Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2024, Vol. 18 Issue (4) : 597-621    https://doi.org/10.1007/s11684-024-1072-8
Unlocking the potential of bispecific ADCs for targeted cancer therapy
Hongye Zeng, Wenjing Ning, Xue Liu(), Wenxin Luo(), Ningshao Xia
State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
 Download: PDF(4701 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Antibody–drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.

Keywords antibody–drug conjugate      bispecific antibody      bispecific ADC      cancer     
Corresponding Author(s): Xue Liu,Wenxin Luo   
Just Accepted Date: 27 June 2024   Online First Date: 22 July 2024    Issue Date: 30 August 2024
 Cite this article:   
Hongye Zeng,Wenjing Ning,Xue Liu, et al. Unlocking the potential of bispecific ADCs for targeted cancer therapy[J]. Front. Med., 2024, 18(4): 597-621.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-024-1072-8
https://academic.hep.com.cn/fmd/EN/Y2024/V18/I4/597
Drug (INN) Target Antibody isotype Linker Payload DAR Indications Characteristics Initial approval References
Gemtuzumab ozogamicina CD33 IgG4 Hydrazone Calicheamicin 2.5 CD33-positive acute myeloid leukemia (AML) First ADC approved for clinical use; heterogeneity; low potency payload; unstable hydrazone linker; high immunogenicity of antibody moiety 2000.05 FDA [14]
Brentuximab vedotin CD30 IgG1 Val-Cit dipeptide MMAE 4 Hodgkin lymphoma Stable dipeptide linker; potent payload MMAE 2011.08 FDA [15]
Trastuzumab emtansine HER2 IgG1 SMCC; noncleavable DM1 3.5 HER2-positive breast cancer First ADC approved for solid tumor treatment; no bystander effect; HER2 signal inhibition; ADCC; CDC effects 2013.02 FDA [1618]
Inotuzumab ozogamicin CD22 IgG4 Hydrazone Calicheamicin 2.5 Acute lymphoblastic leukemia (ALL) Humanized antibody; similar linker and payload to those of gemtuzumab ozogamicin 2017.08 FDA [19, 20]
Moxetumomab pasudotoxb CD22 Mouse Fv Hydrazone Pseudomonas exotoxin A, PE38 NA Hairy cell leukemia (HCL) First new drug approved for HCL treatment 2018.09 FDA [21]
Polatuzumab vedotin CD79β IgG1 Val-Cit dipeptide MMAE 4 Diffuse large B cell lymphoma (DLBCL) First ADC for the treatment of DLBCL 2019.06 FDA [22]
Enfortumab vedotin Nectin-4 IgG1 Val-Cit dipeptide MMAE 4 Urothelial malignancies Fully human anti-nectin-4 antibody; serious skin reactions in some patients; prolonged median OS (12.9 months) compared to chemotherapy (9 months) 2019.12 FDA [23, 24]
Trastuzumab deruxtecan HER2 IgG1 GGFG tetrapeptide Dxd 8 HER2-positive breast cancer, gastric or gastresophageal junction adenocarcinoma Novel topoisomerase I inhibitor payload (DXd); stable tetrapeptide-based linker; improved DAR of 7-8; superior PFS and ORR compared to T-DM1 2019.12 FDA [2527]
Sacituzumab govitecan Trop2 IgG1 CL2A; pH sensitivity SN38 7.6 Triple-negative breast cancer Potent payload SN38; pH-sensitive stable linker; median PFS 4.8 months vs. 1.7 months for chemotherapy; median OS 11.8 months vs. 6.9 months for chemotherapy 2020.04 FDA [28]
Belantamab mafodotinc BCMA IgG1 MC; noncleavable MMAF 4 Multiple myeloma No bystander effect; noncleavable linker and impermeable payload MMAF; BCMA-targeted therapy for multiple myeloma 2020.08 FDA [29, 30]
Cetuximab saratolacan EGFR IgG1 NA IRDye700DX NA Head and neck cancer Photosensitizing dye-based payload; laser-activated cancer cell-killing mechanism; approved by PMDA in Japan 2020.09 PMDA [31]
Loncastuximab tesirine CD19 IgG1 Val-Ala dipeptide PBD 2.3 DLBCL High-potency payload PBD 2021.04 FDA [32]
Disitamab vedotin HER2 IgG1 Val-Cit dipeptide MMAE 4 HER2-positive gastric cancer Approved by NMPA in China; third HER2-targeted ADC on the market; patients received disitamab vedotin 2.5 mg/kg and ORR was 18.1% 2021.06 NMPA [33]
Tisotumab vedotin TF IgG1 Val-Cit dipeptide MMAE 4 Cervical cancer Fully humanized anti-TF antibody; ADCC and ADCP effects; first TF-targeted ADC 2021.09 FDA [34, 35]
Mirvetuximab soravtansine FRα IgG1 sulfo-SPDB DM4 3.5 FRα-positive epithelial ovarian, fallopian tube or primary peritoneal cancer First FRα-targeted ADC; novel cleavable sulfo-SPDB linker; efficacy in patients with high FRα expression 2022.11 FDA [36]
Tab.1  Current ADCs approved worldwide
Fig.1  Timeline of major advances in bispecific ADCs.
Drugs (INN) Target Mechanism Indications First approval time References
Catumaxomab CD3/EpCAM To redirect cytotoxic T cells to tumor cells, ADCC, ADCP Malignant ascites; various solid tumors 2009.04 EMA (delisting announced in 2017) [52]
Blinatumomab CD3/CD19 To redirect cytotoxic T cells to tumor cells ALL 2014.12 FDA [53]
Emicizumab Factor X/factor IXa To combine activated factors IX and X to restore the function of activated factor VIII, which is deficient in hemophilia patients Hemophilia A 2017.11 FDA [54]
Amivantamab-vmjw EGFR/cMet To block the binding of EGFR and cMet to ligands EGFR-mutated non-small cell lung cancer (NSCLC) 2021.05 FDA [55]
Tebentafusp CD3/gp100 To redirect cytotoxic T cells to tumor cells Uveal melanoma 2022.01 FDA [56]
Faricimab Ang2/VEGF To block the binding of Ang2 and VEGF to ligands Diabetic macular edema, age-related macular degeneration 2022.01 FDA [57, 58]
Mosunetuzumab CD3/CD20 To redirect cytotoxic T cells to tumor cells Follicular and marginal zone lymphoma 2022.06 EMA [59]
Cadonilimab PD-1/CTLA-4 To cause immune checkpoint inhibition Various solid tumors 2022.06 NMPA [60]
Teclistamab CD3/BCMA To redirect cytotoxic T cells to tumor cells Multiple myeloma 2022.08 EMA [61]
Ozoralizumab TNF-α/HSA To block TNF-α and improve serum half-life of nanobody Rheumatoid arthritis 2022.09 PMDA [62]
Epcoritamab CD3/CD20 To redirect cytotoxic T cells to tumor cells Large B cell lymphoma 2023.05 FDA [63]
Glofitamab CD3/CD20 To redirect cytotoxic T cells to tumor cells Large B cell lymphoma 2023.03 Health Canada [64]
Elranatamab CD3/BCMA To redirect cytotoxic T cells to tumor cells Multiple myeloma 2023.08 FDA [65]
Talquetamab CD3/GPRC5D To redirect cytotoxic T cells to tumor cells Multiple myeloma 2023.08 FDA [66]
Tab.2  Bispecific antibodies approved worldwide
Monoclonal antibody?drug conjugates Bispecific antibody?drug conjugates
Schematic diagram
Antibody structure Traditional bivalent IgG antibodies that target a single antigen Can be symmetric or asymmetrical and can target two different antigen binding sites; antibody valency ranges from bivalent to tetravalent or even more
Indications May not be as effective for patient populations with low antigen expression Dual-targeting broadens the range of indications and helps overcome tumor resistance
Toxic side effects Targets a single antigen, which may be expressed in healthy tissues causing on-target off-tumor toxicity Simultaneously targets two different antigens, promoting antigen cross-linking and reducing on-target off-tumor effects
Design and production Relatively easy to design and produce Increased molecular complexity presents challenges to design and production
Clinical and market status Fifteen monoclonal ADCs have been approved, and over one hundred ADCs are in various stages of clinical trials No bispecific ADCs have been approved yet; BL-B01D1 and JSKN003 are the most advanced in phase III clinical trials (China)
Tab.3  Differences between monoclonal and bispecific ADCs
Fig.2  Structure and mechanism of action of bispecific ADCs. (A) Bispecific ADCs comprise three key elements: a bispecific antibody moiety that binds to multiple antigens or different epitopes expressed on the tumor cell surface; a cytotoxic drug that induces tumor cell apoptosis; and a chemical linker that ensures that the payload is released within tumor cells and is not prematurely released in the bloodstream. (B) Bispecific ADCs counteract drug resistance by simultaneously blocking multiple signaling pathways. (C) A dual targeting strategy increases the selectivity for tumor cells, reducing off-target toxicity in healthy tissues. (D) Biparatopic ADCs boost receptor cross-linking and clustering. (E) The cytotoxicity of bispecific ADCs requires key sequential steps: binding to multiple epitopes or antigens; internalization of the bispecific ADC–antigen complex; lysosomal degradation of the bispecific antibody portion; release of the cytotoxic drug; and induction of tumor cell apoptosis. Through the bystander effect, a fraction of the payload may be released into the extracellular environment, where it can kill neighboring cells.
Fig.3  Main characteristics of bispecific ADCs in clinical trials. The similarities and differences among clinical bispecific ADCs. Various formats of bispecific antibodies have been designed to recognize two different antigen binding sites (shown in purple and green). Most bispecific antibodies are built on IgG1 scaffolds that confer extended half-life and high solubility while minimizing nonspecific immunogenicity. Linkers are shown in gray. In the payload, tubulin binders are shown in yellow, and topoisomerase I inhibitors in red. The values given for the payloads represent the DARs.
Drugs Target Payload Design Phase (clinical registration date) Indications ClinicalTrial.gov identifier
JSKN-003 HER2/HER2 Topoisomerase I inhibitor DAR: 4
Linker: dibenzocyclooctyne tetrapeptide linker
Platform: enzyme catalyzed and click chemistry based glycan-specific conjugation; charge repulsion induced bispecific (CRIB); knobs-into-holes(KIH)
III (2023.09.22) Low-HER2, unresectable and/or metastatic breast cancer NCT06079983
BL-B01D1 EGFR/HER3 Topoisomerase I inhibitor (ED04) DAR: 8
Linker: cleavable linker
Platform: IgG-scFv
III (2023.10.25) Recurrent or metastatic nasopharyngeal carcinoma (NPC) NCT06118333
TQB2102 HER2/HER2 Topoisomerase I inhibitor DAR: 5.8
Linker: cleavable linker MC-GGFG
Platform: KIH; scFv-Fab
II (2023.12.27) Breast cancer NCT06198751
REGN5093-M114 cMet/cMet Maytansine derivative (M24) DAR: 3.2
Linker: cleavable linker M114
Platform: Veloci-Bi; VelociNator; common light chain strategy and modification of protein A binding avidity
I/II (2021.07.20) cMet-overexpressing NSCLC; advanced cancer NCT04982224
MEDI4276a HER2/HER2 Tubulysin variant (AZ13599185) DAR: 4
Linker: protease-cleavable peptide-based maleimidocaproyl linker
Platform: scFv-(H)IgG
I (2015.09.28) HER2-expressing advanced solid tumors NCT02576548
ZW49 HER2/HER2 N-acyl sulfonamide auristatin payload (ZD02044) DAR: 2
Linker: protease cleavable linker
Platform: Azymetric; ZymeLink; scFv-Fab
I (2019.01.28) Locally advanced or metastatic HER2-expressing cancers NCT03821233
M1231 MUC1/EGFR Hemiasterlin-related microtubule inhibitor DAR: 4
Linker: cleavable linker ValCit-PABA
Platform: strand-exchange engineered domain (SEED); Xpress CF+ for site-specific conjugation; scFv-Fab
I (2021.01.04) Solid tumors, metastatic NSCLC, esophageal squamous cell carcinoma NCT04695847
IMGN151 FRα/FRα Maytansinoid derivative (DM21) DAR: 3.5
Linker: cleavable peptide linker AAA
Platform: KIH; scFv-Fab
I (2022.08.23) Endometrial cancer, high grade serous adenocarcinoma of ovary, primary peritoneal carcinoma, fallopian tube cancer NCT05527184
AZD9592 EGFR/cMet Topoisomerase I inhibitor (AZ14170132) DAR: 6
Linker: cleavable linker
Platform: DuetMab; KIH
I (2022.11.18) Advanced solid tumors, NSCLC, head and neck neoplasms NCT05647122
Tab.4  Clinical trials of bispecific ADCs
1 K Strebhardt, A Ullrich. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 2008; 8(6): 473–480
https://doi.org/10.1038/nrc2394
2 RS Schwartz. Paul Ehrlich’s magic bullets. N Engl J Med 2004; 350(11): 1079–1080
https://doi.org/10.1056/NEJMp048021
3 Y Chu, X Zhou, X Wang. Antibody-drug conjugates for the treatment of lymphoma: clinical advances and latest progress. J Hematol Oncol 2021; 14(1): 88
https://doi.org/10.1186/s13045-021-01097-z
4 S Rosner, A Valdivia, HJ Hoe, JC Murray, B Levy, E Felip, BJ Solomon. Antibody-drug conjugates for lung cancer: payloads and progress. Am Soc Clin Oncol Educ Book 2023; 43: e389968
https://doi.org/10.1200/EDBK_389968
5 H Liu, J Bolleddula, A Nichols, L Tang, Z Zhao, C Prakash. Metabolism of bioconjugate therapeutics: why, when, and how?. Drug Metab Rev 2020; 52(1): 66–124
https://doi.org/10.1080/03602532.2020.1716784
6 Z Su, D Xiao, F Xie, L Liu, Y Wang, S Fan, X Zhou, S Li. Antibody-drug conjugates: recent advances in linker chemistry. Acta Pharm Sin B 2021; 11(12): 3889–3907
https://doi.org/10.1016/j.apsb.2021.03.042
7 Z Fu, S Li, S Han, C Shi, Y Zhang. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther 2022; 7(1): 93
https://doi.org/10.1038/s41392-022-00947-7
8 SA Hurvitz. Recent progress in antibody-drug conjugate therapy for cancer. Nat Cancer 2022; 3(12): 1412–1413
https://doi.org/10.1038/s43018-022-00495-7
9 S Ali, HM Dunmore, D Karres, JL Hay, T Salmonsson, C Gisselbrecht, SB Sarac, OW Bjerrum, D Hovgaard, Y Barbachano, N Nagercoil, F Pignatti. The EMA review of Mylotarg (gemtuzumab ozogamicin) for the treatment of acute myeloid leukemia. Oncologist 2019; 24(5): e171–e179
https://doi.org/10.1634/theoncologist.2019-0025
10 CD Godwin, RP Gale, RB Walter. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia 2017; 31(9): 1855–1868
https://doi.org/10.1038/leu.2017.187
11 K Tsuchikama, Z An. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 2018; 9(1): 33–46
https://doi.org/10.1007/s13238-016-0323-0
12 A Beck, L Goetsch, C Dumontet, N Corvaïa. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 2017; 16(5): 315–337
https://doi.org/10.1038/nrd.2016.268
13 N Epaillard, J Bassil, B Pistilli. Current indications and future perspectives for antibody-drug conjugates in brain metastases of breast cancer. Cancer Treat Rev 2023; 119: 102597
https://doi.org/10.1016/j.ctrv.2023.102597
14 S Castaigne, C Pautas, C Terré, E Raffoux, D Bordessoule, JN Bastie, O Legrand, X Thomas, P Turlure, O Reman, Revel T de, L Gastaud, Gunzburg N de, N Contentin, E Henry, JP Marolleau, A Aljijakli, P Rousselot, P Fenaux, C Preudhomme, S Chevret, H; Acute Leukemia French Association Dombret. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 2012; 379(9825): 1508–1516
https://doi.org/10.1016/S0140-6736(12)60485-1
15 A Younes, AK Gopal, SE Smith, SM Ansell, JD Rosenblatt, KJ Savage, R Ramchandren, NL Bartlett, BD Cheson, S de Vos, A Forero-Torres, CH Moskowitz, JM Connors, A Engert, EK Larsen, DA Kennedy, EL Sievers, R Chen. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol 2012; 30(18): 2183–2189
https://doi.org/10.1200/JCO.2011.38.0410
16 S Verma, D Miles, L Gianni, IE Krop, M Welslau, J Baselga, M Pegram, DY Oh, V Diéras, E Guardino, L Fang, MW Lu, S Olsen, K; EMILIA Study Group Blackwell. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 2012; 367(19): 1783–1791
https://doi.org/10.1056/NEJMoa1209124
17 Minckwitz G von, CS Huang, MS Mano, S Loibl, EP Mamounas, M Untch, N Wolmark, P Rastogi, A Schneeweiss, A Redondo, HH Fischer, W Jacot, AK Conlin, C Arce-Salinas, IL Wapnir, C Jackisch, MP DiGiovanna, PA Fasching, JP Crown, P Wülfing, Z Shao, Caremoli E Rota, H Wu, LH Lam, D Tesarowski, M Smitt, H Douthwaite, SM Singel, CE Jr; KATHERINE Investigators Geyer. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med 2019; 380(7): 617–628
https://doi.org/10.1056/NEJMoa1814017
18 L Amiri-Kordestani, GM Blumenthal, QC Xu, L Zhang, SW Tang, L Ha, WC Weinberg, B Chi, R Candau-Chacon, P Hughes, AM Russell, SP Miksinski, XH Chen, WD McGuinn, T Palmby, SJ Schrieber, Q Liu, J Wang, P Song, N Mehrotra, L Skarupa, K Clouse, A Al-Hakim, R Sridhara, A Ibrahim, R Justice, R Pazdur, P Cortazar. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res 2014; 20(17): 4436–4441
https://doi.org/10.1158/1078-0432.CCR-14-0012
19 H Kantarjian, D Thomas, J Jorgensen, E Jabbour, P Kebriaei, M Rytting, S York, F Ravandi, M Kwari, S Faderl, MB Rios, J Cortes, L Fayad, R Tarnai, SA Wang, R Champlin, A Advani, S O’Brien. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol 2012; 13(4): 403–411
https://doi.org/10.1016/S1470-2045(11)70386-2
20 HM Kantarjian, DJ DeAngelo, M Stelljes, G Martinelli, M Liedtke, W Stock, N Gökbuget, S O’Brien, K Wang, T Wang, ML Paccagnella, B Sleight, E Vandendries, AS Advani. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 2016; 375(8): 740–753
https://doi.org/10.1056/NEJMoa1509277
21 RJ Kreitman, C Dearden, PL Zinzani, J Delgado, L Karlin, T Robak, DE Gladstone, P le Coutre, S Dietrich, M Gotic, L Larratt, F Offner, G Schiller, R Swords, L Bacon, M Bocchia, K Bouabdallah, DA Breems, A Cortelezzi, S Dinner, M Doubek, BT Gjertsen, M Gobbi, A Hellmann, S Lepretre, F Maloisel, F Ravandi, P Rousselot, M Rummel, T Siddiqi, T Tadmor, X Troussard, CA Yi, G Saglio, GJ Roboz, K Balic, N Standifer, P He, S Marshall, W Wilson, I Pastan, NS Yao, F Giles. Moxetumomab pasudotox in relapsed/refractory hairy cell leukemia. Leukemia 2018; 32(8): 1768–1777
https://doi.org/10.1038/s41375-018-0210-1
22 LH Sehn, AF Herrera, CR Flowers, MK Kamdar, A McMillan, M Hertzberg, S Assouline, TM Kim, WS Kim, M Ozcan, J Hirata, E Penuel, JN Paulson, J Cheng, G Ku, MJ Matasar. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol 2020; 38(2): 155–165
https://doi.org/10.1200/JCO.19.00172
23 T Powles, JE Rosenberg, GP Sonpavde, Y Loriot, I Durán, JL Lee, N Matsubara, C Vulsteke, D Castellano, C Wu, M Campbell, M Matsangou, DP Petrylak. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med 2021; 384(12): 1125–1135
https://doi.org/10.1056/NEJMoa2035807
24 J Rosenberg, SS Sridhar, J Zhang, D Smith, D Ruether, TW Flaig, J Baranda, J Lang, ER Plimack, R Sangha, EI Heath, J Merchan, DI Quinn, S Srinivas, M Milowsky, C Wu, EM Gartner, P Zuo, A Melhem-Bertrandt, DP Petrylak. EV-101: a phase I study of single-agent enfortumab vedotin in patients with nectin-4-positive solid tumors, including metastatic urothelial carcinoma. J Clin Oncol 2020; 38(10): 1041–1049
https://doi.org/10.1200/JCO.19.02044
25 J Cortés, SB Kim, WP Chung, SA Im, YH Park, R Hegg, MH Kim, LM Tseng, V Petry, CF Chung, H Iwata, E Hamilton, G Curigliano, B Xu, CS Huang, JH Kim, JWY Chiu, JL Pedrini, C Lee, Y Liu, J Cathcart, E Bako, S Verma, SA; DESTINY-Breast03 Trial Investigators Hurvitz. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med 2022; 386(12): 1143–1154
https://doi.org/10.1056/NEJMoa2115022
26 K Shitara, YJ Bang, S Iwasa, N Sugimoto, MH Ryu, D Sakai, HC Chung, H Kawakami, H Yabusaki, J Lee, K Saito, Y Kawaguchi, T Kamio, A Kojima, M Sugihara, K; DESTINY-Gastric01 Investigators Yamaguchi. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med 2020; 382(25): 2419–2430
https://doi.org/10.1056/NEJMoa2004413
27 K Yamaguchi, YJ Bang, S Iwasa, N Sugimoto, MH Ryu, D Sakai, HC Chung, H Kawakami, H Yabusaki, J Lee, T Shimoyama, KW Lee, K Saito, Y Kawaguchi, T Kamio, A Kojima, M Sugihara, K Shitara. Trastuzumab deruxtecan in anti-human epidermal growth factor receptor 2 treatment-naive patients with human epidermal growth factor receptor 2-low gastric or gastroesophageal junction adenocarcinoma: exploratory cohort results in a phase II trial. J Clin Oncol 2023; 41(4): 816–825
https://doi.org/10.1200/JCO.22.00575
28 A Bardia, SA Hurvitz, SM Tolaney, D Loirat, K Punie, M Oliveira, A Brufsky, SD Sardesai, K Kalinsky, AB Zelnak, R Weaver, T Traina, F Dalenc, P Aftimos, F Lynce, S Diab, J Cortés, J O’Shaughnessy, V Diéras, C Ferrario, P Schmid, LA Carey, L Gianni, MJ Piccart, S Loibl, DM Goldenberg, Q Hong, MS Olivo, LM Itri, HS; ASCENT Clinical Trial Investigators Rugo. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med 2021; 384(16): 1529–1541
https://doi.org/10.1056/NEJMoa2028485
29 S Lonial, HC Lee, A Badros, S Trudel, AK Nooka, A Chari, AO Abdallah, N Callander, N Lendvai, D Sborov, A Suvannasankha, K Weisel, L Karlin, E Libby, B Arnulf, T Facon, C Hulin, KM Kortüm, P Rodríguez-Otero, SZ Usmani, P Hari, R Baz, H Quach, P Moreau, PM Voorhees, I Gupta, A Hoos, E Zhi, J Baron, T Piontek, E Lewis, RC Jewell, EJ Dettman, R Popat, SD Esposti, J Opalinska, P Richardson, AD Cohen. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol 2020; 21(2): 207–221
https://doi.org/10.1016/S1470-2045(19)30788-0
30 A Markham. Belantamab mafodotin: first approval. Drugs 2020; 80(15): 1607–1613
https://doi.org/10.1007/s40265-020-01404-x
31 LC Gomes-da-Silva, O Kepp, G Kroemer. Regulatory approval of photoimmunotherapy: photodynamic therapy that induces immunogenic cell death. OncoImmunology 2020; 9(1): 1841393
https://doi.org/10.1080/2162402X.2020.1841393
32 PF Caimi, W Ai, JP Alderuccio, KM Ardeshna, M Hamadani, B Hess, BS Kahl, J Radford, M Solh, A Stathis, PL Zinzani, K Havenith, J Feingold, S He, Y Qin, D Ungar, X Zhang, C Carlo-Stella. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol 2021; 22(6): 790–800
https://doi.org/10.1016/S1470-2045(21)00139-X
33 ED Deeks. Disitamab vedotin: first approval. Drugs 2021; 81(16): 1929–1935
https://doi.org/10.1007/s40265-021-01614-x
34 RL Coleman, D Lorusso, C Gennigens, A González-Martín, L Randall, D Cibula, B Lund, L Woelber, S Pignata, F Forget, A Redondo, SD Vindeløv, M Chen, JR Harris, M Smith, LV Nicacio, MSL Teng, A Laenen, R Rangwala, L Manso, M Mirza, BJ Monk, I; innovaTV 204/GOG-3023/ENGOT-cx6 Collaborators Vergote. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol 2021; 22(5): 609–619
https://doi.org/10.1016/S1470-2045(21)00056-5
35 DS Hong, N Concin, I Vergote, JS de Bono, BM Slomovitz, Y Drew, HT Arkenau, JP Machiels, JF Spicer, R Jones, MD Forster, N Cornez, C Gennigens, ML Johnson, FC Thistlethwaite, RA Rangwala, S Ghatta, K Windfeld, JR Harris, UN Lassen, RL Coleman. Tisotumab vedotin in previously treated recurrent or metastatic cervical cancer. Clin Cancer Res 2020; 26(6): 1220–1228
https://doi.org/10.1158/1078-0432.CCR-19-2962
36 YA Heo. Mirvetuximab soravtansine: first approval. Drugs 2023; 83(3): 265–273
https://doi.org/10.1007/s40265-023-01834-3
37 C Nieto-Jiménez, A Sanvicente, C Díaz-Tejeiro, V Moreno, de Sá A Lopez, E Calvo, J Martínez-López, P Pérez-Segura, A Ocaña. Uncovering therapeutic opportunities in the clinical development of antibody-drug conjugates. Clin Transl Med 2023; 13(9): e1329
https://doi.org/10.1002/ctm2.1329
38 H Maecker, V Jonnalagadda, S Bhakta, V Jammalamadaka, JR Junutula. Exploration of the antibody-drug conjugate clinical landscape. MAbs 2023; 15(1): 2229101
https://doi.org/10.1080/19420862.2023.2229101
39 K Weisel, VT Hungria, A Radinoff, S Delimpasi, G Mikala, T Masszi, J Li, M Capra, M Matsumoto, N Sule, M Li, A McKeown, W He, S Bright, B Currie, J Boyle, J Opalinska, MA Dimopoulos. A phase 3, open-label, randomized study to evaluate the efficacy and safety of single-agent belantamab mafodotin (belamaf) compared to pomalidomide plus low-dose dexamethasone (Pd) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): DREAMM-3. J Clin Oncol 2023; 41(16 suppl): 8007
https://doi.org/10.1200/JCO.2023.41.16_suppl.8007
40 A Wolska-Washer, T Robak. Safety and tolerability of antibody-drug conjugates in cancer. Drug Saf 2019; 42(2): 295–314
https://doi.org/10.1007/s40264-018-0775-7
41 PK Mahalingaiah, R Ciurlionis, KR Durbin, RL Yeager, BK Philip, B Bawa, SR Mantena, BP Enright, MJ Liguori, TR Van Vleet. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther 2019; 200: 110–125
https://doi.org/10.1016/j.pharmthera.2019.04.008
42 FV Suurs, MN Lub-de Hooge, EGE de Vries, DJA de Groot. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther 2019; 201: 103–119
https://doi.org/10.1016/j.pharmthera.2019.04.006
43 A Cavaliere, S Sun, S Lee, J Bodner, Z Li, Y Huang, SL Moores, B Marquez-Nostra. Development of [89Zr]ZrDFO-amivantamab bispecific to EGFR and c-MET for PET imaging of triple-negative breast cancer. Eur J Nucl Med Mol Imaging 2021; 48(2): 383–394
https://doi.org/10.1007/s00259-020-04978-6
44 X Cui, H Jia, H Xin, L Zhang, S Chen, S Xia, X Li, W Xu, X Chen, Y Feng, X Wei, H Yu, Y Wang, Y Zhan, X Zhu, X Zhang. A novel bispecific antibody targeting PD-L1 and VEGF with combined anti-tumor activities. Front Immunol 2021; 12: 778978
https://doi.org/10.3389/fimmu.2021.778978
45 J Neijssen, RMF Cardoso, KM Chevalier, L Wiegman, T Valerius, GM Anderson, SL Moores, J Schuurman, PWHI Parren, WR Strohl, ML Chiu. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem 2021; 296: 100641
https://doi.org/10.1016/j.jbc.2021.100641
46 Q Wu, Y Zhen, L Shi, P Vu, P Greninger, R Adil, J Merritt, R Egan, MJ Wu, X Yin, CR Ferrone, V Deshpande, I Baiev, CJ Pinto, DE McLoughlin, CS Walmsley, JR Stone, JD Gordan, AX Zhu, D Juric, L Goyal, CH Benes, N Bardeesy. EGFR inhibition potentiates FGFR inhibitor therapy and overcomes resistance in FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov 2022; 12(5): 1378–1395
https://doi.org/10.1158/2159-8290.CD-21-1168
47 J Cheng, M Liang, MF Carvalho, N Tigue, R Faggioni, LK Roskos, I Vainshtein. Molecular mechanism of HER2 rapid internalization and redirected trafficking induced by anti-HER2 biparatopic antibody. Antibodies (Basel) 2020; 9(3): 49
https://doi.org/10.3390/antib9030049
48 SJ Dovedi, MJ Elder, C Yang, SI Sitnikova, L Irving, A Hansen, J Hair, DC Jones, S Hasani, B Wang, SA Im, B Tran, DS Subramaniam, SD Gainer, K Vashisht, A Lewis, X Jin, S Kentner, K Mulgrew, Y Wang, MG Overstreet, J Dodgson, Y Wu, A Palazon, M Morrow, GJ Rainey, GJ Browne, F Neal, TV Murray, AD Toloczko, W Dall’Acqua, I Achour, DJ Freeman, RW Wilkinson, Y Mazor. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1+ activated T cells. Cancer Discov 2021; 11(5): 1100–1117
https://doi.org/10.1158/2159-8290.CD-20-1445
49 Y Wang, H Ni, S Zhou, K He, Y Gao, W Wu, M Wu, Z Wu, X Qiu, Y Zhou, B Chen, D Pan, C Huang, M Li, Y Bian, M Yang, L Miao, J Liu. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunol Immunother 2021; 70(2): 365–376
https://doi.org/10.1007/s00262-020-02679-5
50 MK Robinson, KM Hodge, E Horak, AL Sundberg, M Russeva, CC Shaller, M von Mehren, I Shchaveleva, HH Simmons, JD Marks, GP Adams. Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro. Br J Cancer 2008; 99(9): 1415–1425
https://doi.org/10.1038/sj.bjc.6604700
51 H Zhao, F Luo, J Xue, S Li, RH Xu. Emerging immunological strategies: recent advances and future directions. Front Med 2021; 15(6): 805–828
https://doi.org/10.1007/s11684-021-0886-x
52 JE Frampton. Catumaxomab: in malignant ascites. Drugs 2012; 72(10): 1399–1410
https://doi.org/10.2165/11209040-000000000-00000
53 H Kantarjian, A Stein, N Gökbuget, AK Fielding, AC Schuh, JM Ribera, A Wei, H Dombret, R Foà, R Bassan, Ö Arslan, MA Sanz, J Bergeron, F Demirkan, E Lech-Maranda, A Rambaldi, X Thomas, HA Horst, M Brüggemann, W Klapper, BL Wood, A Fleishman, D Nagorsen, C Holland, Z Zimmerman, MS Topp. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 2017; 376(9): 836–847
https://doi.org/10.1056/NEJMoa1609783
54 J Oldenburg, JN Mahlangu, B Kim, C Schmitt, MU Callaghan, G Young, E Santagostino, R Kruse-Jarres, C Negrier, C Kessler, N Valente, E Asikanius, GG Levy, J Windyga, M Shima. Emicizumab prophylaxis in hemophilia A with inhibitors. N Engl J Med 2017; 377(9): 809–818
https://doi.org/10.1056/NEJMoa1703068
55 C Zhou, KJ Tang, BC Cho, B Liu, L Paz-Ares, S Cheng, S Kitazono, M Thiagarajan, JW Goldman, JK Sabari, RE Sanborn, AS Mansfield, JY Hung, M Boyer, S Popat, Dias J Mourão, E Felip, M Majem, M Gumus, SW Kim, A Ono, J Xie, A Bhattacharya, T Agrawal, SM Shreeve, RE Knoblauch, K Park, N; PAPILLON Investigators Girard. Amivantamab plus chemotherapy in NSCLC with EGFR exon 20 insertions. N Engl J Med 2023; 389(22): 2039–2051
https://doi.org/10.1056/NEJMoa2306441
56 P Nathan, JC Hassel, P Rutkowski, JF Baurain, MO Butler, M Schlaak, RJ Sullivan, S Ochsenreither, R Dummer, JM Kirkwood, AM Joshua, JJ Sacco, AN Shoushtari, M Orloff, JM Piulats, M Milhem, AKS Salama, B Curti, L Demidov, L Gastaud, C Mauch, M Yushak, RD Carvajal, O Hamid, SE Abdullah, C Holland, H Goodall, S; IMCgp100-202 Investigators Piperno-Neumann. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N Engl J Med 2021; 385(13): 1196–1206
https://doi.org/10.1056/NEJMoa2103485
57 JS Heier, AM Khanani, Ruiz C Quezada, K Basu, PJ Ferrone, C Brittain, MS Figueroa, H Lin, FG Holz, V Patel, TYY Lai, D Silverman, C Regillo, B Swaminathan, F Viola, CMG Cheung, TY; TENAYA Wong, Investigators LUCERNE. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): two randomised, double-masked, phase 3, non-inferiority trials. Lancet 2022; 399(10326): 729–740
https://doi.org/10.1016/S0140-6736(22)00010-1
58 CC Wykoff, F Abreu, AP Adamis, K Basu, DA Eichenbaum, Z Haskova, H Lin, A Loewenstein, S Mohan, IA Pearce, T Sakamoto, PG Schlottmann, D Silverman, JK Sun, JA Wells, JR Willis, R; YOSEMITE Tadayoni, Investigators RHINE. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. Lancet 2022; 399(10326): 741–755
https://doi.org/10.1016/S0140-6736(22)00018-6
59 LE Budde, LH Sehn, M Matasar, SJ Schuster, S Assouline, P Giri, J Kuruvilla, M Canales, S Dietrich, K Fay, M Ku, L Nastoupil, CY Cheah, MC Wei, S Yin, CC Li, H Huang, A Kwan, E Penuel, NL Bartlett. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol 2022; 23(8): 1055–1065
https://doi.org/10.1016/S1470-2045(22)00335-7
60 SJ Keam. Cadonilimab: first approval. Drugs 2022; 82(12): 1333–1339
https://doi.org/10.1007/s40265-022-01761-9
61 P Moreau, AL Garfall, de Donk NWCJ van, H Nahi, JF San-Miguel, A Oriol, AK Nooka, T Martin, L Rosinol, A Chari, L Karlin, L Benboubker, MV Mateos, N Bahlis, R Popat, B Besemer, J Martínez-López, S Sidana, M Delforge, L Pei, D Trancucci, R Verona, S Girgis, SXW Lin, Y Olyslager, M Jaffe, C Uhlar, T Stephenson, Rampelbergh R Van, A Banerjee, JD Goldberg, R Kobos, A Krishnan, SZ Usmani. Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med 2022; 387(6): 495–505
https://doi.org/10.1056/NEJMoa2203478
62 T Takeuchi, M Kawanishi, M Nakanishi, H Yamasaki, Y Tanaka. Phase II/III results of a trial of anti-tumor necrosis factor multivalent NANOBODY compound ozoralizumab in patients with rheumatoid arthritis. Arthritis Rheumatol 2022; 74(11): 1776–1785
https://doi.org/10.1002/art.42273
63 C Thieblemont, T Phillips, H Ghesquieres, CY Cheah, MR Clausen, D Cunningham, YR Do, T Feldman, R Gasiorowski, W Jurczak, TM Kim, DJ Lewis, M van der Poel, ML Poon, M Cota Stirner, N Kilavuz, C Chiu, M Chen, M Sacchi, B Elliott, T Ahmadi, M Hutchings, PJ Lugtenburg. Epcoritamab, a novel, subcutaneous CD3xCD20 bispecific T-cell-engaging antibody, in relapsed or refractory large B-cell lymphoma: dose expansion in a phase I/II trial. J Clin Oncol 2023; 41(12): 2238–2247
https://doi.org/10.1200/JCO.22.01725
64 MJ Dickinson, C Carlo-Stella, F Morschhauser, E Bachy, P Corradini, G Iacoboni, C Khan, T Wróbel, F Offner, M Trněný, SJ Wu, G Cartron, M Hertzberg, A Sureda, D Perez-Callejo, L Lundberg, J Relf, M Dixon, E Clark, K Humphrey, M Hutchings. Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2022; 387(24): 2220–2231
https://doi.org/10.1056/NEJMoa2206913
65 AM Lesokhin, MH Tomasson, B Arnulf, NJ Bahlis, Prince H Miles, R Niesvizky, P Rodrίguez-Otero, J Martinez-Lopez, G Koehne, C Touzeau, Y Jethava, H Quach, J Depaus, H Yokoyama, AE Gabayan, DA Stevens, AK Nooka, S Manier, N Raje, S Iida, MS Raab, E Searle, E Leip, ST Sullivan, U Conte, M Elmeliegy, A Czibere, A Viqueira, M Mohty. Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results. Nat Med 2023; 29(9): 2259–2267
https://doi.org/10.1038/s41591-023-02528-9
66 A Chari, MC Minnema, JG Berdeja, A Oriol, de Donk NWCJ van, P Rodríguez-Otero, E Askari, MV Mateos, LJ Costa, J Caers, R Verona, S Girgis, S Yang, RB Goldsmith, X Yao, K Pillarisetti, BW Hilder, J Russell, JD Goldberg, A Krishnan. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. N Engl J Med 2022; 387(24): 2232–2244
https://doi.org/10.1056/NEJMoa2204591
67 AF Labrijn, ML Janmaat, JM Reichert, PWHI Parren. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18(8): 585–608
https://doi.org/10.1038/s41573-019-0028-1
68 BA Khaw, KS Gada, V Patil, R Panwar, S Mandapati, A Hatefi, S Majewski, A Weisenberger. Bispecific antibody complex pre-targeting and targeted delivery of polymer drug conjugates for imaging and therapy in dual human mammary cancer xenografts: targeted polymer drug conjugates for cancer diagnosis and therapy. Eur J Nucl Med Mol Imaging 2014; 41(8): 1603–1616
https://doi.org/10.1007/s00259-014-2738-2
69 RM Sharkey, CM van Rij, H Karacay, EA Rossi, C Frielink, C Regino, TM Cardillo, WJ McBride, CH Chang, OC Boerman, DM Goldenberg. A new Tri-Fab bispecific antibody for pretargeting Trop-2-expressing epithelial cancers. J Nucl Med 2012; 53(10): 1625–1632
https://doi.org/10.2967/jnumed.112.104364
70 U Brinkmann, RE Kontermann. The making of bispecific antibodies. MAbs 2017; 9(2): 182–212
https://doi.org/10.1080/19420862.2016.1268307
71 JBB Ridgway, LG Presta, P Carter. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 1996; 9(7): 617–621
https://doi.org/10.1093/protein/9.7.617
72 JH Davis, C Aperlo, Y Li, E Kurosawa, Y Lan, KM Lo, JS Huston. SEEDbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng Des Sel 2010; 23(4): 195–202
https://doi.org/10.1093/protein/gzp094
73 EA Rossi, DM Goldenberg, CH Chang. The dock-and-lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures. Bioconjug Chem 2012; 23(3): 309–323
https://doi.org/10.1021/bc2004999
74 H Shim. Bispecific antibodies and antibody-drug conjugates for cancer therapy: technological considerations. Biomolecules 2020; 10(3): 360
https://doi.org/10.3390/biom10030360
75 P Khongorzul, CJ Ling, FU Khan, AU Ihsan, J Zhang. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res 2020; 18(1): 3–19
https://doi.org/10.1158/1541-7786.MCR-19-0582
76 B Li, Y Meng, L Zheng, X Zhang, Q Tong, W Tan, S Hu, H Li, Y Chen, J Song, G Zhang, L Zhao, D Zhang, S Hou, W Qian, Y Guo. Bispecific antibody to ErbB2 overcomes trastuzumab resistance through comprehensive blockade of ErbB2 heterodimerization. Cancer Res 2013; 73(21): 6471–6483
https://doi.org/10.1158/0008-5472.CAN-13-0657
77 R Castoldi, V Ecker, L Wiehle, M Majety, R Busl-Schuller, M Asmussen, A Nopora, U Jucknischke, F Osl, S Kobold, W Scheuer, M Venturi, C Klein, G Niederfellner, C Sustmann. A novel bispecific EGFR/Met antibody blocks tumor-promoting phenotypic effects induced by resistance to EGFR inhibition and has potent antitumor activity. Oncogene 2013; 32(50): 5593–5601
https://doi.org/10.1038/onc.2013.245
78 YJ Kim, DS Baek, S Lee, D Park, HN Kang, BC Cho, YS Kim. Dual-targeting of EGFR and neuropilin-1 attenuates resistance to EGFR-targeted antibody therapy in KRAS-mutant non-small cell lung cancer. Cancer Lett 2019; 466: 23–34
https://doi.org/10.1016/j.canlet.2019.09.005
79 TD Nguyen, BM Bordeau, JP Balthasar. Mechanisms of ADC toxicity and strategies to increase ADC tolerability. Cancers (Basel) 2023; 15(3): 713
https://doi.org/10.3390/cancers15030713
80 A Maruani. Bispecifics and antibody-drug conjugates: a positive synergy. Drug Discov Today Technol 2018; 30: 55–61
https://doi.org/10.1016/j.ddtec.2018.09.003
81 JD Bargh, A Isidro-Llobet, JS Parker, DR Spring. Cleavable linkers in antibody-drug conjugates. Chem Soc Rev 2019; 48(16): 4361–4374
https://doi.org/10.1039/C8CS00676H
82 N Coleman, TA Yap, JV Heymach, F Meric-Bernstam, X Le. Antibody-drug conjugates in lung cancer: dawn of a new era. NPJ Precis Oncol 2023; 7(1): 5
https://doi.org/10.1038/s41698-022-00338-9
83 Y Ogitani, K Hagihara, M Oitate, H Naito, T Agatsuma. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci 2016; 107(7): 1039–1046
https://doi.org/10.1111/cas.12966
84 F Giugliano, C Corti, P Tarantino, F Michelini, G Curigliano. Bystander effect of antibody-drug conjugates: fact or fiction. Curr Oncol Rep 2022; 24(7): 809–817
https://doi.org/10.1007/s11912-022-01266-4
85 YV Kovtun, CA Audette, Y Ye, H Xie, MF Ruberti, SJ Phinney, BA Leece, T Chittenden, WA Blättler, VS Goldmacher. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 2006; 66(6): 3214–3221
https://doi.org/10.1158/0008-5472.CAN-05-3973
86 SD Pronk, E Schooten, J Heinen, E Helfrich, S Oliveira, PMP van Bergen en Henegouwen. Single domain antibodies as carriers for intracellular drug delivery: a proof of principle study. Biomolecules 2021; 11(7): 927
https://doi.org/10.3390/biom11070927
87 S Xu. Internalization, trafficking, intracellular processing and actions of antibody-drug conjugates. Pharm Res 2015; 32(11): 3577–3583
https://doi.org/10.1007/s11095-015-1729-8
88 C Kelton, JS Wesolowski, M Soloviev, R Schweickhardt, D Fischer, E Kurosawa, SD McKenna, AW Gross. Anti-EGFR biparatopic-SEED antibody has enhanced combination-activity in a single molecule. Arch Biochem Biophys 2012; 526(2): 219–225
https://doi.org/10.1016/j.abb.2012.03.005
89 LM Friedman, A Rinon, B Schechter, L Lyass, S Lavi, SS Bacus, M Sela, Y Yarden. Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc Natl Acad Sci USA 2005; 102(6): 1915–1920
https://doi.org/10.1073/pnas.0409610102
90 JB Spangler, JR Neil, S Abramovitch, Y Yarden, FM White, DA Lauffenburger, KD Wittrup. Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci USA 2010; 107(30): 13252–13257
https://doi.org/10.1073/pnas.0913476107
91 F ComerC GaoS Coats. Bispecific and biparatopic antibody drug conjugates. In: Damelin M. Innovations for Next-Generation Antibody-Drug Conjugates. Cham: Springer International Publishing, 2018: 267–280
92 FW Hunter, HR Barker, B Lipert, F Rothé, G Gebhart, MJ Piccart-Gebhart, C Sotiriou, SMF Jamieson. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br J Cancer 2020; 122(5): 603–612
https://doi.org/10.1038/s41416-019-0635-y
93 MD Pegram, D Miles, CK Tsui, Y Zong. HER2-overexpressing/amplified breast cancer as a testing ground for antibody-drug conjugate drug development in solid tumors. Clin Cancer Res 2020; 26(4): 775–786
https://doi.org/10.1158/1078-0432.CCR-18-1976
94 NE Weisser, M Sanches, E Escobar-Cabrera, J O’Toole, E Whalen, PWY Chan, G Wickman, L Abraham, K Choi, B Harbourne, A Samiotakis, AH Rojas, G Volkers, J Wong, CE Atkinson, J Baardsnes, LJ Worrall, D Browman, EE Smith, P Baichoo, CW Cheng, J Guedia, S Kang, A Mukhopadhyay, L Newhook, A Ohrn, P Raghunatha, M Zago-Schmitt, JD Schrag, J Smith, P Zwierzchowski, JM Scurll, V Fung, S Black, NCJ Strynadka, MR Gold, LG Presta, G Ng, S Dixit. An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat Commun 2023; 14(1): 1394
https://doi.org/10.1038/s41467-023-37029-3
95 JJ Harding, J Fan, DY Oh, HJ Choi, JW Kim, HM Chang, L Bao, HC Sun, T Macarulla, F Xie, JP Metges, J Ying, J Bridgewater, MA Lee, MA Tejani, EY Chen, DU Kim, H Wasan, M Ducreux, Y Bao, L Boyken, J Ma, P Garfin, S; HERIZON-BTC-01 study group Pant. Zanidatamab for HER2-amplified, unresectable, locally advanced or metastatic biliary tract cancer (HERIZON-BTC-01): a multicentre, single-arm, phase 2b study. Lancet Oncol 2023; 24(7): 772–782
https://doi.org/10.1016/S1470-2045(23)00242-5
96 R De Santis. Anti-ErbB2 immunotherapeutics: struggling to make better antibodies for cancer therapy. MAbs 2020; 12(1): 1725346
https://doi.org/10.1080/19420862.2020.1725346
97 S Huang, F Li, H Liu, P Ye, X Fan, X Yuan, Z Wu, J Chen, C Jin, B Shen, J Feng, B Zhang. Structural and functional characterization of MBS301, an afucosylated bispecific anti-HER2 antibody. MAbs 2018; 10(6): 864–875
https://doi.org/10.1080/19420862.2018.1486946
98 NK Lee, Y Su, S Bidlingmaier, B Liu. Manipulation of cell-type selective antibody internalization by a guide-effector bispecific design. Mol Cancer Ther 2019; 18(6): 1092–1103
https://doi.org/10.1158/1535-7163.MCT-18-1313
99 BE de Goeij, T Vink, H Ten Napel, EC Breij, D Satijn, R Wubbolts, D Miao, PW Parren. Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63. Mol Cancer Ther 2016; 15(11): 2688–2697
https://doi.org/10.1158/1535-7163.MCT-16-0364
100 MS Pols, J Klumperman. Trafficking and function of the tetraspanin CD63. Exp Cell Res 2009; 315(9): 1584–1592
https://doi.org/10.1016/j.yexcr.2008.09.020
101 RM DeVay, K Delaria, G Zhu, C Holz, D Foletti, J Sutton, G Bolton, R Dushin, C Bee, J Pons, A Rajpal, H Liang, D Shelton, SH Liu, P Strop. Improved lysosomal trafficking can modulate the potency of antibody drug conjugates. Bioconjug Chem 2017; 28(4): 1102–1114
https://doi.org/10.1021/acs.bioconjchem.7b00013
102 U Rupp, E Schoendorf-Holland, M Eichbaum, F Schuetz, I Lauschner, P Schmidt, A Staab, G Hanft, J Huober, HP Sinn, C Sohn, A Schneeweiss. Safety and pharmacokinetics of bivatuzumab mertansine in patients with CD44v6-positive metastatic breast cancer: final results of a phase I study. Anticancer Drugs 2007; 18(4): 477–485
https://doi.org/10.1097/CAD.0b013e32801403f4
103 JE Rosenberg, PH O’Donnell, AV Balar, BA McGregor, EI Heath, EY Yu, MD Galsky, NM Hahn, EM Gartner, JM Pinelli, SY Liang, A Melhem-Bertrandt, DP Petrylak. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Clin Oncol 2019; 37(29): 2592–2600
https://doi.org/10.1200/JCO.19.01140
104 MN Saleh, S Sugarman, J Murray, JB Ostroff, D Healey, D Jones, CR Daniel, D LeBherz, H Brewer, N Onetto, AF LoBuglio. Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J Clin Oncol 2000; 18(11): 2282–2292
https://doi.org/10.1200/JCO.2000.18.11.2282
105 E Dheilly, V Moine, L Broyer, S Salgado-Pires, Z Johnson, A Papaioannou, L Cons, S Calloud, S Majocchi, R Nelson, F Rousseau, W Ferlin, M Kosco-Vilbois, N Fischer, K Masternak. Selective blockade of the ubiquitous checkpoint receptor CD47 is enabled by dual-targeting bispecific antibodies. Mol Ther 2017; 25(2): 523–533
https://doi.org/10.1016/j.ymthe.2016.11.006
106 A Baruch, C Wong, LW Chinn, A Vaze, J Sonoda, T Gelzleichter, S Chen, N Lewin-Koh, L Morrow, S Dheerendra, R Boismenu, J Gutierrez, E Wakshull, ME Wilson, PS Arora. Antibody-mediated activation of the FGFR1/Klothoβ complex corrects metabolic dysfunction and alters food preference in obese humans. Proc Natl Acad Sci USA 2020; 117(46): 28992–29000
https://doi.org/10.1073/pnas.2012073117
107 L Geng, KSL Lam, A Xu. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol 2020; 16(11): 654–667
https://doi.org/10.1038/s41574-020-0386-0
108 S Liu, W Lyu, S Yin, Y Lei, Q Zhuo, L Zheng, B Sun, S Tan, L Jiang, T Zhang, B Gao, R Xu, D Huang, Y Li, Z Wu, D Wu, Y Wen. Abstract 6307: a novel pegylated bispecific antibody-drug conjugate (P-BsADCpb-adc) targeting cancers co-expressing PD-L1 and CD47. Cancer Res 2023; 83(7 Supplement): 6307
https://doi.org/10.1158/1538-7445.AM2023-6307
109 JM Baas, LL Krens, HJ Guchelaar, J Ouwerkerk, FA de Jong, AP Lavrijsen, H Gelderblom. Recommendations on management of EGFR inhibitor-induced skin toxicity: a systematic review. Cancer Treat Rev 2012; 38(5): 505–514
https://doi.org/10.1016/j.ctrv.2011.09.004
110 ME Lacouture. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer 2006; 6(10): 803–812
https://doi.org/10.1038/nrc1970
111 C Knuehl, L Toleikis, J Dotterweich, J Ma, S Kumar, E Ross, C Wilm, M Schmitt, HJ Grote, C Amendt. Abstract 5284: M1231 is a bispecific anti-MUC1xEGFR antibody-drug conjugate designed to treat solid tumors with MUC1 and EGFR co-expression. Cancer Res 2022; 82(12 Supplement): 5284
https://doi.org/10.1158/1538-7445.AM2022-5284
112 Y Ma, Y Huang, Y Zhao, S Zhao, J Xue, Y Yang, W Fang, Y Guo, Y Han, K Yang, Y Li, J Yang, Z Fu, G Chen, L Chen, N Zhou, T Zhou, Y Zhang, H Zhou, Q Liu, Y Zhu, H Zhu, S Xiao, L Zhang, H Zhao. BL-B01D1, a first-in-class EGFR-HER3 bispecific antibody-drug conjugate, in patients with locally advanced or metastatic solid tumours: a first-in-human, open-label, multicentre, phase 1 study. Lancet Oncol 2024; 29: S1470–2045(24)00159–1
https://doi.org/10.1016/S1470-2045(24)00159-1
113 L McGrath, Y Zheng, S Christ, CC Sachs, S Khelifa, C Windmüller, S Sweet, YJ Kim, D Sutton, M Sulikowski, A Lewis, I Inigo, N Floch, E Rosfjord, F Arnaldez, F Comer. Abstract 5737: Evaluation of the relationship between target expression and in vivo anti-tumor efficacy of AZD9592, an EGFR/c-MET targeted bispecific antibody drug conjugate. Cancer Res 2023; 83(7 Supplement): 5737
https://doi.org/10.1158/1538-7445.AM2023-5737
114 R Khoury, K Saleh, N Khalife, M Saleh, C Chahine, R Ibrahim, A Lecesne. Mechanisms of resistance to antibody-drug conjugates. Int J Mol Sci 2023; 24(11): 9674
https://doi.org/10.3390/ijms24119674
115 E Díaz-Rodríguez, L Gandullo-Sánchez, A Ocaña, A Pandiella. Novel ADCs and strategies to overcome resistance to anti-HER2 ADCs. Cancers (Basel) 2021; 14(1): 154
https://doi.org/10.3390/cancers14010154
116 O Ab, LM Bartle, L Lanieri, JF Ponte, QF Qiu, S Sikka, JA Costoplus, W Deats, NC Yoder, WC Widdison, K Mucciarone, K Selvitelli, Y Chen, N Kohli, T Chittenden, R Gregory, Y Setiady, EH Westin. IMGN151-A next generation folate receptor alpha targeting antibody drug conjugate active against tumors with low, medium and high receptor expression. Cancer Res 2020; 80(16 Supplement): 2890
https://doi.org/10.1158/1538-7445.AM2020-2890
117 JO DaSilva, K Yang, AE Perez Bay, J Andreev, P Ngoi, E Pyles, MC Franklin, D Dudgeon, A Rafique, A Dore, FJ Delfino, TB Potocky, R Babb, G Chen, D MacDonald, WC Olson, G Thurston, C Daly. A biparatopic antibody that modulates MET trafficking exhibits enhanced efficacy compared with parental antibodies in MET-driven tumor models. Clin Cancer Res 2020; 26(6): 1408–1419
https://doi.org/10.1158/1078-0432.CCR-19-2428
118 OM Filho, G Viale, S Stein, L Trippa, DA Yardley, IA Mayer, VG Abramson, CL Arteaga, LM Spring, AG Waks, E Wrabel, MK DeMeo, A Bardia, P Dell’Orto, L Russo, TA King, K Polyak, F Michor, EP Winer, IE Krop. Impact of HER2 heterogeneity on treatment response of early-stage HER2-positive breast cancer: phase II neoadjuvant clinical trial of T-DM1 combined with pertuzumab. Cancer Discov 2021; 11(10): 2474–2487
https://doi.org/10.1158/2159-8290.CD-20-1557
119 KN Moore, AM Oza, N Colombo, A Oaknin, G Scambia, D Lorusso, GE Konecny, S Banerjee, CG Murphy, JL Tanyi, H Hirte, JA Konner, PC Lim, M Prasad-Hayes, BJ Monk, P Pautier, J Wang, A Berkenblit, I Vergote, MJ Birrer. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I. Ann Oncol 2021; 32(6): 757–765
https://doi.org/10.1016/j.annonc.2021.02.017
120 J Fan, X Zhuang, X Yang, Y Xu, Z Zhou, L Pan, S Chen. A multivalent biparatopic EGFR-targeting nanobody drug conjugate displays potent anticancer activity in solid tumor models. Signal Transduct Target Ther 2021; 6(1): 320
https://doi.org/10.1038/s41392-021-00666-5
121 MT Larsen, M Kuhlmann, ML Hvam, KA Howard. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther 2016; 4(1): 3
https://doi.org/10.1186/s40591-016-0048-8
122 MS Dennis, H Jin, D Dugger, R Yang, L McFarland, A Ogasawara, S Williams, MJ Cole, S Ross, R Schwall. Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 2007; 67(1): 254–261
https://doi.org/10.1158/0008-5472.CAN-06-2531
123 Q Li, A Barrett, B Vijayakrishnan, A Tiberghien, R Beard, KW Rickert, KL Allen, RJ Christie, M Marelli, J Harper, P Howard, H Wu, WF Dall’Acqua, P Tsui, C Gao, MJ Borrok. Improved inhibition of tumor growth by diabody-drug conjugates via half-life extension. Bioconjug Chem 2019; 30(4): 1232–1243
https://doi.org/10.1021/acs.bioconjchem.9b00170
124 Z Han, C Shang, W Dai, G An, E Zhang, Q Lin, Y Yang. Abstract LB213: Identification of DM004, a first-in-class anti-5T4/MET bispecific antibody-drug conjugate. Cancer Res 2023; 83(8 Supplement): LB213
https://doi.org/10.1158/1538-7445.AM2023-LB213
125 Z Li, C Shang, X Guan, G An, Y Guo, E Zhang, Q Lin, Y Yang. Abstract LB215: A first-in-class anti-TROP2/EGFR bispecific antibody-drug conjugate, DM001, exhibits potent anti-tumor efficacy. Cancer Res 2023; 83(8 Supplement): LB215
https://doi.org/10.1158/1538-7445.AM2023-LB215
126 Z Li, C Shang, X Guan, Z Han, G An, E Zhang, Q Lin, Y Yang. Abstract LB212: BCG022: A novel bispecific antibody-drug conjugate targeting HER3 and MET. Cancer Res 2023; 83(8 Supplement): LB212
https://doi.org/10.1158/1538-7445.AM2023-LB212
127 C Shang, G An, Y Guo, E Zhang, Q Lin, Y Yang. Abstract 2977: A first-in-class anti-HER2/TROP2 bispecific antibody-drug conjugate (YH012) exhibits potent anti-tumor efficacy. Cancer Res 2023; 83(7 Supplement): 2977
https://doi.org/10.1158/1538-7445.AM2023-2977
128 S Yao, C Shang, G An, E Zhang, Q Lin, Y Yang. Abstract LB216: Discovery of BCG033, a novel anti-PTK7 x TROP2 bispecific antibody-drug conjugate with promising efficacy against triple-negative breast cancer. Cancer Res 2023; 83(8 Supplement): LB216
https://doi.org/10.1158/1538-7445.AM2023-LB216
129 Y Zhang, C Shang, N Wang, G An, E Zhang, Q Lin, Y Yang. Abstract LB214: A first-in-class bispecific antibody-drug conjugate (DM002) targeting HER3 and the juxtamembrane domain of MUC1. Cancer Res 2023; 83(8 Supplement): LB214
https://doi.org/10.1158/1538-7445.AM2023-LB214
130 P Jiménez-Labaig, A Rullan, A Hernando-Calvo, S Llop, S Bhide, B O'Leary, I Braña, KJ Harrington. A systematic review of antibody-drug conjugates and bispecific antibodies in head and neck squamous cell carcinoma and nasopha-ryngeal carcinoma: Charting the course of future therapies. Cancer Treat Rev 2024; 128: 102772
https://doi.org/10.1016/j.ctrv.2024.102772
131 HM Haikala, PA Jänne. Thirty years of HER3: from basic biology to therapeutic interventions. Clin Cancer Res 2021; 27(13): 3528–3539
https://doi.org/10.1158/1078-0432.CCR-20-4465
132 J Uliano, C Corvaja, G Curigliano, P Tarantino. Targeting HER3 for cancer treatment: a new horizon for an old target. ESMO Open 2023; 8(1): 100790
https://doi.org/10.1016/j.esmoop.2023.100790
133 K Matsumoto, T Nakamura. Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. Int J Cancer 2006; 119(3): 477–483
https://doi.org/10.1002/ijc.21808
134 K Matsumoto, M Umitsu, DM De Silva, A Roy, DP Bottaro. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci 2017; 108(3): 296–307
https://doi.org/10.1111/cas.13156
135 AM Dulak, CT Gubish, LP Stabile, C Henry, JM Siegfried. HGF-independent potentiation of EGFR action by c-Met. Oncogene 2011; 30(33): 3625–3635
https://doi.org/10.1038/onc.2011.84
136 LV Sequist, JY Han, MJ Ahn, BC Cho, H Yu, SW Kim, JC Yang, JS Lee, WC Su, D Kowalski, S Orlov, M Cantarini, RB Verheijen, A Mellemgaard, L Ottesen, P Frewer, X Ou, G Oxnard. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. Lancet Oncol 2020; 21(3): 373–386
https://doi.org/10.1016/S1470-2045(19)30785-5
137 SI Ou, L Young, AB Schrock, A Johnson, SJ Klempner, VW Zhu, VA Miller, SM Ali. Emergence of preexisting MET Y1230C mutation as a resistance mechanism to crizotinib in NSCLC with MET exon 14 skipping. J Thorac Oncol 2017; 12(1): 137–140
https://doi.org/10.1016/j.jtho.2016.09.119
138 GGY Lai, TH Lim, J Lim, PJR Liew, XL Kwang, R Nahar, ZW Aung, A Takano, YY Lee, DPX Lau, GS Tan, SH Tan, WL Tan, MK Ang, CK Toh, BS Tan, A Devanand, CW Too, A Gogna, BH Ong, TPT Koh, R Kanesvaran, QS Ng, A Jain, T Rajasekaran, J Yuan, TKH Lim, AST Lim, AM Hillmer, WT Lim, NG Iyer, WL Tam, W Zhai, EH Tan, DSW Tan. Clonal MET amplification as a determinant of tyrosine kinase inhibitor resistance in epidermal growth factor receptor-mutant non-small-cell lung cancer. J Clin Oncol 2019; 37(11): 876–884
https://doi.org/10.1200/JCO.18.00177
139 S Baldacci, Z Kherrouche, V Cockenpot, L Stoven, MC Copin, E Werkmeister, N Marchand, M Kyheng, D Tulasne, AB Cortot. MET amplification increases the metastatic spread of EGFR-mutated NSCLC. Lung Cancer 2018; 125: 57–67
https://doi.org/10.1016/j.lungcan.2018.09.008
140 SY Oh, YW Lee, EJ Lee, JH Kim, Y Park, SG Heo, MR Yu, MH Hong, J DaSilva, C Daly, BC Cho, SM Lim, MR Yun. Preclinical study of a biparatopic METxMET antibody-drug conjugate, REGN5093-M114, overcomes MET-driven acquired resistance to EGFR TKIs in EGFR-mutant NSCLC. Clin Cancer Res 2023; 29(1): 221–232
https://doi.org/10.1158/1078-0432.CCR-22-2180
141 JO DaSilva, K Yang, O Surriga, T Nittoli, A Kunz, MC Franklin, FJ Delfino, S Mao, F Zhao, JT Giurleo, MP Kelly, S Makonnen, C Hickey, P Krueger, R Foster, Z Chen, MW Retter, R Slim, TM Young, WC Olson, G Thurston, C Daly. A biparatopic antibody-drug conjugate to treat MET-expressing cancers, including those that are unresponsive to MET pathway blockade. Mol Cancer Ther 2021; 20(10): 1966–1976
https://doi.org/10.1158/1535-7163.MCT-21-0009
142 AE Perez Bay, D Faulkner, JO DaSilva, TM Young, K Yang, JT Giurleo, D Ma, FJ Delfino, WC Olson, G Thurston, C Daly, J Andreev. A bispecific METxMET antibody-drug conjugate with cleavable linker is processed in recycling and late endosomes. Mol Cancer Ther 2023; 22(3): 357–370
https://doi.org/10.1158/1535-7163.MCT-22-0414
143 JY Li, SR Perry, V Muniz-Medina, X Wang, LK Wetzel, MC Rebelatto, MJ Hinrichs, BZ Bezabeh, RL Fleming, N Dimasi, H Feng, D Toader, AQ Yuan, L Xu, J Lin, C Gao, H Wu, R Dixit, JK Osbourn, SR Coats. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 2016; 29(1): 117–129
https://doi.org/10.1016/j.ccell.2015.12.008
144 K HamblettS BarnscherR DaviesP HammondA HernandezG WickmanV FungT Ding G GarnettA GaleyP ZwierzchowskiB ClavetteG Winters J RichG RowseJ BabcookD Hausman. Abstract P6–17–13: ZW49, a HER2 targeted biparatopic antibody drug conjugate for the treatment of HER2 expressing cancers. Cancer Res 2019; 79(4_Supplement): P6–17–13
145 MD Pegram, EP Hamilton, AR Tan, AM Storniolo, K Balic, AI Rosenbaum, M Liang, P He, S Marshall, A Scheuber, M Das, MR Patel. First-in-human, phase 1 dose-escalation study of biparatopic anti-HER2 antibody-drug conjugate MEDI4276 in patients with HER2-positive advanced breast or gastric cancer. Mol Cancer Ther 2021; 20(8): 1442–1453
https://doi.org/10.1158/1535-7163.MCT-20-0014
146 K Jhaveri, H Han, E Dotan, DY Oh, C Ferrario, A Tolcher, KW Lee, CY Liao, YK Kang, YH Kim, E Hamilton, A Spira, N Patel, C Karapetis, SY Rha, L Boyken, J Woolery, P Bedard. Preliminary results from a phase I study using the bispecific, human epidermal growth factor 2 (HER2)-targeting antibody-drug conjugate (ADC) zanidatamab zovodotin (ZW49) in solid cancers. Ann Oncol 2022; 33(7): S749–S750
https://doi.org/10.1016/j.annonc.2022.07.589
147 MJ Hinrichs, R Dixit. Antibody drug conjugates: nonclinical safety considerations. AAPS J 2015; 17(5): 1055–1064
https://doi.org/10.1208/s12248-015-9790-0
148 Y Gu, Z Wang, Y Wang. Bispecific antibody drug conjugates: Making 1+1 > 2. Acta Pharm Sin B. 2024; 14(5): 1965–1986
https://doi.org/10.1016/j.apsb.2024.01.009
149 P Wang, K Guo, J Peng, J Sun, T Xu. JSKN003, a novel biparatopic anti-HER2 antibody-drug conjugate, exhibits potent antitumor efficacy. Antib Ther 2023; 6: tbad014.009
https://doi.org/10.1093/abt/tbad014.009
150 A Kharbanda, H Rajabi, C Jin, J Tchaicha, E Kikuchi, KK Wong, D Kufe. Targeting the oncogenic MUC1-C protein inhibits mutant EGFR-mediated signaling and survival in non-small cell lung cancer cells. Clin Cancer Res 2014; 20(21): 5423–5434
https://doi.org/10.1158/1078-0432.CCR-13-3168
151 T Piyush, AR Chacko, P Sindrewicz, J Hilkens, JM Rhodes, LG Yu. Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells. Cell Death Differ 2017; 24(11): 1937–1947
https://doi.org/10.1038/cdd.2017.119
152 JH Davis, C Aperlo, Y Li, E Kurosawa, Y Lan, KM Lo, JS Huston. SEEDbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng Des Sel 2010; 23(4): 195–202
https://doi.org/10.1093/protein/gzp094
153 Y Zhang, C Shang, A Wang, J Zhang, Y Liu, H Li, X Li, G An, L Hui, F An, Y Yang. Abstract 6325: A novel EGFR x MUC1 bispecific antibody-drug conjugate, BSA01, targets MUC1 transmembrane cleavage products and improves tumor selectivity. Cancer Res 2023; 83(7 Supplement): 6325
https://doi.org/10.1158/1538-7445.AM2023-6325
154 Q Dong, Y Du, H Li, C Liu, Y Wei, MK Chen, X Zhao, YY Chu, Y Qiu, L Qin, H Yamaguchi, MC Hung. EGFR and c-MET cooperate to enhance resistance to PARP inhibitors in hepatocellular carcinoma. Cancer Res 2019; 79(4): 819–829
https://doi.org/10.1158/0008-5472.CAN-18-1273
155 YL Wu, RA Soo, G Locatelli, U Stammberger, G Scagliotti, K Park. Does c-Met remain a rational target for therapy in patients with EGFR TKI-resistant non-small cell lung cancer. Cancer Treat Rev 2017; 61: 70–81
https://doi.org/10.1016/j.ctrv.2017.10.003
156 L Huang, L Fu. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B 2015; 5(5): 390–401
https://doi.org/10.1016/j.apsb.2015.07.001
157 SL Moores, ML Chiu, BS Bushey, K Chevalier, L Luistro, K Dorn, RJ Brezski, P Haytko, T Kelly, SJ Wu, PL Martin, J Neijssen, PW Parren, J Schuurman, RM Attar, S Laquerre, MV Lorenzi, GM Anderson. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res 2016; 76(13): 3942–3953
https://doi.org/10.1158/0008-5472.CAN-15-2833
158 DW Wu, TC Chen, HS Huang, H Lee. TC-N19, a novel dual inhibitor of EGFR and cMET, efficiently overcomes EGFR-TKI resistance in non-small-cell lung cancer cells. Cell Death Dis 2016; 7(6): e2290
https://doi.org/10.1038/cddis.2016.192
159 YL Wu, L Zhang, DW Kim, X Liu, DH Lee, JC Yang, MJ Ahn, JF Vansteenkiste, WC Su, E Felip, V Chia, S Glaser, P Pultar, S Zhao, B Peng, M Akimov, DSW Tan. Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer. J Clin Oncol 2018; 36(31): 3101–3109
https://doi.org/10.1200/JCO.2018.77.7326
160 M Scaranti, E Cojocaru, S Banerjee, U Banerji. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol 2020; 17(6): 349–359
https://doi.org/10.1038/s41571-020-0339-5
161 A Cheung, HJ Bax, DH Josephs, KM Ilieva, G Pellizzari, J Opzoomer, J Bloomfield, M Fittall, A Grigoriadis, M Figini, S Canevari, JF Spicer, AN Tutt, SN Karagiannis. Targeting folate receptor alpha for cancer treatment. Oncotarget 2016; 7(32): 52553–52574
https://doi.org/10.18632/oncotarget.9651
162 O Ab, KR Whiteman, LM Bartle, X Sun, R Singh, D Tavares, A LaBelle, G Payne, RJ Lutz, J Pinkas, VS Goldmacher, T Chittenden, JM Lambert. IMGN853, a folate receptor-α (FRα)-targeting antibody-drug conjugate, exhibits potent targeted antitumor activity against FRα-expressing tumors. Mol Cancer Ther 2015; 14(7): 1605–1613
https://doi.org/10.1158/1535-7163.MCT-14-1095
163 D Romero. Mirvetuximab soravtansine has activity in platinum-sensitive epithelial ovarian cancer. Nat Rev Clin Oncol 2024; 21(6): 402
https://doi.org/10.1038/s41571-024-00888-w
164 UA Matulonis, D Lorusso, A Oaknin, S Pignata, A Dean, H Denys, N Colombo, T Van Gorp, JA Konner, MR Marin, P Harter, CG Murphy, J Wang, E Noble, B Esteves, M Method, RL Coleman. Efficacy and safety of mirvetuximab soravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: results from the SORAYA study. J Clin Oncol 2023; 41(13): 2436–2445
https://doi.org/10.1200/JCO.22.01900
165 KN Moore, TV Gorp, J Wang, B Esteves, PA Zweidler-McKay. MIRASOL (GOG 3045/ENGOT OV-55): a randomized, open-label, phase III study of mirvetuximab soravtansine versus investigator’s choice of chemotherapy in advanced high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancers with high folate-alpha (FRα) expression. J Clin Oncol 2020; 38(15 suppl): TPS6103
https://doi.org/10.1200/JCO.2020.38.15_suppl.TPS6103
166 J Gong, X Hu, J Zhang, Y Du, R Huang, Y Teng, W Tan, L Shen. Phase Ia study of CBP-1008, a bi-specific ligand drug conjugate targeting FRα and TRPV6, in patients with advanced solid tumors. J Clin Oncol 2021; 39(15 suppl): 3077
https://doi.org/10.1200/JCO.2021.39.15_suppl.3077
167 B Esapa, J Jiang, A Cheung, A Chenoweth, DE Thurston, SN Karagiannis. Target antigen attributes and their contributions to clinically approved antibody-drug conjugates (ADCs) in haematopoietic and solid cancers. Cancers (Basel) 2023; 15(6): 1845
https://doi.org/10.3390/cancers15061845
168 N Joubert, A Beck, C Dumontet, C Denevault-Sabourin. Antibody-drug conjugates: the last decade. Pharmaceuticals (Basel) 2020; 13(9): 245
https://doi.org/10.3390/ph13090245
169 Y Sun, X Yu, X Wang, K Yuan, G Wang, L Hu, G Zhang, W Pei, L Wang, C Sun, P Yang. Bispecific antibodies in cancer therapy: target selection and regulatory requirements. Acta Pharm Sin B 2023; 13(9): 3583–3597
https://doi.org/10.1016/j.apsb.2023.05.023
170 T Jiang, T Shi, H Zhang, J Hu, Y Song, J Wei, S Ren, C Zhou. Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol 2019; 12(1): 93
https://doi.org/10.1186/s13045-019-0787-5
171 RG Gupta, F Li, J Roszik, G Lizée. Exploiting tumor neoantigens to target cancer evolution: current challenges and promising therapeutic approaches. Cancer Discov 2021; 11(5): 1024–1039
https://doi.org/10.1158/2159-8290.CD-20-1575
172 M Yarchoan, BA 3rd Johnson, ER Lutz, DA Laheru, EM Jaffee. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 2017; 17(4): 209–222
https://doi.org/10.1038/nrc.2016.154
173 Z Zhang, PJ Rohweder, C Ongpipattanakul, K Basu, MF Bohn, EJ Dugan, V Steri, B Hann, KM Shokat, CS Craik. A covalent inhibitor of K-Ras(G12C) induces MHC class I presentation of haptenated peptide neoepitopes targetable by immunotherapy. Cancer Cell 2022; 40(9): 1060–1069. e7
https://doi.org/10.1016/j.ccell.2022.07.005
174 DB Williams, A Vassilakos, WK Suh. Peptide presentation by MHC class I molecules. Trends Cell Biol 1996; 6(7): 267–273
https://doi.org/10.1016/0962-8924(96)10020-9
175 T Hattori, L Maso, KY Araki, A Koide, J Hayman, P Akkapeddi, I Bang, BG Neel, S Koide. Creating MHC-restricted neoantigens with covalent inhibitors that can be targeted by immune therapy. Cancer Discov 2023; 13(1): 132–145
https://doi.org/10.1158/2159-8290.CD-22-1074
176 J Douglass, EH Hsiue, BJ Mog, MS Hwang, SR DiNapoli, AH Pearlman, MS Miller, KM Wright, PA Azurmendi, Q Wang, S Paul, A Schaefer, AD Skora, MD Molin, MF Konig, Q Liu, E Watson, Y Li, MB Murphy, DM Pardoll, C Bettegowda, N Papadopoulos, SB Gabelli, KW Kinzler, B Vogelstein, S Zhou. Bispecific antibodies targeting mutant RAS neoantigens. Sci Immunol 2021; 6(57): eabd5515
https://doi.org/10.1126/sciimmunol.abd5515
177 EHC Hsiue, KM Wright, J Douglass, MS Hwang, BJ Mog, AH Pearlman, S Paul, SR DiNapoli, MF Konig, Q Wang, A Schaefer, MS Miller, AD Skora, PA Azurmendi, MB Murphy, Q Liu, E Watson, Y Li, DM Pardoll, C Bettegowda, N Papadopoulos, KW Kinzler, B Vogelstein, SB Gabelli, S Zhou. Targeting a neoantigen derived from a common TP53 mutation. Science 2021; 371(6533): eabc8697
https://doi.org/10.1126/science.abc8697
178 Y Shen, X Wei, S Jin, Y Wu, W Zhao, Y Xu, L Pan, Z Zhou, S Chen. TCR-mimic antibody-drug conjugates targeting intracellular tumor-specific mutant antigen KRAS G12V mutation. Asian J Pharm Sci 2020; 15(6): 777–785
https://doi.org/10.1016/j.ajps.2020.01.002
179 DJ Marshall, SS Harried, JL Murphy, CA Hall, MS Shekhani, C Pain, CA Lyons, A Chillemi, F Malavasi, HL Pearce, JS Thorson, JR Prudent. Extracellular antibody drug conjugates exploiting the proximity of two proteins. Mol Ther 2016; 24(10): 1760–1770
https://doi.org/10.1038/mt.2016.119
180 AG Polson, J Calemine-Fenaux, P Chan, W Chang, E Christensen, S Clark, FJ de Sauvage, D Eaton, K Elkins, JM Elliott, G Frantz, RN Fuji, A Gray, K Harden, GS Ingle, NM Kljavin, H Koeppen, C Nelson, S Prabhu, H Raab, S Ross, DS Slaga, JP Stephan, SJ Scales, SD Spencer, R Vandlen, B Wranik, SF Yu, B Zheng, A Ebens. Antibody-drug conjugates for the treatment of non-Hodgkin’s lymphoma: target and linker-drug selection. Cancer Res 2009; 69(6): 2358–2364
https://doi.org/10.1158/0008-5472.CAN-08-2250
181 SV Govindan, TM Cardillo, SJ Moon, HJ Hansen, DM Goldenberg. CEACAM5-targeted therapy of human colonic and pancreatic cancer xenografts with potent labetuzumab-SN-38 immunoconjugates. Clin Cancer Res 2009; 15(19): 6052–6061
https://doi.org/10.1158/1078-0432.CCR-09-0586
182 F Javaid, C Pilotti, C Camilli, D Kallenberg, C Bahou, J Blackburn, JR Baker, J Greenwood, SE Moss, V Chudasama. Leucine-rich alpha-2-glycoprotein 1 (LRG1) as a novel ADC target. RSC Chem Biol 2021; 2(4): 1206–1220
https://doi.org/10.1039/D1CB00104C
183 S Sau, A Petrovici, HO Alsaab, K Bhise, AK Iyer. PDL-1 antibody drug conjugate for selective chemo-guided immune modulation of cancer. Cancers (Basel) 2019; 11(2): 232
https://doi.org/10.3390/cancers11020232
184 F Giansanti, E Capone, S Ponziani, E Piccolo, R Gentile, A Lamolinara, A Di Campli, M Sallese, V Iacobelli, A Cimini, V De Laurenzi, R Lattanzio, M Piantelli, R Ippoliti, G Sala, S Iacobelli. Secreted Gal-3BP is a novel promising target for non-internalizing antibody-drug conjugates. J Control Release 2019; 294: 176–184
https://doi.org/10.1016/j.jconrel.2018.12.018
185 N Awasthi, AJ Mikels-Vigdal, E Stefanutti, MA Schwarz, S Monahan, V Smith, RE Schwarz. Therapeutic efficacy of anti-MMP9 antibody in combination with nab-paclitaxel-based chemotherapy in pre-clinical models of pancreatic cancer. J Cell Mol Med 2019; 23(6): 3878–3887
https://doi.org/10.1111/jcmm.14242
186 ML Yap, JD McFadyen, X Wang, M Ziegler, YC Chen, A Willcox, CJ Nowell, AM Scott, EK Sloan, PM Hogarth, GA Pietersz, K Peter. Activated platelets in the tumor microenvironment for targeting of antibody-drug conjugates to tumors and metastases. Theranostics 2019; 9(4): 1154–1169
https://doi.org/10.7150/thno.29146
187 GJ Bernardes, G Casi, S Trüssel, I Hartmann, K Schwager, J Scheuermann, D Neri. A traceless vascular-targeting antibody-drug conjugate for cancer therapy. Angew Chem Int Ed Engl 2012; 51(4): 941–944
https://doi.org/10.1002/anie.201106527
188 KR Polu, HB Lowman. Probody therapeutics for targeting antibodies to diseased tissue. Expert Opin Biol Ther 2014; 14(8): 1049–1053
https://doi.org/10.1517/14712598.2014.920814
189 LR Desnoyers, O Vasiljeva, JH Richardson, A Yang, EE Menendez, TW Liang, C Wong, PH Bessette, K Kamath, SJ Moore, JG Sagert, DR Hostetter, F Han, J Gee, J Flandez, K Markham, M Nguyen, M Krimm, KR Wong, S Liu, PS Daugherty, JW West, HB Lowman. Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transl Med 2013; 5(207): 207ra144
https://doi.org/10.1126/scitranslmed.3006682
190 KA Autio, V Boni, RW Humphrey, A Naing. Probody therapeutics: an emerging class of therapies designed to enhance on-target effects with reduced off-tumor toxicity for use in immuno-oncology. Clin Cancer Res 2020; 26(5): 984–989
https://doi.org/10.1158/1078-0432.CCR-19-1457
191 M Chomet, M Schreurs, M Nguyen, B Howng, R Villanueva, M Krimm, O Vasiljeva, GAMS van Dongen, DJ Vugts. The tumor targeting performance of anti-CD166 probody drug conjugate CX-2009 and its parental derivatives as monitored by 89Zr-immuno-PET in xenograft bearing mice. Theranostics 2020; 10(13): 5815–5828
https://doi.org/10.7150/thno.44334
192 S Singh, L Serwer, A DuPage, K Elkins, N Chauhan, M Ravn, F Buchanan, L Wang, M Krimm, K Wong, J Sagert, K Tipton, SJ Moore, Y Huang, A Jang, E Ureno, A Miller, S Patrick, S Duvur, S Liu, O Vasiljeva, Y Li, T Henriques, I Badagnani, S Jeffries, S Schleyer, R Leanna, C Krebber, S Viswanathan, L Desnoyers, J Terrett, M Belvin, S Morgan-Lappe, WM Kavanaugh, J Richardson. Nonclinical efficacy and safety of CX-2029, an anti-CD71 probody-drug conjugate. Mol Cancer Ther 2022; 21(8): 1326–1336
https://doi.org/10.1158/1535-7163.MCT-21-0193
193 M Johnson, A El-Khoueiry, N Hafez, N Lakhani, H Mamdani, J Rodon, RE Sanborn, J Garcia-Corbacho, V Boni, M Stroh, AL Hannah, S Wang, H Castro, A Spira. Phase I, first-in-human study of the probody therapeutic CX-2029 in adults with advanced solid tumor malignancies. Clin Cancer Res 2021; 27(16): 4521–4530
https://doi.org/10.1158/1078-0432.CCR-21-0194
194 Y Li, J Liu, W Chen, W Wang, F Yang, X Liu, Y Sheng, K Du, M He, X Lyu, H Li, L Zhao, Z Wei, F Wang, S Zheng, J Sui. A pH-dependent anti-CD47 antibody that selectively targets solid tumors and improves therapeutic efficacy and safety. J Hematol Oncol 2023; 16(1): 2
https://doi.org/10.1186/s13045-023-01399-4
195 M Kamata-Sakurai, Y Narita, Y Hori, T Nemoto, R Uchikawa, M Honda, N Hironiwa, K Taniguchi, M Shida-Kawazoe, S Metsugi, T Miyazaki, NA Wada, Y Ohte, S Shimizu, H Mikami, T Tachibana, N Ono, K Adachi, T Sakiyama, T Matsushita, S Kadono, SI Komatsu, A Sakamoto, S Horikawa, A Hirako, K Hamada, S Naoi, N Savory, Y Satoh, M Sato, Y Noguchi, J Shinozuka, H Kuroi, A Ito, T Wakabayashi, M Kamimura, F Isomura, Y Tomii, N Sawada, A Kato, O Ueda, Y Nakanishi, M Endo, KI Jishage, Y Kawabe, T Kitazawa, T Igawa. Antibody to CD137 activated by extracellular adenosine triphosphate is tumor selective and broadly effective in vivo without systemic immune activation. Cancer Discov 2021; 11(1): 158–175
https://doi.org/10.1158/2159-8290.CD-20-0328
196 T Sulea, N Rohani, J Baardsnes, CR Corbeil, C Deprez, Y Cepero-Donates, A Robert, JD Schrag, M Parat, M Duchesne, ML Jaramillo, EO Purisima, JC Zwaagstra. Structure-based engineering of pH-dependent antibody binding for selective targeting of solid-tumor microenvironment. MAbs 2020; 12(1): 1682866
https://doi.org/10.1080/19420862.2019.1682866
197 S Han, KS Lim, BJ Blackburn, J Yun, CW Putnam, DA Bull, YW Won. The potential of topoisomerase inhibitor-based antibody-drug conjugates. Pharmaceutics 2022; 14(8): 1707
https://doi.org/10.3390/pharmaceutics14081707
198 SO Doronina, TD Bovee, DW Meyer, JB Miyamoto, ME Anderson, CA Morris-Tilden, PD Senter. Novel peptide linkers for highly potent antibody-auristatin conjugate. Bioconjug Chem 2008; 19(10): 1960–1963
https://doi.org/10.1021/bc800289a
199 RP Lyon, TD Bovee, SO Doronina, PJ Burke, JH Hunter, HD Neff-LaFord, M Jonas, ME Anderson, JR Setter, PD Senter. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol 2015; 33(7): 733–735
https://doi.org/10.1038/nbt.3212
200 TN Iwata, C Ishii, S Ishida, Y Ogitani, T Wada, T Agatsuma. A HER2-targeting antibody-drug conjugate, trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol Cancer Ther 2018; 17(7): 1494–1503
https://doi.org/10.1158/1535-7163.MCT-17-0749
201 Y Ogitani, T Aida, K Hagihara, J Yamaguchi, C Ishii, N Harada, M Soma, H Okamoto, M Oitate, S Arakawa, T Hirai, R Atsumi, T Nakada, I Hayakawa, Y Abe, T Agatsuma. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res 2016; 22(20): 5097–5108
https://doi.org/10.1158/1078-0432.CCR-15-2822
202 Y Matsuda, BA Mendelsohn. An overview of process development for antibody-drug conjugates produced by chemical conjugation technology. Expert Opin Biol Ther 2021; 21(7): 963–975
https://doi.org/10.1080/14712598.2021.1846714
203 R Sheyi, BG de la Torre, F Albericio. Linkers: an assurance for controlled delivery of antibody-drug conjugate. Pharmaceutics 2022; 14(2): 396
https://doi.org/10.3390/pharmaceutics14020396
204 Y Xu, G Jiang, C Tran, X Li, TH Heibeck, MR Masikat, Q Cai, AR Steiner, AK Sato, TJ Hallam, G Yin. RP-HPLC DAR characterization of site-specific antibody drug conjugates produced in a cell-free expression system. Org Process Res Dev 2016; 20(6): 1034–1043
https://doi.org/10.1021/acs.oprd.6b00072
205 S Barnscher, J Babcook, J Rich, G Winters, G Garnett, A Hernandez, V Fung, K Yin, K Hamblett, R Davies. Abstract 61: Zymelink drug conjugate platform: redefining the therapeutic window for ADCs. Cancer Res 2017; 77(13 Supplement): 61
https://doi.org/10.1158/1538-7445.AM2017-61
206 Y Mazor, KF Sachsenmeier, C Yang, A Hansen, J Filderman, K Mulgrew, H Wu, WF Dall’Acqua. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci Rep 2017; 7(1): 40098
https://doi.org/10.1038/srep40098
207 C Sellmann, A Doerner, C Knuehl, N Rasche, V Sood, S Krah, L Rhiel, A Messemer, J Wesolowski, M Schuette, S Becker, L Toleikis, H Kolmar, B Hock. Balancing selectivity and efficacy of bispecific epidermal growth factor receptor (EGFR) × c-MET antibodies and antibody-drug conjugates. J Biol Chem 2016; 291(48): 25106–25119
https://doi.org/10.1074/jbc.M116.753491
208 J Andreev, N Thambi, AE Perez Bay, F Delfino, J Martin, MP Kelly, JR Kirshner, A Rafique, A Kunz, T Nittoli, D MacDonald, C Daly, W Olson, G Thurston. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther 2017; 16(4): 681–693
https://doi.org/10.1158/1535-7163.MCT-16-0658
209 S Hu, W Fu, W Xu, Y Yang, M Cruz, SD Berezov, D Jorissen, H Takeda, W Zhu. Four-in-one antibodies have superior cancer inhibitory activity against EGFR, HER2, HER3, and VEGF through disruption of HER/MET crosstalk. Cancer Res 2015; 75(1): 159–170
https://doi.org/10.1158/0008-5472.CAN-14-1670
210 I Nessler, E Khera, S Vance, A Kopp, Q Qiu, TA Keating, AO Abu-Yousif, T Sandal, J Legg, L Thompson, N Goodwin, GM Thurber. Increased tumor penetration of single-domain antibody-drug conjugates improves in vivo efficacy in prostate cancer models. Cancer Res 2020; 80(6): 1268–1278
https://doi.org/10.1158/0008-5472.CAN-19-2295
211 MP Deonarain, Q Xue. Tackling solid tumour therapy with small-format drug conjugates. Antib Ther 2020; 3(4): 237–245
https://doi.org/10.1093/abt/tbaa024
212 RV Kholodenko, DV Kalinovsky, II Doronin, ED Ponomarev, IV Kholodenko. Antibody fragments as potential biopharmaceuticals for cancer therapy: success and limitations. Curr Med Chem 2019; 26(3): 396–426
https://doi.org/10.2174/0929867324666170817152554
213 MP Deonarain, G Yahioglu, I Stamati, A Pomowski, J Clarke, BM Edwards, S Diez-Posada, AC Stewart. Small-format drug conjugates: a viable alternative to ADCs for solid tumours. Antibodies (Basel) 2018; 7(2): 16
https://doi.org/10.3390/antib7020016
214 Y Wu, Q Li, Y Kong, Z Wang, C Lei, J Li, L Ding, C Wang, Y Cheng, Y Wei, Y Song, Z Yang, C Tu, Y Ding, T Ying. A highly stable human single-domain antibody-drug conjugate exhibits superior penetration and treatment of solid tumors. Mol Ther 2022; 30(8): 2785–2799
https://doi.org/10.1016/j.ymthe.2022.04.013
215 H Huang, T Wu, H Shi, Y Wu, H Yang, K Zhong, Y Wang, Y Liu. Modular design of nanobody-drug conjugates for targeted-delivery of platinum anticancer drugs with an MRI contrast agent. Chem Commun (Camb) 2019; 55(35): 5175–5178
https://doi.org/10.1039/C9CC01391A
216 DA Vallera, H Chen, AR Sicheneder, A Panoskaltsis-Mortari, EP Taras. Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leuk Res 2009; 33(9): 1233–1242
https://doi.org/10.1016/j.leukres.2009.02.006
217 NN Waldron, SH Barsky, PR Dougherty, DA Vallera. A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma. Target Oncol 2014; 9(3): 239–249
https://doi.org/10.1007/s11523-013-0290-9
218 N Porębska, K Ciura, A Chorążewska, M Zakrzewska, J Otlewski, Ł Opaliński. Multivalent protein-drug conjugates—an emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67: 108213
https://doi.org/10.1016/j.biotechadv.2023.108213
219 L Zhou, F Yang, Z Bai, X Zhou, Z Zhang, Z Li, J Gong, J Yu, L Pan, C Cao, JJ Chou. Self-assembled L-DNA linkers for rapid construction of multi-specific antibody-drug conjugates library. Angew Chem Int Ed Engl 2023; 62(27): e202302805
https://doi.org/10.1002/anie.202302805
220 YE Kim, YN Kim, JA Kim, HM Kim, Y Jung. Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency. Nat Commun 2015; 6(1): 7134
https://doi.org/10.1038/ncomms8134
221 N Porębska, A Knapik, M Poźniak, MA Krzyścik, M Zakrzewska, J Otlewski, Ł Opaliński. Intrinsically fluorescent oligomeric cytotoxic conjugates toxic for FGFR1-overproducing cancers. Biomacromolecules 2021; 22(12): 5349–5362
https://doi.org/10.1021/acs.biomac.1c01280
222 CM Dundas, D Demonte, S Park. Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol 2013; 97(21): 9343–9353
https://doi.org/10.1007/s00253-013-5232-z
223 Q Le, V Nguyen, S Park. Recent advances in the engineering and application of streptavidin-like molecules. Appl Microbiol Biotechnol 2019; 103(18): 7355–7365
https://doi.org/10.1007/s00253-019-10036-5
224 E Tremante, L Sibilio, F Centola, N Knutti, G Holzapfel, I Manni, M Allegretti, P Lombardi, G Salvo, L Cecchetelli, K Friedrich, J Bertram, P Giacomini. TOOLBOX: Strep-Tagged nano-assemblies of antibody-drug-conjugates (ADC) for modular and conditional cancer drugging. Oncol Rep 2021; 45(5): 77
https://doi.org/10.3892/or.2021.8028
225 R Lázaro-Gorines, J Ruiz-de-la-Herrán, R Navarro, L Sanz, L Álvarez-Vallina, A Martínez-Del-Pozo, JG Gavilanes, J Lacadena. A novel carcinoembryonic antigen (CEA)-targeted trimeric immunotoxin shows significantly enhanced antitumor activity in human colorectal cancer xenografts. Sci Rep 2019; 9(1): 11680
https://doi.org/10.1038/s41598-019-48285-z
226 A Yamaguchi, Y Anami, SYY Ha, TJ Roeder, W Xiong, J Lee, NT Ueno, N Zhang, Z An, K Tsuchikama. Chemical generation of small molecule-based bispecific antibody-drug conjugates for broadening the target scope. Bioorg Med Chem 2021; 32: 116013
https://doi.org/10.1016/j.bmc.2021.116013
[1] Yue Ma, Hongwei Lv, Fuxue Xing, Wei Xiang, Zixin Wu, Qiyu Feng, Hongyang Wang, Wen Yang. Cancer stem cell-immune cell crosstalk in the tumor microenvironment for liver cancer progression[J]. Front. Med., 2024, 18(3): 430-445.
[2] Haoyu Wang, Zhengyuan Wang, Zheng Wang, Xiaoyang Li, Yuntong Li, Ni Yan, Lili Wu, Ying Liang, Jiale Wu, Huaxin Song, Qing Qu, Jiahui Huang, Chunkang Chang, Kunwei Shen, Xiaosong Chen, Min Lu. Decitabine induces IRF7-mediated immune responses in p53-mutated triple-negative breast cancer: a clinical and translational study[J]. Front. Med., 2024, 18(2): 357-374.
[3] Guoqiang Li, Peng Pu, Mengqiao Pan, Xiaoling Weng, Shimei Qiu, Yiming Li, Sk Jahir Abbas, Lu Zou, Ke Liu, Zheng Wang, Ziyu Shao, Lin Jiang, Wenguang Wu, Yun Liu, Rong Shao, Fatao Liu, Yingbin Liu. Topological reorganization and functional alteration of distinct genomic components in gallbladder cancer[J]. Front. Med., 2024, 18(1): 109-127.
[4] Zhichen Jiang, Xiaohao Zheng, Min Li, Mingyang Liu. Improving the prognosis of pancreatic cancer: insights from epidemiology, genomic alterations, and therapeutic challenges[J]. Front. Med., 2023, 17(6): 1135-1169.
[5] Pengfei Zhao, Yating Wang, Xiao Yu, Yabing Nan, Shi Liu, Bin Li, Zhumei Cui, Zhihua Liu. Long noncoding RNA LOC646029 functions as a ceRNA to suppress ovarian cancer progression through the miR-627-3p/SPRED1 axis[J]. Front. Med., 2023, 17(5): 924-938.
[6] Tianzhuo Wang, Huiying Guo, Lei Zhang, Miao Yu, Qianchen Li, Jing Zhang, Yan Tang, Hongquan Zhang, Jun Zhan. FERM domain-containing protein FRMD6 activates the mTOR signaling pathway and promotes lung cancer progression[J]. Front. Med., 2023, 17(4): 714-728.
[7] Ying Dong, Yingbei Qi, Haowen Jiang, Tian Mi, Yunkai Zhang, Chang Peng, Wanchen Li, Yongmei Zhang, Yubo Zhou, Yi Zang, Jia Li. The development and benefits of metformin in various diseases[J]. Front. Med., 2023, 17(3): 388-431.
[8] Mingyue Tan, Qi Pan, Qi Wu, Jianfa Li, Jun Wang. Aldolase B attenuates clear cell renal cell carcinoma progression by inhibiting CtBP2[J]. Front. Med., 2023, 17(3): 503-517.
[9] Yifan Chang, Xianzhi Zhao, Yutian Xiao, Shi Yan, Weidong Xu, Ye Wang, Huojun Zhang, Shancheng Ren. Neoadjuvant radiohormonal therapy for oligo-metastatic prostate cancer: safety and efficacy outcomes from an open-label, dose-escalation, single-center, phase I/II clinical trial[J]. Front. Med., 2023, 17(2): 231-239.
[10] Xueqing Hu, Ujjwol Khatri, Tao Shen, Jie Wu. Progress and challenges in RET-targeted cancer therapy[J]. Front. Med., 2023, 17(2): 207-219.
[11] Jia Zhong, Hua Bai, Zhijie Wang, Jianchun Duan, Wei Zhuang, Di Wang, Rui Wan, Jiachen Xu, Kailun Fei, Zixiao Ma, Xue Zhang, Jie Wang. Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions[J]. Front. Med., 2023, 17(1): 18-42.
[12] Danhui Weng, Huihua Xiong, Changkun Zhu, Xiaoyun Wan, Yaxia Chen, Xinyu Wang, Youzhong Zhang, Jie Jiang, Xi Zhang, Qinglei Gao, Gang Chen, Hui Xing, Changyu Wang, Kezhen Li, Yaheng Chen, Yuyan Mao, Dongxiao Hu, Zimin Pan, Qingqin Chen, Baoxia Cui, Kun Song, Cunjian Yi, Guangcai Peng, Xiaobing Han, Ruifang An, Liangsheng Fan, Wei Wang, Tingchuan Xiong, Yile Chen, Zhenzi Tang, Lin Li, Xingsheng Yang, Xiaodong Cheng, Weiguo Lu, Hui Wang, Beihua Kong, Xing Xie, Ding Ma. Adjuvant chemotherapy versus adjuvant concurrent chemoradiotherapy after radical surgery for early-stage cervical cancer: a randomized, non-inferiority, multicenter trial[J]. Front. Med., 2023, 17(1): 93-104.
[13] Jianhua Shi, Ying Cheng, Qiming Wang, Kai Li, Lin Wu, Baohui Han, Gongyan Chen, Jianxing He, Jie Wang, Haifeng Qin, Xiaoling Li. Anlotinib as third- or further-line therapy for short-term relapsed small-cell lung cancer: subgroup analysis of a randomized phase 2 study (ALTER1202)[J]. Front. Med., 2022, 16(5): 766-772.
[14] Shi-Yong Sun. Targeting apoptosis to manage acquired resistance to third generation EGFR inhibitors[J]. Front. Med., 2022, 16(5): 701-713.
[15] Yaru Tian, Hairong Tian, Xiaoyang Zhai, Hui Zhu, Jinming Yu. Bevacizumab in combination with pemetrexed and platinum for elderly patients with advanced non-squamous non-small-cell lung cancer: a retrospective analysis[J]. Front. Med., 2022, 16(4): 610-617.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed