/cncr.25960
19 S Katyal, JH 3rd Oliver, MS Peterson, JV Ferris, BS Carr, RL Baron. Extrahepatic metastases of hepatocellular carcinoma. Radiology 2000; 216( 3): 698– 703
https://doi.org/10.1148/radiology.216.3.r00se24698
20 R Bhatia, S Ravulapati, A Befeler, J Dombrowski, S Gadani, N Poddar. Hepatocellular carcinoma with bone metastases: incidence, prognostic significance, and management-single-center experience. J Gastrointest Cancer 2017; 48( 4): 321– 325
https://doi.org/10.1007/s12029-017-9998-6
21 CL Ho, S Chen, TK Cheng, YL Leung. PET/CT characteristics of isolated bone metastases in hepatocellular carcinoma. Radiology 2011; 258( 2): 515– 523
https://doi.org/10.1148/radiol.10100672
22 X Guo, Y Xu, X Wang, F Lin, H Wu, J Duan, Y Xiong, X Han, VP Baklaushev, S Xiong, VP Chekhonin, K Peltzer, G Wang, C Zhang. Advanced hepatocellular carcinoma with bone metastases: prevalence, associated factors, and survival estimation. Med Sci Monit 2019; 25 : 1105– 1112
https://doi.org/10.12659/MSM.913470
23 C Hu, J Yang, Z Huang, C Liu, Y Lin, Y Tong, Z Fan, B Chen, C Wang, CL Zhao. Diagnostic and prognostic nomograms for bone metastasis in hepatocellular carcinoma. BMC Cancer 2020; 20( 1): 494
https://doi.org/10.1186/s12885-020-06995-y
24 RE Coleman. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006; 12( 20): 6243s– 6249s
https://doi.org/10.1158/1078-0432.CCR-06-0931
25 J Seong, WS Koom, HC Park. Radiotherapy for painful bone metastases from hepatocellular carcinoma. Liver Int 2005; 25( 2): 261– 265
https://doi.org/10.1111/j.1478-3231.2005.01094.x
26 MJ Goblirsch, PP Zwolak, DR Clohisy. Biology of bone cancer pain. Clin Cancer Res 2006; 12( 20): 6231s– 6235s
https://doi.org/10.1158/1078-0432.CCR-06-0682
27 L Monteserin, A Mesa, MS Fernandez-Garcia, A Gadanon-Garcia, M Rodriguez, M Varela. Bone metastases as initial presentation of hepatocellular carcinoma. World J Hepatol 2017; 9( 29): 1158– 1165
https://doi.org/10.4254/wjh.v9.i29.1158
28 DC Doval, K Bhatia, AK Vaid, K Pavithran, JB Sharma, D Hazarika, A Jena. Spinal cord compression secondary to bone metastases from hepatocellular carcinoma. World J Gastroenterol 2006; 12( 32): 5247– 5252
29 HL Yang, T Liu, XM Wang, Y Xu, SM Deng. Diagnosis of bone metastases: a meta-analysis comparing 18FDG PET, CT, MRI and BS. Eur Radiol 2011; 21( 12): 2604– 2617
https://doi.org/10.1007/s00330-011-2221-4
30 T Hamaoka, JE Madewell, DA Podoloff, GN Hortobagyi, NT Ueno. Bone imaging in metastatic breast cancer. J Clin Oncol 2004; 22( 14): 2942– 2953
https://doi.org/10.1200/JCO.2004.08.181
31 CY Chen, K Wu, WH Lin, TY Lan, SY Wang, JS Sun, PW Weng, RF Yen, RS Yang. High false negative rate of Tc-99m MDP whole-body BS in detecting skeletal metastases for patients with hepatoma. J Formos Med Assoc 2012; 111( 3): 140– 146
https://doi.org/10.1016/j.jfma.2011.01.005
32 YJ Jin, HC Lee, D Lee, JH Shim, KM Kim, YS Lim, KH Do, JS Ryu. Role of the routine use of chest computed tomography and bone scan in staging workup of hepatocellular carcinoma. J Hepatol 2012; 56( 6): 1324– 1329
https://doi.org/10.1016/j.jhep.2011.12.027
33 S Chua, G Gnanasegaran, GJ Cook. Miscellaneous cancers (lung, thyroid, renal cancer, myeloma, and neuroendocrine tumors): role of SPECT and PET in imaging bone metastases. Semin Nucl Med 2009; 39( 6): 416– 430
https://doi.org/10.1053/j.semnuclmed.2009.07.002
34 F Velloni, M Ramalho, M AlObaidy, AP Matos, E Altun, RC Semelka. Bone metastases of hepatocellular carcinoma: appearance on MRI using a standard abdominal protocol. AJR Am J Roentgenol 2016; 206( 5): 1003– 1012
https://doi.org/10.2214/AJR.15.15502
35 U Asenbaum, R Nolz, G Karanikas, J Furtner, R Woitek, I Simonitsch-Klupp, M Raderer, ME Mayerhoefer. Bone marrow involvement in malignant lymphoma: evaluation of quantitative PET and MRI BIomarkers. Acad Radiol 2018; 25( 4): 453– 460
https://doi.org/10.1016/j.acra.2017.10.024
36 A Rashidi L Baratto AJ Theruvath EB Greene KE Hawk R Lu MP Link SL Spunt HE Daldrup-Link. Diagnostic accuracy of 2-[18F]FDG-PET and whole-body DW-MRI for the detection of bone marrow metastases in children and young adults . Eur Radiol 2022; [Epub ahead of print] doi:10.1007/s00330-021-08529-x
37 M Sugiyama, H Sakahara, T Torizuka, T Kanno, F Nakamura, M Futatsubashi, S Nakamura. 18F-FDG PET in the detection of extrahepatic metastases from hepatocellular carcinoma. J Gastroenterol 2004; 39( 10): 961– 968
https://doi.org/10.1007/s00535-004-1427-5
38 KT Yoon JK Kim DY Kim SH Ahn JD Lee M Yun SY Rha CY Chon KH Han. Role of 18F-fluorodeoxyglucose positron emission tomography in detecting extrahepatic metastasis in pretreatment staging of hepatocellular carcinoma . Oncology 2007; 72(Suppl 1): 104– 110
39 YK Kim, KW Lee, SY Cho, SS Han, SH Kim, SK Kim, SJ Park. Usefulness 18F-FDG positron emission tomography/computed tomography for detecting recurrence of hepatocellular carcinoma in posttransplant patients. Liver Transpl 2010; 16( 6): 767– 772
https://doi.org/10.1002/lt.22069
40 R Fujimoto, T Higashi, Y Nakamoto, T Hara, A Lyshchik, K Ishizu, H Kawashima, S Kawase, T Fujita, T Saga, K Togashi. Diagnostic accuracy of bone metastases detection in cancer patients: comparison between bone scintigraphy and whole-body FDG-PET. Ann Nucl Med 2006; 20( 6): 399– 408
https://doi.org/10.1007/BF03027375
41 S Nagaoka, S Itano, M Ishibashi, T Torimura, K Baba, J Akiyoshi, J Kurogi, S Matsugaki, K Inoue, N Tajiri, A Takada, E Ando, R Kuromatsu, H Kaida, M Kurogi, H Koga, R Kumashiro, N Hayabuchi, M Kojiro, M Sata. Value of fusing PET plus CT images in hepatocellular carcinoma and combined hepatocellular and cholangiocarcinoma patients with extrahepatic metastases: preliminary findings. Liver Int 2006; 26( 7): 781– 788
https://doi.org/10.1111/j.1478-3231.2006.01296.x
42 CL Ho, S Chen, DW Yeung, TK Cheng. Dual-tracer PET/CT imaging in evaluation of metastatic hepatocellular carcinoma. J Nucl Med 2007; 48( 6): 902– 909
https://doi.org/10.2967/jnumed.106.036673
43 RF Yen, CY Chen, MF Cheng, YW Wu, YC Shiau, K Wu, RL Hong, CJ Yu, KL Wang, RS Yang. The diagnostic and prognostic effectiveness of F-18 sodium fluoride PET-CT in detecting bone metastases for hepatocellular carcinoma patients. Nucl Med Commun 2010; 31( 7): 637– 645
https://doi.org/10.1097/MNM.0b013e3283399120
44 J He, ZC Zeng, ZY Tang, J Fan, J Zhou, MS Zeng, JH Wang, J Sun, B Chen, P Yang, BS Pan. Clinical features and prognostic factors in patients with bone metastases from hepatocellular carcinoma receiving external beam radiotherapy. Cancer 2009; 115( 12): 2710– 2720
https://doi.org/10.1002/cncr.24300
45 H Uei, Y Tokuhashi, M Maseda. Treatment outcomes of patients with spinal metastases derived from hepatocellular carcinoma. Int J Clin Oncol 2018; 23( 5): 886– 893
https://doi.org/10.1007/s10147-018-1277-4
46 L Bollen, SPD Dijkstra, RHMA Bartels, A de Graeff, DLH Poelma, T Brouwer, PR Algra, JMA Kuijlen, MC Minnema, C Nijboer, C Rolf, T Sluis, MAMB Terheggen, ACM van der Togt-van Leeuwen, YM van der Linden, W Taal. Clinical management of spinal metastases—The Dutch national guideline. Eur J Cancer 2018; 104 : 81– 90
https://doi.org/10.1016/j.ejca.2018.08.028
47 Q Sodji, J Kaminski, C Willey, N Kim, W Mourad, J Vender, B Dasher. Management of metastatic spinal cord compression. South Med J 2017; 110( 9): 586– 593
https://doi.org/10.14423/SMJ.0000000000000700
48 SS Chang, JC Luo, Y Chao, JY Chao, KH Chi, SS Wang, FY Chang, SD Lee, SH Yen. The clinical features and prognostic factors of hepatocellular carcinoma patients with spinal metastasis. Eur J Gastroenterol Hepatol 2001; 13( 11): 1341– 1345
https://doi.org/10.1097/00042737-200111000-00013
49 C Choi, J Seong. Predictive factors of palliative radiotherapy response and survival in patients with spinal metastases from hepatocellular carcinoma. Gut Liver 2015; 9( 1): 94– 102
https://doi.org/10.5009/gnl14009
50 S Hayashi, H Tanaka, H Hoshi. External beam radiotherapy for painful bone metastases from hepatocellular carcinoma: multiple fractions compared with an 8-Gy single fraction. Nagoya J Med Sci 2014; 76( 1-2): 91– 99
51 Y Katamura, H Aikata, Y Hashimoto, Y Kimura, T Kawaoka, S Takaki, K Waki, A Hiramatsu, Y Kawakami, S Takahashi, M Kenjo, K Chayama. Zoledronic acid delays disease progression of bone metastases from hepatocellular carcinoma. Hepatol Res 2010; 40( 12): 1195– 1203
https://doi.org/10.1111/j.1872-034X.2010.00729.x
52 UK Chang, MS Kim, CJ Han, DH Lee. Clinical result of stereotactic radiosurgery for spinal metastasis from hepatocellular carcinoma: comparison with conventional radiation therapy. J Neurooncol 2014; 119( 1): 141– 148
https://doi.org/10.1007/s11060-014-1463-9
53 T Kim, HJ Cha, JW Kim, J Seong, IJ Lee. High dose and compartmental target volume may improve patient outcome after radiotherapy for pelvic bone metastases from hepatocellular carcinoma. Oncotarget 2016; 7( 33): 53921– 53929
https://doi.org/10.18632/oncotarget.9767
54 MH Lee, SH Lee, ES Kim, W Eoh, SS Chung, CS Lee. Survival-related factors of spinal metastasis with hepatocellular carcinoma in current surgical treatment modalities: a single institute experience. J Korean Neurosurg Soc 2015; 58( 5): 448– 453
https://doi.org/10.3340/jkns.2015.58.5.448
55 J He, S Shi, L Ye, G Ma, X Pan, Y Huang, Z Zeng. A randomized trial of conventional fraction versus hypofraction radiotherapy for bone metastases from hepatocellular carcinoma. J Cancer 2019; 10( 17): 4031– 4037
https://doi.org/10.7150/jca.28674
56 Y Lu, JG Hu, XJ Lin, XG Li. Bone metastases from hepatocellular carcinoma: clinical features and prognostic factors. Hepatobiliary Pancreat Dis Int 2017; 16( 5): 499– 505
https://doi.org/10.1016/S1499-3872(16)60173-X
57 CH Rim, C Choi, J Choi, J Seong. Establishment of a disease-specific graded prognostic assessment for hepatocellular carcinoma patients with spinal metastasis. Gut Liver 2017; 11( 4): 535– 542
https://doi.org/10.5009/gnl16486
58 S Kim, Y Choi, DW Kwak, HS Lee, WJ Hur, YH Baek, SW Lee. Prognostic factors in hepatocellular carcinoma patients with bone metastases. Radiat Oncol J 2019; 37( 3): 207– 214
https://doi.org/10.3857/roj.2019.00136
59 B Gwilliam, V Keeley, C Todd, C Roberts, M Gittins, L Kelly, S Barclay, P Stone. Prognosticating in patients with advanced cancer—observational study comparing the accuracy of clinicians’ and patients’ estimates of survival. Ann Oncol 2013; 24( 2): 482– 488
https://doi.org/10.1093/annonc/mds341
60 H Kubota, T Soejima, NS Sulaiman, S Sekii, Y Matsumoto, Y Ota, K Tsujino, I Fujita, T Fujimoto, M Morishita, J Ikegaki, K Matsumoto, R Sasaki. Predicting the survival of patients with bone metastases treated with radiation therapy: a validation study of the Katagiri scoring system. Radiat Oncol 2019; 14( 1): 13
https://doi.org/10.1186/s13014-019-1218-z
61 RH Bartels, T Feuth, der Maazen R van, AL Verbeek, AC Kappelle, Grotenhuis J André, JW Leer. Development of a model with which to predict the life expectancy of patients with spinal epidural metastasis. Cancer 2007; 110( 9): 2042– 2049
https://doi.org/10.1002/cncr.23002
62 der Linden YM van, SP Dijkstra, EJ Vonk, CA Marijnen, JW; Dutch Bone Metastasis Study Group Leer. Prediction of survival in patients with metastases in the spinal column: results based on a randomized trial of radiotherapy. Cancer 2005; 103( 2): 320– 328
https://doi.org/10.1002/cncr.20756
63 L Bollen, YM van der Linden, W Pondaag, M Fiocco, BP Pattynama, CA Marijnen, RG Nelissen, WC Peul, PD Dijkstra. Prognostic factors associated with survival in patients with symptomatic spinal bone metastases: a retrospective cohort study of 1,043 patients. Neuro-oncol 2014; 16( 7): 991– 998
https://doi.org/10.1093/neuonc/not318
64 S Hayashi, H Tanaka, H Hoshi. Palliative external-beam radiotherapy for bone metastases from hepatocellular carcinoma. World J Hepatol 2014; 6( 12): 923– 929
https://doi.org/10.4254/wjh.v6.i12.923
65 CE Rutter, JB Yu, LD Wilson, HS Park. Assessment of national practice for palliative radiation therapy for bone metastases suggests marked underutilization of single-fraction regimens in the United States. Int J Radiat Oncol Biol Phys 2015; 91( 3): 548– 555
https://doi.org/10.1016/j.ijrobp.2014.10.045
66 IH Jung, SM Yoon, J Kwak, JH Park, SY Song, SW Lee, SD Ahn, EK Choi, JH Kim. High-dose radiotherapy is associated with better local control of bone metastasis from hepatocellular carcinoma. Oncotarget 2017; 8( 9): 15182– 15192
https://doi.org/10.18632/oncotarget.14858
67 J Choi, EJ Lee, SH Yang, YR Im, J Seong. A prospective phase II study for the efficacy of radiotherapy in combination with zoledronic acid in treating painful bone metastases from gastrointestinal cancers. J Radiat Res (Tokyo) 2019; 60( 2): 242– 248
https://doi.org/10.1093/jrr/rry092
68 A Uemura, H Fujimoto, S Yasuda, I Osaka, N Goto, M Shinozaki, H Ito. Transcatheter arterial embolization for bone metastases from hepatocellular carcinoma. Eur Radiol 2001; 11( 8): 1457– 1462
https://doi.org/10.1007/s003300000792
69 JS Barbosa, FA Almeida Paz, SS Braga. Bisphosphonates, old friends of bones and new trends in clinics. J Med Chem 2021; 64( 3): 1260– 1282
https://doi.org/10.1021/acs.jmedchem.0c01292
70 Y Honda, S Takahashi, Y Zhang, A Ono, E Murakami, N Shi, T Kawaoka, D Miki, M Tsuge, N Hiraga, H Abe, H Ochi, M Imamura, H Aikata, K Chayama. Effects of bisphosphonate zoledronic acid in hepatocellular carcinoma, depending on mevalonate pathway. J Gastroenterol Hepatol 2015; 30( 3): 619– 627
https://doi.org/10.1111/jgh.12715
71 L Montella, R Addeo, G Palmieri, M Caraglia, G Cennamo, B Vincenzi, R Guarrasi, R Mamone, V Faiola, N Frega, E Capasso, L Maiorino, D Leopardo, C Pizza, V Montesarchio, S Del Prete. Zoledronic acid in the treatment of bone metastases by hepatocellular carcinoma: a case series. Cancer Chemother Pharmacol 2010; 65( 6): 1137– 1143
https://doi.org/10.1007/s00280-009-1122-6
72 AT Stopeck, A Lipton, JJ Body, GG Steger, K Tonkin, RH de Boer, M Lichinitser, Y Fujiwara, DA Yardley, M Viniegra, M Fan, Q Jiang, R Dansey, S Jun, A Braun. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol 2010; 28( 35): 5132– 5139
https://doi.org/10.1200/JCO.2010.29.7101
73 K Fizazi, M Carducci, M Smith, R Damião, J Brown, L Karsh, P Milecki, N Shore, M Rader, H Wang, Q Jiang, S Tadros, R Dansey, C Goessl. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 2011; 377( 9768): 813– 822
https://doi.org/10.1016/S0140-6736(10)62344-6
74 A Lipton, S Siena, M Rader, B Bilynskyy, M Viniegra, G Richardson, P Beuzeboc, M Clemens, C Ke, S Jun. Comparison of denosumab versus zoledronic acid (Za) for treatment of bone metastases in advanced cancer patients: an integrated analysis of 3 pivotal trials. Ann Oncol 2010; 21 : 380
75 JJ Body, A Lipton, J Gralow, GG Steger, G Gao, H Yeh, K Fizazi. Effects of denosumab in patients with bone metastases with and without previous bisphosphonate exposure. J Bone Miner Res 2010; 25( 3): 440– 446
https://doi.org/10.1359/jbmr.090810
76 BE Hillner, JN Ingle, RT Chlebowski, J Gralow, GC Yee, NA Janjan, JA Cauley, BA Blumenstein, KS Albain, A Lipton, S; American Society of Clinical Oncology Brown. American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol 2003; 21( 21): 4042– 4057
https://doi.org/10.1200/JCO.2003.08.017
77 RE Coleman, P Major, A Lipton, JE Brown, KA Lee, M Smith, F Saad, M Zheng, YJ Hei, J Seaman, R Cook. Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol 2005; 23( 22): 4925– 4935
https://doi.org/10.1200/JCO.2005.06.091
78 GL Su, O Altayar, R O’Shea, R Shah, B Estfan, C Wenzell, S Sultan, Y Falck-Ytter. AGA Clinical Practice Guideline on Systemic Therapy for Hepatocellular Carcinoma. Gastroenterology 2022; 162( 3): 920– 934
https://doi.org/10.1053/j.gastro.2021.12.276
79 J Du, X Qian, B Liu. Long-term progression-free survival in a case of hepatocellular carcinoma with vertebral metastasis treated with a reduced dose of sorafenib: case report and review of the literature. Oncol Lett 2013; 5( 1): 381– 385
https://doi.org/10.3892/ol.2012.974
80 JJ Harding, GK Abou-Alfa. Treating advanced hepatocellular carcinoma: how to get out of first gear. Cancer 2014; 120( 20): 3122– 3130
https://doi.org/10.1002/cncr.28850
81 D Zhang, W Xu, T Liu, H Yin, X Yang, Z Wu, J Xiao. Surgery and prognostic factors of patients with epidural spinal cord compression caused by hepatocellular carcinoma metastases: retrospective study of 36 patients in a single center. Spine 2013; 38( 17): E1090– E1095
https://doi.org/10.1097/BRS.0b013e3182983bf8
82 HS Cho, JH Oh, I Han, HS Kim. Survival of patients with skeletal metastases from hepatocellular carcinoma after surgical management. J Bone Joint Surg Br 2009; 91( 11): 1505– 1512
https://doi.org/10.1302/0301-620X.91B11.21864
83 E van der Linden, LJ Kroft, PD Dijkstra. Treatment of vertebral tumor with posterior wall defect using image-guided radiofrequency ablation combined with vertebroplasty: preliminary results in 12 patients. J Vasc Interv Radiol 2007; 18( 6): 741– 747
https://doi.org/10.1016/j.jvir.2007.02.018
84 L Zheng, Z Chen, M Sun, H Zeng, D Zuo, Y Hua, Z Cai. A preliminary study of the safety and efficacy of radiofrequency ablation with percutaneous kyphoplasty for thoracolumbar vertebral metastatic tumor treatment. Med Sci Monit 2014; 20 : 556– 563
https://doi.org/10.12659/MSM.889742
85 Y Miyachi, T Kaido, S Yao, H Shirai, A Kobayashi, Y Hamaguchi, N Kamo, S Yagi, S Uemoto. Bone mineral density as a risk factor for patients undergoing surgery for hepatocellular carcinoma. World J Surg 2019; 43( 3): 920– 928
https://doi.org/10.1007/s00268-018-4861-x
86 G Facchini, P Di Tullio, M Battaglia, T Bartalena, C Tetta, C Errani, AF Mavrogenis, G Rossi. Palliative embolization for metastases of the spine. Eur J Orthop Surg Traumatol 2016; 26( 3): 247– 252
https://doi.org/10.1007/s00590-015-1726-y
87 W Kim, I Han, HJ Jae, S Kang, SA Lee, JS Kim, HS Kim. Preoperative embolization for bone metastasis from hepatocellular carcinoma. Orthopedics 2015; 38( 2): e99– e105
https://doi.org/10.3928/01477447-20150204-56
88 J Ma, T Tullius, TG Van Ha. Update on preoperative embolization of bone metastases. Semin Intervent Radiol 2019; 36( 3): 241– 248
https://doi.org/10.1055/s-0039-1693120
89 M Sakaguchi, T Maebayashi, T Aizawa, N Ishibashi, S Fukushima, T Saito. Radiation therapy and palliative care prolongs the survival of hepatocellular carcinoma patients with bone metastases. Intern Med 2016; 55( 9): 1077– 1083
https://doi.org/10.2169/internalmedicine.55.6003
90 AC Obenauf, J Massagué. Surviving at a distance: organ-specific metastasis. Trends Cancer 2015; 1( 1): 76– 91
https://doi.org/10.1016/j.trecan.2015.07.009
91 RL Satcher, XH Zhang. Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer 2022; 22( 2): 85– 101
https://doi.org/10.1038/s41568-021-00406-5
92 H Wang, W Zhang, I Bado, XH Zhang. Bone tropism in cancer metastases. Cold Spring Harb Perspect Med 2020; 10( 10): a036848
https://doi.org/10.1101/cshperspect.a036848
93 M Wang, F Xia, Y Wei, X Wei. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8( 1): 30
https://doi.org/10.1038/s41413-020-00105-1
94 KN Weilbaecher, TA Guise, LK McCauley. Cancer to bone: a fatal attraction. Nat Rev Cancer 2011; 11( 6): 411– 425
https://doi.org/10.1038/nrc3055
95 P Clézardin, R Coleman, M Puppo, P Ottewell, E Bonnelye, F Paycha, CB Confavreux, I Holen. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev 2021; 101( 3): 797– 855
https://doi.org/10.1152/physrev.00012.2019
96 B Bakir, AM Chiarella, JR Pitarresi, AK Rustgi. EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol 2020; 30( 10): 764– 776
https://doi.org/10.1016/j.tcb.2020.07.003
97 M Mohme, S Riethdorf, K Pantel. Circulating and disseminated tumour cells—mechanisms of immune surveillance and escape. Nat Rev Clin Oncol 2017; 14( 3): 155– 167
https://doi.org/10.1038/nrclinonc.2016.144
98 IJ Fidler, GL Nicolson. Fate of recirculating B16 melanoma metastatic variant cells in parabiotic syngeneic recipients. J Natl Cancer Inst 1977; 58( 6): 1867– 1872
https://doi.org/10.1093/jnci/58.6.1867
99 LA Liotta, D Vembu, RK Saini, C Boone. In vivo monitoring of the death rate of artificial murine pulmonary micrometastases. Cancer Res 1978; 38( 5): 1231– 1236
100 IJ Fidler. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 1970; 45( 4): 773– 782
101 MY Kim, T Oskarsson, S Acharyya, DX Nguyen, XH Zhang, L Norton, J Massagué. Tumor self-seeding by circulating cancer cells. Cell 2009; 139( 7): 1315– 1326
https://doi.org/10.1016/j.cell.2009.11.025
102 W Zhang, IL Bado, J Hu, YW Wan, L Wu, H Wang, Y Gao, HH Jeong, Z Xu, X Hao, BM Lege, R Al-Ouran, L Li, J Li, L Yu, S Singh, HC Lo, M Niu, J Liu, W Jiang, Y Li, STC Wong, C Cheng, Z Liu, XH Zhang. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell 2021; 184( 9): 2471– 2486.e20
https://doi.org/10.1016/j.cell.2021.03.011
103 R Mukai, Y Tomimaru, H Nagano, H Eguchi, K Mimori, A Tomokuni, T Asaoka, H Wada, K Kawamoto, S Marubashi, Y Doki, M Mori. miR-615-3p expression level in bone marrow is associated with tumor recurrence in hepatocellular carcinoma. Mol Clin Oncol 2015; 3( 3): 487– 494
https://doi.org/10.3892/mco.2015.514
104 K Sugimachi, S Sakimura, A Tomokuni, R Uchi, H Hirata, H Komatsu, Y Shinden, T Iguchi, H Eguchi, T Masuda, K Morita, K Shirabe, H Eguchi, Y Maehara, M Mori, K Mimori. Identification of recurrence-related microRNAs from bone marrow in hepatocellular carcinoma patients. J Clin Med 2015; 4( 8): 1600– 1611
https://doi.org/10.3390/jcm4081600
105 L Deng, C Wang, C He, L Chen. Bone mesenchymal stem cells derived extracellular vesicles promote TRAIL-related apoptosis of hepatocellular carcinoma cells via the delivery of microRNA-20a-3p. Cancer Biomark 2021; 30( 2): 223– 235
https://doi.org/10.3233/CBM-201633
106 XH Zhang, X Jin, S Malladi, Y Zou, YH Wen, E Brogi, M Smid, JA Foekens, J Massagué. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 2013; 154( 5): 1060– 1073
https://doi.org/10.1016/j.cell.2013.07.036
107 F Hemingway, R Taylor, HJ Knowles, NA Athanasou. RANKL-independent human osteoclast formation with APRIL, BAFF, NGF, IGF I and IGF II. Bone 2011; 48( 4): 938– 944
https://doi.org/10.1016/j.bone.2010.12.023
108 K Andrade, J Fornetti, L Zhao, SC Miller, RL Randall, N Anderson, SE Waltz, M McHale, AL Welm. RON kinase: a target for treatment of cancer-induced bone destruction and osteoporosis. Sci Transl Med 2017; 9( 374): eaai9338
https://doi.org/10.1126/scitranslmed.aai9338
109 L D’Amico, I Roato. The impact of immune system in regulating bone metastasis formation by osteotropic tumors. J Immunol Res 2015; 2015 : 143526
https://doi.org/10.1155/2015/143526
110 AM Muscarella, S Aguirre, X Hao, SM Waldvogel, XH Zhang. Exploiting bone niches: progression of disseminated tumor cells to metastasis. J Clin Invest 2021; 131( 6): e143764
https://doi.org/10.1172/JCI143764
111 J Wu, LL Lanier. Natural killer cells and cancer. Adv Cancer Res 2003; 90 : 127– 156
https://doi.org/10.1016/S0065-230X(03)90004-2
112 T Okamoto, MS Yoneyama, S Hatakeyama, K Mori, H Yamamoto, T Koie, H Saitoh, K Yamaya, T Funyu, M Fukuda, C Ohyama, S Tsuboi. Core2 O-glycan-expressing prostate cancer cells are resistant to NK cell immunity. Mol Med Rep 2013; 7( 2): 359– 364
https://doi.org/10.3892/mmr.2012.1189
113 CH Lo, CC Lynch. Multifaceted roles for macrophages in prostate cancer skeletal metastasis. Front Endocrinol (Lausanne) 2018; 9 : 247
https://doi.org/10.3389/fendo.2018.00247
114 FN Soki, SW Cho, YW Kim, JD Jones, SI Park, AJ Koh, P Entezami, S Daignault-Newton, KJ Pienta, H Roca, LK McCauley. Bone marrow macrophages support prostate cancer growth in bone. Oncotarget 2015; 6( 34): 35782– 35796
https://doi.org/10.18632/oncotarget.6042
115 X Lu, Y Kang. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem 2009; 284( 42): 29087– 29096
https://doi.org/10.1074/jbc.M109.035899
116 E Zhao, L Wang, J Dai, I Kryczek, S Wei, L Vatan, S Altuwaijri, T Sparwasser, G Wang, ET Keller, W Zou. Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer. OncoImmunology 2012; 1( 2): 152– 161
https://doi.org/10.4161/onci.1.2.18480
117 G Yoldi, P Pellegrini, EM Trinidad, A Cordero, J Gomez-Miragaya, J Serra-Musach, WC Dougall, P Muñoz, MA Pujana, L Planelles, E González-Suárez. RANK signaling blockade reduces breast cancer recurrence by inducing tumor cell differentiation. Cancer Res 2016; 76( 19): 5857– 5869
https://doi.org/10.1158/0008-5472.CAN-15-2745
118 W Tan, W Zhang, A Strasner, S Grivennikov, JQ Cheng, RM Hoffman, M Karin. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 2011; 470( 7335): 548– 553
https://doi.org/10.1038/nature09707
119 E Ahern, MJ Smyth, WC Dougall, MWL Teng. Roles of the RANKL-RANK axis in antitumour immunity—implications for therapy. Nat Rev Clin Oncol 2018; 15( 11): 676– 693
https://doi.org/10.1038/s41571-018-0095-y
120 Y Shiozawa, EA Pedersen, AM Havens, Y Jung, A Mishra, J Joseph, JK Kim, LR Patel, C Ying, AM Ziegler, MJ Pienta, J Song, J Wang, RD Loberg, PH Krebsbach, KJ Pienta, RS Taichman. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 2011; 121( 4): 1298– 1312
https://doi.org/10.1172/JCI43414
121 K Okamoto, H Takayanagi. Regulation of bone by the adaptive immune system in arthritis. Arthritis Res Ther 2011; 13( 3): 219
https://doi.org/10.1186/ar3323
122 N Gagliani, Vesely MC Amezcua, A Iseppon, L Brockmann, H Xu, NW Palm, Zoete MR de, P Licona-Limón, RS Paiva, T Ching, C Weaver, X Zi, X Pan, R Fan, LX Garmire, MJ Cotton, Y Drier, B Bernstein, J Geginat, B Stockinger, E Esplugues, S Huber, RA Flavell. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 2015; 523( 7559): 221– 225
https://doi.org/10.1038/nature14452
123 B Almand, JI Clark, E Nikitina, J van Beynen, NR English, SC Knight, DP Carbone, DI Gabrilovich. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 2001; 166( 1): 678– 689
https://doi.org/10.4049/jimmunol.166.1.678
124 V Bronte, S Brandau, SH Chen, MP Colombo, AB Frey, TF Greten, S Mandruzzato, PJ Murray, A Ochoa, S Ostrand-Rosenberg, PC Rodriguez, A Sica, V Umansky, RH Vonderheide, DI Gabrilovich. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 2016; 7( 1): 12150
https://doi.org/10.1038/ncomms12150
125 MR Shurin, H Naiditch, H Zhong, GV Shurin. Regulatory dendritic cells: new targets for cancer immunotherapy. Cancer Biol Ther 2011; 11( 11): 988– 992
https://doi.org/10.4161/cbt.11.11.15543
126 AH Capietto, R Faccio. Immune regulation of bone metastasis. Bonekey Rep 2014; 3 : 600
https://doi.org/10.1038/bonekey.2014.95
127 A Sawant, JA Hensel, D Chanda, BA Harris, GP Siegal, A Maheshwari, S Ponnazhagan. Depletion of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast cancer cells. J Immunol 2012; 189( 9): 4258– 4265
https://doi.org/10.4049/jimmunol.1101855
128 E Esen, F Long. Aerobic glycolysis in osteoblasts. Curr Osteoporos Rep 2014; 12( 4): 433– 438
https://doi.org/10.1007/s11914-014-0235-y
129 A Le, CR Cooper, AM Gouw, R Dinavahi, A Maitra, LM Deck, RE Royer, DL Vander Jagt, GL Semenza, CV Dang. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 2010; 107( 5): 2037– 2042
https://doi.org/10.1073/pnas.0914433107
130 S Park, CY Chang, R Safi, X Liu, R Baldi, JS Jasper, GR Anderson, T Liu, JC Rathmell, MW Dewhirst, KC Wood, JW Locasale, DP McDonnell. ERRα-regulated lactate metabolism contributes to resistance to targeted therapies in breast cancer. Cell Rep 2016; 15( 2): 323– 335
https://doi.org/10.1016/j.celrep.2016.03.026
131 A Angelin, L Gil-de-Gómez, S Dahiya, J Jiao, L Guo, MH Levine, Z Wang, WJ 3rd Quinn, PK Kopinski, L Wang, T Akimova, Y Liu, TR Bhatti, R Han, BL Laskin, JA Baur, IA Blair, DC Wallace, WW Hancock, UH Beier. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab 2017; 25( 6): 1282– 1293.e7
https://doi.org/10.1016/j.cmet.2016.12.018
132 B Ell, Y Kang. SnapShot: bone metastasis. Cell 2012; 151( 3): 690– 690.e1
https://doi.org/10.1016/j.cell.2012.10.005
133 Z Huang, L Chu, J Liang, X Tan, Y Wang, J Wen, J Chen, Y Wu, S Liu, J Liao, R Hou, Z Ding, Z Zhang, H Liang, S Song, C Yang, J Zhang, T Guo, X Chen, B Zhang. H19 promotes HCC bone metastasis through reducing osteoprotegerin expression in a protein phosphatase 1 catalytic subunit alpha/p38 mitogen-activated protein kinase-dependent manner and sponging microRNA 200b-3p. Hepatology. 2021; 74( 1): 214– 232
https://doi.org/10.1002/hep.31673
134 S Zhang, Y Xu, C Xie, L Ren, G Wu, M Yang, X Wu, M Tang, Y Hu, Z Li, R Yu, X Liao, S Mo, J Wu, M Li, E Song, Y Qi, L Song, J Li. RNF219/α-catenin/LGALS3 axis promotes hepatocellular carcinoma bone metastasis and associated skeletal complications. Adv Sci (Weinh) 2021; 8( 4): 2001961
https://doi.org/10.1002/advs.202001961
135 L Zhang, H Niu, J Ma, BY Yuan, YH Chen, Y Zhuang, GW Chen, ZC Zeng, ZL Xiang. The molecular mechanism of lncRNA34a-mediated regulation of bone metastasis in hepatocellular carcinoma. Mol Cancer 2019; 18( 1): 120
https://doi.org/10.1186/s12943-019-1044-9
136 J Huang, W Hu, X Lin, X Wang, K Jin. FRZB up-regulated in hepatocellular carcinoma bone metastasis. Int J Clin Exp Pathol 2015; 8( 10): 13353– 13359
137 ZL Xiang, ZC Zeng, ZY Tang, J Fan, J He, HY Zeng, XD Zhu. Potential prognostic biomarkers for bone metastasis from hepatocellular carcinoma. Oncologist 2011; 16( 7): 1028– 1039
https://doi.org/10.1634/theoncologist.2010-0358
138 K Jin, H Lan, X Wang, J Lv. Genetic heterogeneity in hepatocellular carcinoma and paired bone metastasis revealed by next-generation sequencing. Int J Clin Exp Pathol 2017; 10( 10): 10495– 10504
139 ZL Xiang, ZC Zeng, J Fan, WZ Wu, J He, HY Zeng, ZY Tang. A clinicopathological model to predict bone metastasis in hepatocellular carcinoma. J Cancer Res Clin Oncol 2011; 137( 12): 1791– 1797
https://doi.org/10.1007/s00432-011-1060-7
140 R Hou, YW Wang, HF Liang, ZG Zhang, ZM Liu, BH Zhang, BX Zhang, XP Chen. Animal and cellular models of hepatocellular carcinoma bone metastasis: establishment and characterisation. J Cancer Res Clin Oncol 2015; 141( 11): 1931– 1943
https://doi.org/10.1007/s00432-015-1958-6
141 ZL Xiang, ZC Zeng, ZY Tang, J Fan, PY Zhuang, Y Liang, YS Tan, J He. Chemokine receptor CXCR4 expression in hepatocellular carcinoma patients increases the risk of bone metastases and poor survival. BMC Cancer 2009; 9( 1): 176
https://doi.org/10.1186/1471-2407-9-176
142 X Wang, H Lan, T Shen, P Gu, F Guo, X Lin, K Jin. Perineural invasion: a potential reason of hepatocellular carcinoma bone metastasis. Int J Clin Exp Med 2015; 8( 4): 5839– 5846
143 ZL Xiang, XM Zhao, L Zhang, P Yang, J Fan, ZY Tang, ZC Zeng. MicroRNA-34a expression levels in serum and intratumoral tissue can predict bone metastasis in patients with hepatocellular carcinoma. Oncotarget 2016; 7( 52): 87246– 87256
https://doi.org/10.18632/oncotarget.13531
144 L Zhang, H Niu, P Yang, J Ma, BY Yuan, ZC Zeng, ZL Xiang. Serum lnc34a is a potential prediction biomarker for bone metastasis in hepatocellular carcinoma patients. BMC Cancer 2021; 21( 1): 161
https://doi.org/10.1186/s12885-021-07808-6
145 ZJ Ma, Y Wang, HF Li, MH Liu, FR Bi, L Ma, H Ma, HL Yan. LncZEB1-AS1 regulates hepatocellular carcinoma bone metastasis via regulation of the miR-302b-EGFR-PI3K-AKT axis. J Cancer 2020; 11( 17): 5118– 5128
https://doi.org/10.7150/jca.45995
146 J Liu, S Chen, W Wang, BF Ning, F Chen, W Shen, J Ding, W Chen, WF Xie, X Zhang. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways. Cancer Lett 2016; 379( 1): 49– 59
https://doi.org/10.1016/j.canlet.2016.05.022
147 C Sun, A Hu, S Wang, B Tian, L Jiang, Y Liang, H Wang, J Dong. ADAM17-regulated CX3CL1 expression produced by bone marrow endothelial cells promotes spinal metastasis from hepatocellular carcinoma. Int J Oncol 2020; 57( 1): 249– 263
https://doi.org/10.3892/ijo.2020.5045
148 JP Campbell, AR Merkel, SK Masood-Campbell, F Elefteriou, JA Sterling. Models of bone metastasis. J Vis Exp 2012; ( 67): e4260
https://doi.org/10.3791/4260
149 DH Shevrin, SC Kukreja, L Ghosh, TE Lad. Development of skeletal metastasis by human prostate cancer in athymic nude mice. Clin Exp Metastasis 1988; 6( 5): 401– 409
https://doi.org/10.1007/BF01760575
150 M Li, M Zhou, M Gong, J Ma, F Pei, WG Beamer, LD Shultz, JM Hock, X Yu. A novel animal model for bone metastasis in human lung cancer. Oncol Lett 2012; 3( 4): 802– 806
151 Z Tian, L Wu, C Yu, Y Chen, Z Xu, I Bado, A Loredo, L Wang, H Wang, KL Wu, W Zhang, XH Zhang, H Xiao. Harnessing the power of antibodies to fight bone metastasis. Sci Adv 2021; 7( 26): eabf2051
https://doi.org/10.1126/sciadv.abf2051
152 C Yu, H Wang, A Muscarella, A Goldstein, HC Zeng, Y Bae, BH Lee, XH Zhang. Intra-iliac artery injection for efficient and selective modeling of microscopic bone metastasis. J Vis Exp 2016; ( 115): e53982
https://doi.org/10.3791/53982
153 Y Kang, PM Siegel, W Shu, M Drobnjak, SM Kakonen, C Cordón-Cardo, TA Guise, J Massagué. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3( 6): 537– 549
https://doi.org/10.1016/S1535-6108(03)00132-6
154 M Lelekakis, JM Moseley, TJ Martin, D Hards, E Williams, P Ho, D Lowen, J Javni, FR Miller, J Slavin, RL Anderson. A novel orthotopic model of breast cancer metastasis to bone. Clin Exp Metastasis 1999; 17( 2): 163– 170
https://doi.org/10.1023/A:1006689719505
155 L Broutier, G Mastrogiovanni, MM Verstegen, HE Francies, LM Gavarró, CR Bradshaw, GE Allen, R Arnes-Benito, O Sidorova, MP Gaspersz, N Georgakopoulos, BK Koo, S Dietmann, SE Davies, RK Praseedom, R Lieshout, JNM IJzermans, SJ Wigmore, K Saeb-Parsy, MJ Garnett, der Laan LJ van, M Huch. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 2017; 23( 12): 1424– 1435
https://doi.org/10.1038/nm.4438
156 S Lee, DN Burner, TR Mendoza, MT Muldong, C Arreola, CN Wu, NA Cacalano, AA Kulidjian, CJ Kane, CAM Jamieson. Establishment and analysis of three-dimensional (3D) organoids derived from patient prostate cancer bone metastasis specimens and their xenografts. J Vis Exp 2020; ( 156): e60367
https://doi.org/10.3791/60367
157 JA Nemeth, JF Harb, U Jr Barroso, Z He, DJ Grignon, ML Cher. Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res 1999; 59( 8): 1987– 1993
158 C Kuperwasser, S Dessain, BE Bierbaum, D Garnet, K Sperandio, GP Gauvin, SP Naber, RA Weinberg, M Rosenblatt. A mouse model of human breast cancer metastasis to human bone. Cancer Res 2005; 65( 14): 6130– 6138
https://doi.org/10.1158/0008-5472.CAN-04-1408
159 LD Shultz, MA Brehm, JV Garcia-Martinez, DL Greiner. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 2012; 12( 11): 786– 798
https://doi.org/10.1038/nri3311
160 LD Shultz, F Ishikawa, DL Greiner. Humanized mice in translational biomedical research. Nat Rev Immunol 2007; 7( 2): 118– 130
https://doi.org/10.1038/nri2017
161 YH Li, MF Lv, MS Lu, JP Bi. Bone marrow mesenchymal stem cell-derived exosomal miR-338-3p represses progression of hepatocellular carcinoma by targeting ETS1. J Biol Regul Homeost Agents 2021; 35( 2): 617– 627
162 C Baccin, J Al-Sabah, L Velten, PM Helbling, F Grünschläger, P Hernández-Malmierca, C Nombela-Arrieta, LM Steinmetz, A Trumpp, S Haas. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol 2020; 22( 1): 38– 48
https://doi.org/10.1038/s41556-019-0439-6
163 IM Adjei, B Sharma, C Peetla, V Labhasetwar. Inhibition of bone loss with surface-modulated, drug-loaded nanoparticles in an intraosseous model of prostate cancer. J Control Release 2016; 232 : 83– 92
https://doi.org/10.1016/j.jconrel.2016.04.019
164 CF Mu, J Shen, J Liang, HS Zheng, Y Xiong, YH Wei, F Li. Targeted drug delivery for tumor therapy inside the bone marrow. Biomaterials 2018; 155 : 191– 202
https://doi.org/10.1016/j.biomaterials.2017.11.029
165 Z Mbese, BA Aderibigbe. Bisphosphonate-based conjugates and derivatives as potential therapeutic agents in osteoporosis, bone cancer and metastatic bone cancer. Int J Mol Sci 2021; 22( 13): 6869
https://doi.org/10.3390/ijms22136869
166 W Sun, K Ge, Y Jin, Y Han, H Zhang, G Zhou, X Yang, D Liu, H Liu, XJ Liang, J Zhang. Bone-targeted nanoplatform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis. ACS Nano 2019; 13( 7): 7556– 7567
https://doi.org/10.1021/acsnano.9b00097
167 IK Herrmann, MJA Wood, G Fuhrmann. Extracellular vesicles as a next-generation drug delivery platform. Nat Nanotechnol 2021; 16( 7): 748– 759
https://doi.org/10.1038/s41565-021-00931-2
168 A Hoshino, B Costa-Silva, TL Shen, G Rodrigues, A Hashimoto, M Tesic Mark, H Molina, S Kohsaka, A Di Giannatale, S Ceder, S Singh, C Williams, N Soplop, K Uryu, L Pharmer, T King, L Bojmar, AE Davies, Y Ararso, T Zhang, H Zhang, J Hernandez, JM Weiss, VD Dumont-Cole, K Kramer, LH Wexler, A Narendran, GK Schwartz, JH Healey, P Sandstrom, KJ Labori, EH Kure, PM Grandgenett, MA Hollingsworth, M de Sousa, S Kaur, M Jain, K Mallya, SK Batra, WR Jarnagin, MS Brady, O Fodstad, V Muller, K Pantel, AJ Minn, MJ Bissell, BA Garcia, Y Kang, VK Rajasekhar, CM Ghajar, I Matei, H Peinado, J Bromberg, D Lyden. Tumour exosome integrins determine organotropic metastasis. Nature 2015; 527( 7578): 329– 335
https://doi.org/10.1038/nature15756
[1] Sisi Du, Xiaojing Wu, Binbin Li, Yimin Wang, Lianhan Shang, Xu Huang, Yudi Xia, Donghao Yu, Naicong Lu, Zhibo Liu, Chunlei Wang, Xinmeng Liu, Zhujia Xiong, Xiaohui Zou, Binghuai Lu, Yingmei Liu, Qingyuan Zhan, Bin Cao. Clinical factors associated with composition of lung microbiota and important taxa predicting clinical prognosis in patients with severe community-acquired pneumonia[J]. Front. Med., 2022, 16(3): 389-402.
[2] Hongchen Liu, Xiaoli Zheng, Chengtao Zhang, Jiajun Xie, Beibei Gao, Jing Shao, Yan Yang, Hengxiang Wang, Jinsong Yan. Outcomes of haploidentical bone marrow transplantation in patients with severe aplastic anemia-II that progressed from non-severe acquired aplastic anemia[J]. Front. Med., 2021, 15(5): 718-727.
[3] Li Ni, Zheng Wen, Xiaowen Hu, Wei Tang, Haisheng Wang, Ling Zhou, Lujin Wu, Hong Wang, Chang Xu, Xizhen Xu, Zhichao Xiao, Zongzhe Li, Chene Li, Yujian Liu, Jialin Duan, Chen Chen, Dan Li, Runhua Zhang, Jinliang Li, Yongxiang Yi, Wei Huang, Yanyan Chen, Jianping Zhao, Jianping Zuo, Jianping Weng, Hualiang Jiang, Dao Wen Wang. Effects of Shuanghuanglian oral liquids on patients with COVID-19: a randomized, open-label, parallel-controlled, multicenter clinical trial[J]. Front. Med., 2021, 15(5): 704-717.
[4] Sijin Li, Han Zhang, Yao Sun. Primary cilia in hard tissue development and diseases[J]. Front. Med., 2021, 15(5): 657-678.
[5] William J. Liu, Haixia Xiao, Lianpan Dai, Di Liu, Jianjun Chen, Xiaopeng Qi, Yuhai Bi, Yi Shi, George F. Gao, Yingxia Liu. Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic[J]. Front. Med., 2021, 15(4): 507-527.
[6] Yu Wang, Lan Li, Yuanjiang Pan, Yu He, Zuhua Chen, Yunhao Xun, Yuhan Xu, Yilei Guo, Jiehong Yang, Jianchun Guo, Haitong Wan. Comparison of the clinical features and therapeutics of COVID-19 in cardio-cerebrovascular disease (CCVD) and non-CCVD patients[J]. Front. Med., 2021, 15(4): 629-637.
[7] Weibao Song, Hongjuan Zhang, Yu Zhang, Rui Li, Yanxing Han, Yuan Lin, Jiandong Jiang. Repurposing clinical drugs is a promising strategy to discover drugs against Zika virus infection[J]. Front. Med., 2021, 15(3): 404-415.
[8] Wenjie Zhu, Binghe Xu. Overcoming resistance to endocrine therapy in hormone receptor-positive human epidermal growth factor receptor 2-negative (HR+/HER2--) advanced breast cancer: a meta-analysis and systemic review of randomized clinical trials[J]. Front. Med., 2021, 15(2): 208-220.
[9] Jianpeng Liu, Xinhua Chen, Shusen Zheng. Immune response triggered by the ablation of hepatocellular carcinoma with nanosecond pulsed electric field[J]. Front. Med., 2021, 15(2): 170-177.
[10] Xiaowei Zhu, Houfeng Zheng. Factors influencing peak bone mass gain[J]. Front. Med., 2021, 15(1): 53-69.
[11] Zixin Shu, Yana Zhou, Kai Chang, Jifen Liu, Xiaojun Min, Qing Zhang, Jing Sun, Yajuan Xiong, Qunsheng Zou, Qiguang Zheng, Jinghui Ji, Josiah Poon, Baoyan Liu, Xuezhong Zhou, Xiaodong Li. Clinical features and the traditional Chinese medicine therapeutic characteristics of 293 COVID-19 inpatient cases[J]. Front. Med., 2020, 14(6): 760-775.
[12] Lili Zhou, Ping Li, Shiguang Ye, Xiaochen Tang, Junbang Wang, Jie Liu, Aibin Liang. Different sites of extranodal involvement may affect the survival of patients with relapsed or refractory non-Hodgkin lymphoma after chimeric antigen receptor T cell therapy[J]. Front. Med., 2020, 14(6): 786-791.
[13] Danyang Song, Jianyu Hao, Daiming Fan. Biological properties and clinical applications of berberine[J]. Front. Med., 2020, 14(5): 564-582.
[14] Allison J. Navarrete-Welton, Daniel A. Hashimoto. Current applications of artificial intelligence for intraoperative decision support in surgery[J]. Front. Med., 2020, 14(4): 369-381.
[15] Min Zhou, Xinxin Zhang, Jieming Qu. Coronavirus disease 2019 (COVID-19): a clinical update[J]. Front. Med., 2020, 14(2): 126-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed