|
|
Unlocking the potential of bispecific ADCs for targeted cancer therapy |
Hongye Zeng, Wenjing Ning, Xue Liu( ), Wenxin Luo( ), Ningshao Xia |
State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China |
|
|
Abstract Antibody–drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.
|
Keywords
antibody–drug conjugate
bispecific antibody
bispecific ADC
cancer
|
Corresponding Author(s):
Xue Liu,Wenxin Luo
|
Just Accepted Date: 27 June 2024
Online First Date: 22 July 2024
Issue Date: 30 August 2024
|
|
1 |
K Strebhardt, A Ullrich. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 2008; 8(6): 473–480
https://doi.org/10.1038/nrc2394
|
2 |
RS Schwartz. Paul Ehrlich’s magic bullets. N Engl J Med 2004; 350(11): 1079–1080
https://doi.org/10.1056/NEJMp048021
|
3 |
Y Chu, X Zhou, X Wang. Antibody-drug conjugates for the treatment of lymphoma: clinical advances and latest progress. J Hematol Oncol 2021; 14(1): 88
https://doi.org/10.1186/s13045-021-01097-z
|
4 |
S Rosner, A Valdivia, HJ Hoe, JC Murray, B Levy, E Felip, BJ Solomon. Antibody-drug conjugates for lung cancer: payloads and progress. Am Soc Clin Oncol Educ Book 2023; 43: e389968
https://doi.org/10.1200/EDBK_389968
|
5 |
H Liu, J Bolleddula, A Nichols, L Tang, Z Zhao, C Prakash. Metabolism of bioconjugate therapeutics: why, when, and how?. Drug Metab Rev 2020; 52(1): 66–124
https://doi.org/10.1080/03602532.2020.1716784
|
6 |
Z Su, D Xiao, F Xie, L Liu, Y Wang, S Fan, X Zhou, S Li. Antibody-drug conjugates: recent advances in linker chemistry. Acta Pharm Sin B 2021; 11(12): 3889–3907
https://doi.org/10.1016/j.apsb.2021.03.042
|
7 |
Z Fu, S Li, S Han, C Shi, Y Zhang. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther 2022; 7(1): 93
https://doi.org/10.1038/s41392-022-00947-7
|
8 |
SA Hurvitz. Recent progress in antibody-drug conjugate therapy for cancer. Nat Cancer 2022; 3(12): 1412–1413
https://doi.org/10.1038/s43018-022-00495-7
|
9 |
S Ali, HM Dunmore, D Karres, JL Hay, T Salmonsson, C Gisselbrecht, SB Sarac, OW Bjerrum, D Hovgaard, Y Barbachano, N Nagercoil, F Pignatti. The EMA review of Mylotarg (gemtuzumab ozogamicin) for the treatment of acute myeloid leukemia. Oncologist 2019; 24(5): e171–e179
https://doi.org/10.1634/theoncologist.2019-0025
|
10 |
CD Godwin, RP Gale, RB Walter. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia 2017; 31(9): 1855–1868
https://doi.org/10.1038/leu.2017.187
|
11 |
K Tsuchikama, Z An. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 2018; 9(1): 33–46
https://doi.org/10.1007/s13238-016-0323-0
|
12 |
A Beck, L Goetsch, C Dumontet, N Corvaïa. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 2017; 16(5): 315–337
https://doi.org/10.1038/nrd.2016.268
|
13 |
N Epaillard, J Bassil, B Pistilli. Current indications and future perspectives for antibody-drug conjugates in brain metastases of breast cancer. Cancer Treat Rev 2023; 119: 102597
https://doi.org/10.1016/j.ctrv.2023.102597
|
14 |
S Castaigne, C Pautas, C Terré, E Raffoux, D Bordessoule, JN Bastie, O Legrand, X Thomas, P Turlure, O Reman, Revel T de, L Gastaud, Gunzburg N de, N Contentin, E Henry, JP Marolleau, A Aljijakli, P Rousselot, P Fenaux, C Preudhomme, S Chevret, H; Acute Leukemia French Association Dombret. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 2012; 379(9825): 1508–1516
https://doi.org/10.1016/S0140-6736(12)60485-1
|
15 |
A Younes, AK Gopal, SE Smith, SM Ansell, JD Rosenblatt, KJ Savage, R Ramchandren, NL Bartlett, BD Cheson, S de Vos, A Forero-Torres, CH Moskowitz, JM Connors, A Engert, EK Larsen, DA Kennedy, EL Sievers, R Chen. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol 2012; 30(18): 2183–2189
https://doi.org/10.1200/JCO.2011.38.0410
|
16 |
S Verma, D Miles, L Gianni, IE Krop, M Welslau, J Baselga, M Pegram, DY Oh, V Diéras, E Guardino, L Fang, MW Lu, S Olsen, K; EMILIA Study Group Blackwell. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 2012; 367(19): 1783–1791
https://doi.org/10.1056/NEJMoa1209124
|
17 |
Minckwitz G von, CS Huang, MS Mano, S Loibl, EP Mamounas, M Untch, N Wolmark, P Rastogi, A Schneeweiss, A Redondo, HH Fischer, W Jacot, AK Conlin, C Arce-Salinas, IL Wapnir, C Jackisch, MP DiGiovanna, PA Fasching, JP Crown, P Wülfing, Z Shao, Caremoli E Rota, H Wu, LH Lam, D Tesarowski, M Smitt, H Douthwaite, SM Singel, CE Jr; KATHERINE Investigators Geyer. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med 2019; 380(7): 617–628
https://doi.org/10.1056/NEJMoa1814017
|
18 |
L Amiri-Kordestani, GM Blumenthal, QC Xu, L Zhang, SW Tang, L Ha, WC Weinberg, B Chi, R Candau-Chacon, P Hughes, AM Russell, SP Miksinski, XH Chen, WD McGuinn, T Palmby, SJ Schrieber, Q Liu, J Wang, P Song, N Mehrotra, L Skarupa, K Clouse, A Al-Hakim, R Sridhara, A Ibrahim, R Justice, R Pazdur, P Cortazar. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res 2014; 20(17): 4436–4441
https://doi.org/10.1158/1078-0432.CCR-14-0012
|
19 |
H Kantarjian, D Thomas, J Jorgensen, E Jabbour, P Kebriaei, M Rytting, S York, F Ravandi, M Kwari, S Faderl, MB Rios, J Cortes, L Fayad, R Tarnai, SA Wang, R Champlin, A Advani, S O’Brien. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol 2012; 13(4): 403–411
https://doi.org/10.1016/S1470-2045(11)70386-2
|
20 |
HM Kantarjian, DJ DeAngelo, M Stelljes, G Martinelli, M Liedtke, W Stock, N Gökbuget, S O’Brien, K Wang, T Wang, ML Paccagnella, B Sleight, E Vandendries, AS Advani. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 2016; 375(8): 740–753
https://doi.org/10.1056/NEJMoa1509277
|
21 |
RJ Kreitman, C Dearden, PL Zinzani, J Delgado, L Karlin, T Robak, DE Gladstone, P le Coutre, S Dietrich, M Gotic, L Larratt, F Offner, G Schiller, R Swords, L Bacon, M Bocchia, K Bouabdallah, DA Breems, A Cortelezzi, S Dinner, M Doubek, BT Gjertsen, M Gobbi, A Hellmann, S Lepretre, F Maloisel, F Ravandi, P Rousselot, M Rummel, T Siddiqi, T Tadmor, X Troussard, CA Yi, G Saglio, GJ Roboz, K Balic, N Standifer, P He, S Marshall, W Wilson, I Pastan, NS Yao, F Giles. Moxetumomab pasudotox in relapsed/refractory hairy cell leukemia. Leukemia 2018; 32(8): 1768–1777
https://doi.org/10.1038/s41375-018-0210-1
|
22 |
LH Sehn, AF Herrera, CR Flowers, MK Kamdar, A McMillan, M Hertzberg, S Assouline, TM Kim, WS Kim, M Ozcan, J Hirata, E Penuel, JN Paulson, J Cheng, G Ku, MJ Matasar. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol 2020; 38(2): 155–165
https://doi.org/10.1200/JCO.19.00172
|
23 |
T Powles, JE Rosenberg, GP Sonpavde, Y Loriot, I Durán, JL Lee, N Matsubara, C Vulsteke, D Castellano, C Wu, M Campbell, M Matsangou, DP Petrylak. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med 2021; 384(12): 1125–1135
https://doi.org/10.1056/NEJMoa2035807
|
24 |
J Rosenberg, SS Sridhar, J Zhang, D Smith, D Ruether, TW Flaig, J Baranda, J Lang, ER Plimack, R Sangha, EI Heath, J Merchan, DI Quinn, S Srinivas, M Milowsky, C Wu, EM Gartner, P Zuo, A Melhem-Bertrandt, DP Petrylak. EV-101: a phase I study of single-agent enfortumab vedotin in patients with nectin-4-positive solid tumors, including metastatic urothelial carcinoma. J Clin Oncol 2020; 38(10): 1041–1049
https://doi.org/10.1200/JCO.19.02044
|
25 |
J Cortés, SB Kim, WP Chung, SA Im, YH Park, R Hegg, MH Kim, LM Tseng, V Petry, CF Chung, H Iwata, E Hamilton, G Curigliano, B Xu, CS Huang, JH Kim, JWY Chiu, JL Pedrini, C Lee, Y Liu, J Cathcart, E Bako, S Verma, SA; DESTINY-Breast03 Trial Investigators Hurvitz. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med 2022; 386(12): 1143–1154
https://doi.org/10.1056/NEJMoa2115022
|
26 |
K Shitara, YJ Bang, S Iwasa, N Sugimoto, MH Ryu, D Sakai, HC Chung, H Kawakami, H Yabusaki, J Lee, K Saito, Y Kawaguchi, T Kamio, A Kojima, M Sugihara, K; DESTINY-Gastric01 Investigators Yamaguchi. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med 2020; 382(25): 2419–2430
https://doi.org/10.1056/NEJMoa2004413
|
27 |
K Yamaguchi, YJ Bang, S Iwasa, N Sugimoto, MH Ryu, D Sakai, HC Chung, H Kawakami, H Yabusaki, J Lee, T Shimoyama, KW Lee, K Saito, Y Kawaguchi, T Kamio, A Kojima, M Sugihara, K Shitara. Trastuzumab deruxtecan in anti-human epidermal growth factor receptor 2 treatment-naive patients with human epidermal growth factor receptor 2-low gastric or gastroesophageal junction adenocarcinoma: exploratory cohort results in a phase II trial. J Clin Oncol 2023; 41(4): 816–825
https://doi.org/10.1200/JCO.22.00575
|
28 |
A Bardia, SA Hurvitz, SM Tolaney, D Loirat, K Punie, M Oliveira, A Brufsky, SD Sardesai, K Kalinsky, AB Zelnak, R Weaver, T Traina, F Dalenc, P Aftimos, F Lynce, S Diab, J Cortés, J O’Shaughnessy, V Diéras, C Ferrario, P Schmid, LA Carey, L Gianni, MJ Piccart, S Loibl, DM Goldenberg, Q Hong, MS Olivo, LM Itri, HS; ASCENT Clinical Trial Investigators Rugo. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med 2021; 384(16): 1529–1541
https://doi.org/10.1056/NEJMoa2028485
|
29 |
S Lonial, HC Lee, A Badros, S Trudel, AK Nooka, A Chari, AO Abdallah, N Callander, N Lendvai, D Sborov, A Suvannasankha, K Weisel, L Karlin, E Libby, B Arnulf, T Facon, C Hulin, KM Kortüm, P Rodríguez-Otero, SZ Usmani, P Hari, R Baz, H Quach, P Moreau, PM Voorhees, I Gupta, A Hoos, E Zhi, J Baron, T Piontek, E Lewis, RC Jewell, EJ Dettman, R Popat, SD Esposti, J Opalinska, P Richardson, AD Cohen. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol 2020; 21(2): 207–221
https://doi.org/10.1016/S1470-2045(19)30788-0
|
30 |
A Markham. Belantamab mafodotin: first approval. Drugs 2020; 80(15): 1607–1613
https://doi.org/10.1007/s40265-020-01404-x
|
31 |
LC Gomes-da-Silva, O Kepp, G Kroemer. Regulatory approval of photoimmunotherapy: photodynamic therapy that induces immunogenic cell death. OncoImmunology 2020; 9(1): 1841393
https://doi.org/10.1080/2162402X.2020.1841393
|
32 |
PF Caimi, W Ai, JP Alderuccio, KM Ardeshna, M Hamadani, B Hess, BS Kahl, J Radford, M Solh, A Stathis, PL Zinzani, K Havenith, J Feingold, S He, Y Qin, D Ungar, X Zhang, C Carlo-Stella. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol 2021; 22(6): 790–800
https://doi.org/10.1016/S1470-2045(21)00139-X
|
33 |
ED Deeks. Disitamab vedotin: first approval. Drugs 2021; 81(16): 1929–1935
https://doi.org/10.1007/s40265-021-01614-x
|
34 |
RL Coleman, D Lorusso, C Gennigens, A González-Martín, L Randall, D Cibula, B Lund, L Woelber, S Pignata, F Forget, A Redondo, SD Vindeløv, M Chen, JR Harris, M Smith, LV Nicacio, MSL Teng, A Laenen, R Rangwala, L Manso, M Mirza, BJ Monk, I; innovaTV 204/GOG-3023/ENGOT-cx6 Collaborators Vergote. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol 2021; 22(5): 609–619
https://doi.org/10.1016/S1470-2045(21)00056-5
|
35 |
DS Hong, N Concin, I Vergote, JS de Bono, BM Slomovitz, Y Drew, HT Arkenau, JP Machiels, JF Spicer, R Jones, MD Forster, N Cornez, C Gennigens, ML Johnson, FC Thistlethwaite, RA Rangwala, S Ghatta, K Windfeld, JR Harris, UN Lassen, RL Coleman. Tisotumab vedotin in previously treated recurrent or metastatic cervical cancer. Clin Cancer Res 2020; 26(6): 1220–1228
https://doi.org/10.1158/1078-0432.CCR-19-2962
|
36 |
YA Heo. Mirvetuximab soravtansine: first approval. Drugs 2023; 83(3): 265–273
https://doi.org/10.1007/s40265-023-01834-3
|
37 |
C Nieto-Jiménez, A Sanvicente, C Díaz-Tejeiro, V Moreno, de Sá A Lopez, E Calvo, J Martínez-López, P Pérez-Segura, A Ocaña. Uncovering therapeutic opportunities in the clinical development of antibody-drug conjugates. Clin Transl Med 2023; 13(9): e1329
https://doi.org/10.1002/ctm2.1329
|
38 |
H Maecker, V Jonnalagadda, S Bhakta, V Jammalamadaka, JR Junutula. Exploration of the antibody-drug conjugate clinical landscape. MAbs 2023; 15(1): 2229101
https://doi.org/10.1080/19420862.2023.2229101
|
39 |
K Weisel, VT Hungria, A Radinoff, S Delimpasi, G Mikala, T Masszi, J Li, M Capra, M Matsumoto, N Sule, M Li, A McKeown, W He, S Bright, B Currie, J Boyle, J Opalinska, MA Dimopoulos. A phase 3, open-label, randomized study to evaluate the efficacy and safety of single-agent belantamab mafodotin (belamaf) compared to pomalidomide plus low-dose dexamethasone (Pd) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): DREAMM-3. J Clin Oncol 2023; 41(16 suppl): 8007
https://doi.org/10.1200/JCO.2023.41.16_suppl.8007
|
40 |
A Wolska-Washer, T Robak. Safety and tolerability of antibody-drug conjugates in cancer. Drug Saf 2019; 42(2): 295–314
https://doi.org/10.1007/s40264-018-0775-7
|
41 |
PK Mahalingaiah, R Ciurlionis, KR Durbin, RL Yeager, BK Philip, B Bawa, SR Mantena, BP Enright, MJ Liguori, TR Van Vleet. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther 2019; 200: 110–125
https://doi.org/10.1016/j.pharmthera.2019.04.008
|
42 |
FV Suurs, MN Lub-de Hooge, EGE de Vries, DJA de Groot. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther 2019; 201: 103–119
https://doi.org/10.1016/j.pharmthera.2019.04.006
|
43 |
A Cavaliere, S Sun, S Lee, J Bodner, Z Li, Y Huang, SL Moores, B Marquez-Nostra. Development of [89Zr]ZrDFO-amivantamab bispecific to EGFR and c-MET for PET imaging of triple-negative breast cancer. Eur J Nucl Med Mol Imaging 2021; 48(2): 383–394
https://doi.org/10.1007/s00259-020-04978-6
|
44 |
X Cui, H Jia, H Xin, L Zhang, S Chen, S Xia, X Li, W Xu, X Chen, Y Feng, X Wei, H Yu, Y Wang, Y Zhan, X Zhu, X Zhang. A novel bispecific antibody targeting PD-L1 and VEGF with combined anti-tumor activities. Front Immunol 2021; 12: 778978
https://doi.org/10.3389/fimmu.2021.778978
|
45 |
J Neijssen, RMF Cardoso, KM Chevalier, L Wiegman, T Valerius, GM Anderson, SL Moores, J Schuurman, PWHI Parren, WR Strohl, ML Chiu. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem 2021; 296: 100641
https://doi.org/10.1016/j.jbc.2021.100641
|
46 |
Q Wu, Y Zhen, L Shi, P Vu, P Greninger, R Adil, J Merritt, R Egan, MJ Wu, X Yin, CR Ferrone, V Deshpande, I Baiev, CJ Pinto, DE McLoughlin, CS Walmsley, JR Stone, JD Gordan, AX Zhu, D Juric, L Goyal, CH Benes, N Bardeesy. EGFR inhibition potentiates FGFR inhibitor therapy and overcomes resistance in FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov 2022; 12(5): 1378–1395
https://doi.org/10.1158/2159-8290.CD-21-1168
|
47 |
J Cheng, M Liang, MF Carvalho, N Tigue, R Faggioni, LK Roskos, I Vainshtein. Molecular mechanism of HER2 rapid internalization and redirected trafficking induced by anti-HER2 biparatopic antibody. Antibodies (Basel) 2020; 9(3): 49
https://doi.org/10.3390/antib9030049
|
48 |
SJ Dovedi, MJ Elder, C Yang, SI Sitnikova, L Irving, A Hansen, J Hair, DC Jones, S Hasani, B Wang, SA Im, B Tran, DS Subramaniam, SD Gainer, K Vashisht, A Lewis, X Jin, S Kentner, K Mulgrew, Y Wang, MG Overstreet, J Dodgson, Y Wu, A Palazon, M Morrow, GJ Rainey, GJ Browne, F Neal, TV Murray, AD Toloczko, W Dall’Acqua, I Achour, DJ Freeman, RW Wilkinson, Y Mazor. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1+ activated T cells. Cancer Discov 2021; 11(5): 1100–1117
https://doi.org/10.1158/2159-8290.CD-20-1445
|
49 |
Y Wang, H Ni, S Zhou, K He, Y Gao, W Wu, M Wu, Z Wu, X Qiu, Y Zhou, B Chen, D Pan, C Huang, M Li, Y Bian, M Yang, L Miao, J Liu. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunol Immunother 2021; 70(2): 365–376
https://doi.org/10.1007/s00262-020-02679-5
|
50 |
MK Robinson, KM Hodge, E Horak, AL Sundberg, M Russeva, CC Shaller, M von Mehren, I Shchaveleva, HH Simmons, JD Marks, GP Adams. Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro. Br J Cancer 2008; 99(9): 1415–1425
https://doi.org/10.1038/sj.bjc.6604700
|
51 |
H Zhao, F Luo, J Xue, S Li, RH Xu. Emerging immunological strategies: recent advances and future directions. Front Med 2021; 15(6): 805–828
https://doi.org/10.1007/s11684-021-0886-x
|
52 |
JE Frampton. Catumaxomab: in malignant ascites. Drugs 2012; 72(10): 1399–1410
https://doi.org/10.2165/11209040-000000000-00000
|
53 |
H Kantarjian, A Stein, N Gökbuget, AK Fielding, AC Schuh, JM Ribera, A Wei, H Dombret, R Foà, R Bassan, Ö Arslan, MA Sanz, J Bergeron, F Demirkan, E Lech-Maranda, A Rambaldi, X Thomas, HA Horst, M Brüggemann, W Klapper, BL Wood, A Fleishman, D Nagorsen, C Holland, Z Zimmerman, MS Topp. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 2017; 376(9): 836–847
https://doi.org/10.1056/NEJMoa1609783
|
54 |
J Oldenburg, JN Mahlangu, B Kim, C Schmitt, MU Callaghan, G Young, E Santagostino, R Kruse-Jarres, C Negrier, C Kessler, N Valente, E Asikanius, GG Levy, J Windyga, M Shima. Emicizumab prophylaxis in hemophilia A with inhibitors. N Engl J Med 2017; 377(9): 809–818
https://doi.org/10.1056/NEJMoa1703068
|
55 |
C Zhou, KJ Tang, BC Cho, B Liu, L Paz-Ares, S Cheng, S Kitazono, M Thiagarajan, JW Goldman, JK Sabari, RE Sanborn, AS Mansfield, JY Hung, M Boyer, S Popat, Dias J Mourão, E Felip, M Majem, M Gumus, SW Kim, A Ono, J Xie, A Bhattacharya, T Agrawal, SM Shreeve, RE Knoblauch, K Park, N; PAPILLON Investigators Girard. Amivantamab plus chemotherapy in NSCLC with EGFR exon 20 insertions. N Engl J Med 2023; 389(22): 2039–2051
https://doi.org/10.1056/NEJMoa2306441
|
56 |
P Nathan, JC Hassel, P Rutkowski, JF Baurain, MO Butler, M Schlaak, RJ Sullivan, S Ochsenreither, R Dummer, JM Kirkwood, AM Joshua, JJ Sacco, AN Shoushtari, M Orloff, JM Piulats, M Milhem, AKS Salama, B Curti, L Demidov, L Gastaud, C Mauch, M Yushak, RD Carvajal, O Hamid, SE Abdullah, C Holland, H Goodall, S; IMCgp100-202 Investigators Piperno-Neumann. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N Engl J Med 2021; 385(13): 1196–1206
https://doi.org/10.1056/NEJMoa2103485
|
57 |
JS Heier, AM Khanani, Ruiz C Quezada, K Basu, PJ Ferrone, C Brittain, MS Figueroa, H Lin, FG Holz, V Patel, TYY Lai, D Silverman, C Regillo, B Swaminathan, F Viola, CMG Cheung, TY; TENAYA Wong, Investigators LUCERNE. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): two randomised, double-masked, phase 3, non-inferiority trials. Lancet 2022; 399(10326): 729–740
https://doi.org/10.1016/S0140-6736(22)00010-1
|
58 |
CC Wykoff, F Abreu, AP Adamis, K Basu, DA Eichenbaum, Z Haskova, H Lin, A Loewenstein, S Mohan, IA Pearce, T Sakamoto, PG Schlottmann, D Silverman, JK Sun, JA Wells, JR Willis, R; YOSEMITE Tadayoni, Investigators RHINE. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. Lancet 2022; 399(10326): 741–755
https://doi.org/10.1016/S0140-6736(22)00018-6
|
59 |
LE Budde, LH Sehn, M Matasar, SJ Schuster, S Assouline, P Giri, J Kuruvilla, M Canales, S Dietrich, K Fay, M Ku, L Nastoupil, CY Cheah, MC Wei, S Yin, CC Li, H Huang, A Kwan, E Penuel, NL Bartlett. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol 2022; 23(8): 1055–1065
https://doi.org/10.1016/S1470-2045(22)00335-7
|
60 |
SJ Keam. Cadonilimab: first approval. Drugs 2022; 82(12): 1333–1339
https://doi.org/10.1007/s40265-022-01761-9
|
61 |
P Moreau, AL Garfall, de Donk NWCJ van, H Nahi, JF San-Miguel, A Oriol, AK Nooka, T Martin, L Rosinol, A Chari, L Karlin, L Benboubker, MV Mateos, N Bahlis, R Popat, B Besemer, J Martínez-López, S Sidana, M Delforge, L Pei, D Trancucci, R Verona, S Girgis, SXW Lin, Y Olyslager, M Jaffe, C Uhlar, T Stephenson, Rampelbergh R Van, A Banerjee, JD Goldberg, R Kobos, A Krishnan, SZ Usmani. Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med 2022; 387(6): 495–505
https://doi.org/10.1056/NEJMoa2203478
|
62 |
T Takeuchi, M Kawanishi, M Nakanishi, H Yamasaki, Y Tanaka. Phase II/III results of a trial of anti-tumor necrosis factor multivalent NANOBODY compound ozoralizumab in patients with rheumatoid arthritis. Arthritis Rheumatol 2022; 74(11): 1776–1785
https://doi.org/10.1002/art.42273
|
63 |
C Thieblemont, T Phillips, H Ghesquieres, CY Cheah, MR Clausen, D Cunningham, YR Do, T Feldman, R Gasiorowski, W Jurczak, TM Kim, DJ Lewis, M van der Poel, ML Poon, M Cota Stirner, N Kilavuz, C Chiu, M Chen, M Sacchi, B Elliott, T Ahmadi, M Hutchings, PJ Lugtenburg. Epcoritamab, a novel, subcutaneous CD3xCD20 bispecific T-cell-engaging antibody, in relapsed or refractory large B-cell lymphoma: dose expansion in a phase I/II trial. J Clin Oncol 2023; 41(12): 2238–2247
https://doi.org/10.1200/JCO.22.01725
|
64 |
MJ Dickinson, C Carlo-Stella, F Morschhauser, E Bachy, P Corradini, G Iacoboni, C Khan, T Wróbel, F Offner, M Trněný, SJ Wu, G Cartron, M Hertzberg, A Sureda, D Perez-Callejo, L Lundberg, J Relf, M Dixon, E Clark, K Humphrey, M Hutchings. Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2022; 387(24): 2220–2231
https://doi.org/10.1056/NEJMoa2206913
|
65 |
AM Lesokhin, MH Tomasson, B Arnulf, NJ Bahlis, Prince H Miles, R Niesvizky, P Rodrίguez-Otero, J Martinez-Lopez, G Koehne, C Touzeau, Y Jethava, H Quach, J Depaus, H Yokoyama, AE Gabayan, DA Stevens, AK Nooka, S Manier, N Raje, S Iida, MS Raab, E Searle, E Leip, ST Sullivan, U Conte, M Elmeliegy, A Czibere, A Viqueira, M Mohty. Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results. Nat Med 2023; 29(9): 2259–2267
https://doi.org/10.1038/s41591-023-02528-9
|
66 |
A Chari, MC Minnema, JG Berdeja, A Oriol, de Donk NWCJ van, P Rodríguez-Otero, E Askari, MV Mateos, LJ Costa, J Caers, R Verona, S Girgis, S Yang, RB Goldsmith, X Yao, K Pillarisetti, BW Hilder, J Russell, JD Goldberg, A Krishnan. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. N Engl J Med 2022; 387(24): 2232–2244
https://doi.org/10.1056/NEJMoa2204591
|
67 |
AF Labrijn, ML Janmaat, JM Reichert, PWHI Parren. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18(8): 585–608
https://doi.org/10.1038/s41573-019-0028-1
|
68 |
BA Khaw, KS Gada, V Patil, R Panwar, S Mandapati, A Hatefi, S Majewski, A Weisenberger. Bispecific antibody complex pre-targeting and targeted delivery of polymer drug conjugates for imaging and therapy in dual human mammary cancer xenografts: targeted polymer drug conjugates for cancer diagnosis and therapy. Eur J Nucl Med Mol Imaging 2014; 41(8): 1603–1616
https://doi.org/10.1007/s00259-014-2738-2
|
69 |
RM Sharkey, CM van Rij, H Karacay, EA Rossi, C Frielink, C Regino, TM Cardillo, WJ McBride, CH Chang, OC Boerman, DM Goldenberg. A new Tri-Fab bispecific antibody for pretargeting Trop-2-expressing epithelial cancers. J Nucl Med 2012; 53(10): 1625–1632
https://doi.org/10.2967/jnumed.112.104364
|
70 |
U Brinkmann, RE Kontermann. The making of bispecific antibodies. MAbs 2017; 9(2): 182–212
https://doi.org/10.1080/19420862.2016.1268307
|
71 |
JBB Ridgway, LG Presta, P Carter. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 1996; 9(7): 617–621
https://doi.org/10.1093/protein/9.7.617
|
72 |
JH Davis, C Aperlo, Y Li, E Kurosawa, Y Lan, KM Lo, JS Huston. SEEDbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng Des Sel 2010; 23(4): 195–202
https://doi.org/10.1093/protein/gzp094
|
73 |
EA Rossi, DM Goldenberg, CH Chang. The dock-and-lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures. Bioconjug Chem 2012; 23(3): 309–323
https://doi.org/10.1021/bc2004999
|
74 |
H Shim. Bispecific antibodies and antibody-drug conjugates for cancer therapy: technological considerations. Biomolecules 2020; 10(3): 360
https://doi.org/10.3390/biom10030360
|
75 |
P Khongorzul, CJ Ling, FU Khan, AU Ihsan, J Zhang. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res 2020; 18(1): 3–19
https://doi.org/10.1158/1541-7786.MCR-19-0582
|
76 |
B Li, Y Meng, L Zheng, X Zhang, Q Tong, W Tan, S Hu, H Li, Y Chen, J Song, G Zhang, L Zhao, D Zhang, S Hou, W Qian, Y Guo. Bispecific antibody to ErbB2 overcomes trastuzumab resistance through comprehensive blockade of ErbB2 heterodimerization. Cancer Res 2013; 73(21): 6471–6483
https://doi.org/10.1158/0008-5472.CAN-13-0657
|
77 |
R Castoldi, V Ecker, L Wiehle, M Majety, R Busl-Schuller, M Asmussen, A Nopora, U Jucknischke, F Osl, S Kobold, W Scheuer, M Venturi, C Klein, G Niederfellner, C Sustmann. A novel bispecific EGFR/Met antibody blocks tumor-promoting phenotypic effects induced by resistance to EGFR inhibition and has potent antitumor activity. Oncogene 2013; 32(50): 5593–5601
https://doi.org/10.1038/onc.2013.245
|
78 |
YJ Kim, DS Baek, S Lee, D Park, HN Kang, BC Cho, YS Kim. Dual-targeting of EGFR and neuropilin-1 attenuates resistance to EGFR-targeted antibody therapy in KRAS-mutant non-small cell lung cancer. Cancer Lett 2019; 466: 23–34
https://doi.org/10.1016/j.canlet.2019.09.005
|
79 |
TD Nguyen, BM Bordeau, JP Balthasar. Mechanisms of ADC toxicity and strategies to increase ADC tolerability. Cancers (Basel) 2023; 15(3): 713
https://doi.org/10.3390/cancers15030713
|
80 |
A Maruani. Bispecifics and antibody-drug conjugates: a positive synergy. Drug Discov Today Technol 2018; 30: 55–61
https://doi.org/10.1016/j.ddtec.2018.09.003
|
81 |
JD Bargh, A Isidro-Llobet, JS Parker, DR Spring. Cleavable linkers in antibody-drug conjugates. Chem Soc Rev 2019; 48(16): 4361–4374
https://doi.org/10.1039/C8CS00676H
|
82 |
N Coleman, TA Yap, JV Heymach, F Meric-Bernstam, X Le. Antibody-drug conjugates in lung cancer: dawn of a new era. NPJ Precis Oncol 2023; 7(1): 5
https://doi.org/10.1038/s41698-022-00338-9
|
83 |
Y Ogitani, K Hagihara, M Oitate, H Naito, T Agatsuma. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci 2016; 107(7): 1039–1046
https://doi.org/10.1111/cas.12966
|
84 |
F Giugliano, C Corti, P Tarantino, F Michelini, G Curigliano. Bystander effect of antibody-drug conjugates: fact or fiction. Curr Oncol Rep 2022; 24(7): 809–817
https://doi.org/10.1007/s11912-022-01266-4
|
85 |
YV Kovtun, CA Audette, Y Ye, H Xie, MF Ruberti, SJ Phinney, BA Leece, T Chittenden, WA Blättler, VS Goldmacher. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 2006; 66(6): 3214–3221
https://doi.org/10.1158/0008-5472.CAN-05-3973
|
86 |
SD Pronk, E Schooten, J Heinen, E Helfrich, S Oliveira, PMP van Bergen en Henegouwen. Single domain antibodies as carriers for intracellular drug delivery: a proof of principle study. Biomolecules 2021; 11(7): 927
https://doi.org/10.3390/biom11070927
|
87 |
S Xu. Internalization, trafficking, intracellular processing and actions of antibody-drug conjugates. Pharm Res 2015; 32(11): 3577–3583
https://doi.org/10.1007/s11095-015-1729-8
|
88 |
C Kelton, JS Wesolowski, M Soloviev, R Schweickhardt, D Fischer, E Kurosawa, SD McKenna, AW Gross. Anti-EGFR biparatopic-SEED antibody has enhanced combination-activity in a single molecule. Arch Biochem Biophys 2012; 526(2): 219–225
https://doi.org/10.1016/j.abb.2012.03.005
|
89 |
LM Friedman, A Rinon, B Schechter, L Lyass, S Lavi, SS Bacus, M Sela, Y Yarden. Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc Natl Acad Sci USA 2005; 102(6): 1915–1920
https://doi.org/10.1073/pnas.0409610102
|
90 |
JB Spangler, JR Neil, S Abramovitch, Y Yarden, FM White, DA Lauffenburger, KD Wittrup. Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci USA 2010; 107(30): 13252–13257
https://doi.org/10.1073/pnas.0913476107
|
91 |
F ComerC GaoS Coats. Bispecific and biparatopic antibody drug conjugates. In: Damelin M. Innovations for Next-Generation Antibody-Drug Conjugates. Cham: Springer International Publishing, 2018: 267–280
|
92 |
FW Hunter, HR Barker, B Lipert, F Rothé, G Gebhart, MJ Piccart-Gebhart, C Sotiriou, SMF Jamieson. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br J Cancer 2020; 122(5): 603–612
https://doi.org/10.1038/s41416-019-0635-y
|
93 |
MD Pegram, D Miles, CK Tsui, Y Zong. HER2-overexpressing/amplified breast cancer as a testing ground for antibody-drug conjugate drug development in solid tumors. Clin Cancer Res 2020; 26(4): 775–786
https://doi.org/10.1158/1078-0432.CCR-18-1976
|
94 |
NE Weisser, M Sanches, E Escobar-Cabrera, J O’Toole, E Whalen, PWY Chan, G Wickman, L Abraham, K Choi, B Harbourne, A Samiotakis, AH Rojas, G Volkers, J Wong, CE Atkinson, J Baardsnes, LJ Worrall, D Browman, EE Smith, P Baichoo, CW Cheng, J Guedia, S Kang, A Mukhopadhyay, L Newhook, A Ohrn, P Raghunatha, M Zago-Schmitt, JD Schrag, J Smith, P Zwierzchowski, JM Scurll, V Fung, S Black, NCJ Strynadka, MR Gold, LG Presta, G Ng, S Dixit. An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat Commun 2023; 14(1): 1394
https://doi.org/10.1038/s41467-023-37029-3
|
95 |
JJ Harding, J Fan, DY Oh, HJ Choi, JW Kim, HM Chang, L Bao, HC Sun, T Macarulla, F Xie, JP Metges, J Ying, J Bridgewater, MA Lee, MA Tejani, EY Chen, DU Kim, H Wasan, M Ducreux, Y Bao, L Boyken, J Ma, P Garfin, S; HERIZON-BTC-01 study group Pant. Zanidatamab for HER2-amplified, unresectable, locally advanced or metastatic biliary tract cancer (HERIZON-BTC-01): a multicentre, single-arm, phase 2b study. Lancet Oncol 2023; 24(7): 772–782
https://doi.org/10.1016/S1470-2045(23)00242-5
|
96 |
R De Santis. Anti-ErbB2 immunotherapeutics: struggling to make better antibodies for cancer therapy. MAbs 2020; 12(1): 1725346
https://doi.org/10.1080/19420862.2020.1725346
|
97 |
S Huang, F Li, H Liu, P Ye, X Fan, X Yuan, Z Wu, J Chen, C Jin, B Shen, J Feng, B Zhang. Structural and functional characterization of MBS301, an afucosylated bispecific anti-HER2 antibody. MAbs 2018; 10(6): 864–875
https://doi.org/10.1080/19420862.2018.1486946
|
98 |
NK Lee, Y Su, S Bidlingmaier, B Liu. Manipulation of cell-type selective antibody internalization by a guide-effector bispecific design. Mol Cancer Ther 2019; 18(6): 1092–1103
https://doi.org/10.1158/1535-7163.MCT-18-1313
|
99 |
BE de Goeij, T Vink, H Ten Napel, EC Breij, D Satijn, R Wubbolts, D Miao, PW Parren. Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63. Mol Cancer Ther 2016; 15(11): 2688–2697
https://doi.org/10.1158/1535-7163.MCT-16-0364
|
100 |
MS Pols, J Klumperman. Trafficking and function of the tetraspanin CD63. Exp Cell Res 2009; 315(9): 1584–1592
https://doi.org/10.1016/j.yexcr.2008.09.020
|
101 |
RM DeVay, K Delaria, G Zhu, C Holz, D Foletti, J Sutton, G Bolton, R Dushin, C Bee, J Pons, A Rajpal, H Liang, D Shelton, SH Liu, P Strop. Improved lysosomal trafficking can modulate the potency of antibody drug conjugates. Bioconjug Chem 2017; 28(4): 1102–1114
https://doi.org/10.1021/acs.bioconjchem.7b00013
|
102 |
U Rupp, E Schoendorf-Holland, M Eichbaum, F Schuetz, I Lauschner, P Schmidt, A Staab, G Hanft, J Huober, HP Sinn, C Sohn, A Schneeweiss. Safety and pharmacokinetics of bivatuzumab mertansine in patients with CD44v6-positive metastatic breast cancer: final results of a phase I study. Anticancer Drugs 2007; 18(4): 477–485
https://doi.org/10.1097/CAD.0b013e32801403f4
|
103 |
JE Rosenberg, PH O’Donnell, AV Balar, BA McGregor, EI Heath, EY Yu, MD Galsky, NM Hahn, EM Gartner, JM Pinelli, SY Liang, A Melhem-Bertrandt, DP Petrylak. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Clin Oncol 2019; 37(29): 2592–2600
https://doi.org/10.1200/JCO.19.01140
|
104 |
MN Saleh, S Sugarman, J Murray, JB Ostroff, D Healey, D Jones, CR Daniel, D LeBherz, H Brewer, N Onetto, AF LoBuglio. Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J Clin Oncol 2000; 18(11): 2282–2292
https://doi.org/10.1200/JCO.2000.18.11.2282
|
105 |
E Dheilly, V Moine, L Broyer, S Salgado-Pires, Z Johnson, A Papaioannou, L Cons, S Calloud, S Majocchi, R Nelson, F Rousseau, W Ferlin, M Kosco-Vilbois, N Fischer, K Masternak. Selective blockade of the ubiquitous checkpoint receptor CD47 is enabled by dual-targeting bispecific antibodies. Mol Ther 2017; 25(2): 523–533
https://doi.org/10.1016/j.ymthe.2016.11.006
|
106 |
A Baruch, C Wong, LW Chinn, A Vaze, J Sonoda, T Gelzleichter, S Chen, N Lewin-Koh, L Morrow, S Dheerendra, R Boismenu, J Gutierrez, E Wakshull, ME Wilson, PS Arora. Antibody-mediated activation of the FGFR1/Klothoβ complex corrects metabolic dysfunction and alters food preference in obese humans. Proc Natl Acad Sci USA 2020; 117(46): 28992–29000
https://doi.org/10.1073/pnas.2012073117
|
107 |
L Geng, KSL Lam, A Xu. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol 2020; 16(11): 654–667
https://doi.org/10.1038/s41574-020-0386-0
|
108 |
S Liu, W Lyu, S Yin, Y Lei, Q Zhuo, L Zheng, B Sun, S Tan, L Jiang, T Zhang, B Gao, R Xu, D Huang, Y Li, Z Wu, D Wu, Y Wen. Abstract 6307: a novel pegylated bispecific antibody-drug conjugate (P-BsADCpb-adc) targeting cancers co-expressing PD-L1 and CD47. Cancer Res 2023; 83(7 Supplement): 6307
https://doi.org/10.1158/1538-7445.AM2023-6307
|
109 |
JM Baas, LL Krens, HJ Guchelaar, J Ouwerkerk, FA de Jong, AP Lavrijsen, H Gelderblom. Recommendations on management of EGFR inhibitor-induced skin toxicity: a systematic review. Cancer Treat Rev 2012; 38(5): 505–514
https://doi.org/10.1016/j.ctrv.2011.09.004
|
110 |
ME Lacouture. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer 2006; 6(10): 803–812
https://doi.org/10.1038/nrc1970
|
111 |
C Knuehl, L Toleikis, J Dotterweich, J Ma, S Kumar, E Ross, C Wilm, M Schmitt, HJ Grote, C Amendt. Abstract 5284: M1231 is a bispecific anti-MUC1xEGFR antibody-drug conjugate designed to treat solid tumors with MUC1 and EGFR co-expression. Cancer Res 2022; 82(12 Supplement): 5284
https://doi.org/10.1158/1538-7445.AM2022-5284
|
112 |
Y Ma, Y Huang, Y Zhao, S Zhao, J Xue, Y Yang, W Fang, Y Guo, Y Han, K Yang, Y Li, J Yang, Z Fu, G Chen, L Chen, N Zhou, T Zhou, Y Zhang, H Zhou, Q Liu, Y Zhu, H Zhu, S Xiao, L Zhang, H Zhao. BL-B01D1, a first-in-class EGFR-HER3 bispecific antibody-drug conjugate, in patients with locally advanced or metastatic solid tumours: a first-in-human, open-label, multicentre, phase 1 study. Lancet Oncol 2024; 29: S1470–2045(24)00159–1
https://doi.org/10.1016/S1470-2045(24)00159-1
|
113 |
L McGrath, Y Zheng, S Christ, CC Sachs, S Khelifa, C Windmüller, S Sweet, YJ Kim, D Sutton, M Sulikowski, A Lewis, I Inigo, N Floch, E Rosfjord, F Arnaldez, F Comer. Abstract 5737: Evaluation of the relationship between target expression and in vivo anti-tumor efficacy of AZD9592, an EGFR/c-MET targeted bispecific antibody drug conjugate. Cancer Res 2023; 83(7 Supplement): 5737
https://doi.org/10.1158/1538-7445.AM2023-5737
|
114 |
R Khoury, K Saleh, N Khalife, M Saleh, C Chahine, R Ibrahim, A Lecesne. Mechanisms of resistance to antibody-drug conjugates. Int J Mol Sci 2023; 24(11): 9674
https://doi.org/10.3390/ijms24119674
|
115 |
E Díaz-Rodríguez, L Gandullo-Sánchez, A Ocaña, A Pandiella. Novel ADCs and strategies to overcome resistance to anti-HER2 ADCs. Cancers (Basel) 2021; 14(1): 154
https://doi.org/10.3390/cancers14010154
|
116 |
O Ab, LM Bartle, L Lanieri, JF Ponte, QF Qiu, S Sikka, JA Costoplus, W Deats, NC Yoder, WC Widdison, K Mucciarone, K Selvitelli, Y Chen, N Kohli, T Chittenden, R Gregory, Y Setiady, EH Westin. IMGN151-A next generation folate receptor alpha targeting antibody drug conjugate active against tumors with low, medium and high receptor expression. Cancer Res 2020; 80(16 Supplement): 2890
https://doi.org/10.1158/1538-7445.AM2020-2890
|
117 |
JO DaSilva, K Yang, AE Perez Bay, J Andreev, P Ngoi, E Pyles, MC Franklin, D Dudgeon, A Rafique, A Dore, FJ Delfino, TB Potocky, R Babb, G Chen, D MacDonald, WC Olson, G Thurston, C Daly. A biparatopic antibody that modulates MET trafficking exhibits enhanced efficacy compared with parental antibodies in MET-driven tumor models. Clin Cancer Res 2020; 26(6): 1408–1419
https://doi.org/10.1158/1078-0432.CCR-19-2428
|
118 |
OM Filho, G Viale, S Stein, L Trippa, DA Yardley, IA Mayer, VG Abramson, CL Arteaga, LM Spring, AG Waks, E Wrabel, MK DeMeo, A Bardia, P Dell’Orto, L Russo, TA King, K Polyak, F Michor, EP Winer, IE Krop. Impact of HER2 heterogeneity on treatment response of early-stage HER2-positive breast cancer: phase II neoadjuvant clinical trial of T-DM1 combined with pertuzumab. Cancer Discov 2021; 11(10): 2474–2487
https://doi.org/10.1158/2159-8290.CD-20-1557
|
119 |
KN Moore, AM Oza, N Colombo, A Oaknin, G Scambia, D Lorusso, GE Konecny, S Banerjee, CG Murphy, JL Tanyi, H Hirte, JA Konner, PC Lim, M Prasad-Hayes, BJ Monk, P Pautier, J Wang, A Berkenblit, I Vergote, MJ Birrer. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I. Ann Oncol 2021; 32(6): 757–765
https://doi.org/10.1016/j.annonc.2021.02.017
|
120 |
J Fan, X Zhuang, X Yang, Y Xu, Z Zhou, L Pan, S Chen. A multivalent biparatopic EGFR-targeting nanobody drug conjugate displays potent anticancer activity in solid tumor models. Signal Transduct Target Ther 2021; 6(1): 320
https://doi.org/10.1038/s41392-021-00666-5
|
121 |
MT Larsen, M Kuhlmann, ML Hvam, KA Howard. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther 2016; 4(1): 3
https://doi.org/10.1186/s40591-016-0048-8
|
122 |
MS Dennis, H Jin, D Dugger, R Yang, L McFarland, A Ogasawara, S Williams, MJ Cole, S Ross, R Schwall. Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 2007; 67(1): 254–261
https://doi.org/10.1158/0008-5472.CAN-06-2531
|
123 |
Q Li, A Barrett, B Vijayakrishnan, A Tiberghien, R Beard, KW Rickert, KL Allen, RJ Christie, M Marelli, J Harper, P Howard, H Wu, WF Dall’Acqua, P Tsui, C Gao, MJ Borrok. Improved inhibition of tumor growth by diabody-drug conjugates via half-life extension. Bioconjug Chem 2019; 30(4): 1232–1243
https://doi.org/10.1021/acs.bioconjchem.9b00170
|
124 |
Z Han, C Shang, W Dai, G An, E Zhang, Q Lin, Y Yang. Abstract LB213: Identification of DM004, a first-in-class anti-5T4/MET bispecific antibody-drug conjugate. Cancer Res 2023; 83(8 Supplement): LB213
https://doi.org/10.1158/1538-7445.AM2023-LB213
|
125 |
Z Li, C Shang, X Guan, G An, Y Guo, E Zhang, Q Lin, Y Yang. Abstract LB215: A first-in-class anti-TROP2/EGFR bispecific antibody-drug conjugate, DM001, exhibits potent anti-tumor efficacy. Cancer Res 2023; 83(8 Supplement): LB215
https://doi.org/10.1158/1538-7445.AM2023-LB215
|
126 |
Z Li, C Shang, X Guan, Z Han, G An, E Zhang, Q Lin, Y Yang. Abstract LB212: BCG022: A novel bispecific antibody-drug conjugate targeting HER3 and MET. Cancer Res 2023; 83(8 Supplement): LB212
https://doi.org/10.1158/1538-7445.AM2023-LB212
|
127 |
C Shang, G An, Y Guo, E Zhang, Q Lin, Y Yang. Abstract 2977: A first-in-class anti-HER2/TROP2 bispecific antibody-drug conjugate (YH012) exhibits potent anti-tumor efficacy. Cancer Res 2023; 83(7 Supplement): 2977
https://doi.org/10.1158/1538-7445.AM2023-2977
|
128 |
S Yao, C Shang, G An, E Zhang, Q Lin, Y Yang. Abstract LB216: Discovery of BCG033, a novel anti-PTK7 x TROP2 bispecific antibody-drug conjugate with promising efficacy against triple-negative breast cancer. Cancer Res 2023; 83(8 Supplement): LB216
https://doi.org/10.1158/1538-7445.AM2023-LB216
|
129 |
Y Zhang, C Shang, N Wang, G An, E Zhang, Q Lin, Y Yang. Abstract LB214: A first-in-class bispecific antibody-drug conjugate (DM002) targeting HER3 and the juxtamembrane domain of MUC1. Cancer Res 2023; 83(8 Supplement): LB214
https://doi.org/10.1158/1538-7445.AM2023-LB214
|
130 |
P Jiménez-Labaig, A Rullan, A Hernando-Calvo, S Llop, S Bhide, B O'Leary, I Braña, KJ Harrington. A systematic review of antibody-drug conjugates and bispecific antibodies in head and neck squamous cell carcinoma and nasopha-ryngeal carcinoma: Charting the course of future therapies. Cancer Treat Rev 2024; 128: 102772
https://doi.org/10.1016/j.ctrv.2024.102772
|
131 |
HM Haikala, PA Jänne. Thirty years of HER3: from basic biology to therapeutic interventions. Clin Cancer Res 2021; 27(13): 3528–3539
https://doi.org/10.1158/1078-0432.CCR-20-4465
|
132 |
J Uliano, C Corvaja, G Curigliano, P Tarantino. Targeting HER3 for cancer treatment: a new horizon for an old target. ESMO Open 2023; 8(1): 100790
https://doi.org/10.1016/j.esmoop.2023.100790
|
133 |
K Matsumoto, T Nakamura. Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. Int J Cancer 2006; 119(3): 477–483
https://doi.org/10.1002/ijc.21808
|
134 |
K Matsumoto, M Umitsu, DM De Silva, A Roy, DP Bottaro. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci 2017; 108(3): 296–307
https://doi.org/10.1111/cas.13156
|
135 |
AM Dulak, CT Gubish, LP Stabile, C Henry, JM Siegfried. HGF-independent potentiation of EGFR action by c-Met. Oncogene 2011; 30(33): 3625–3635
https://doi.org/10.1038/onc.2011.84
|
136 |
LV Sequist, JY Han, MJ Ahn, BC Cho, H Yu, SW Kim, JC Yang, JS Lee, WC Su, D Kowalski, S Orlov, M Cantarini, RB Verheijen, A Mellemgaard, L Ottesen, P Frewer, X Ou, G Oxnard. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. Lancet Oncol 2020; 21(3): 373–386
https://doi.org/10.1016/S1470-2045(19)30785-5
|
137 |
SI Ou, L Young, AB Schrock, A Johnson, SJ Klempner, VW Zhu, VA Miller, SM Ali. Emergence of preexisting MET Y1230C mutation as a resistance mechanism to crizotinib in NSCLC with MET exon 14 skipping. J Thorac Oncol 2017; 12(1): 137–140
https://doi.org/10.1016/j.jtho.2016.09.119
|
138 |
GGY Lai, TH Lim, J Lim, PJR Liew, XL Kwang, R Nahar, ZW Aung, A Takano, YY Lee, DPX Lau, GS Tan, SH Tan, WL Tan, MK Ang, CK Toh, BS Tan, A Devanand, CW Too, A Gogna, BH Ong, TPT Koh, R Kanesvaran, QS Ng, A Jain, T Rajasekaran, J Yuan, TKH Lim, AST Lim, AM Hillmer, WT Lim, NG Iyer, WL Tam, W Zhai, EH Tan, DSW Tan. Clonal MET amplification as a determinant of tyrosine kinase inhibitor resistance in epidermal growth factor receptor-mutant non-small-cell lung cancer. J Clin Oncol 2019; 37(11): 876–884
https://doi.org/10.1200/JCO.18.00177
|
139 |
S Baldacci, Z Kherrouche, V Cockenpot, L Stoven, MC Copin, E Werkmeister, N Marchand, M Kyheng, D Tulasne, AB Cortot. MET amplification increases the metastatic spread of EGFR-mutated NSCLC. Lung Cancer 2018; 125: 57–67
https://doi.org/10.1016/j.lungcan.2018.09.008
|
140 |
SY Oh, YW Lee, EJ Lee, JH Kim, Y Park, SG Heo, MR Yu, MH Hong, J DaSilva, C Daly, BC Cho, SM Lim, MR Yun. Preclinical study of a biparatopic METxMET antibody-drug conjugate, REGN5093-M114, overcomes MET-driven acquired resistance to EGFR TKIs in EGFR-mutant NSCLC. Clin Cancer Res 2023; 29(1): 221–232
https://doi.org/10.1158/1078-0432.CCR-22-2180
|
141 |
JO DaSilva, K Yang, O Surriga, T Nittoli, A Kunz, MC Franklin, FJ Delfino, S Mao, F Zhao, JT Giurleo, MP Kelly, S Makonnen, C Hickey, P Krueger, R Foster, Z Chen, MW Retter, R Slim, TM Young, WC Olson, G Thurston, C Daly. A biparatopic antibody-drug conjugate to treat MET-expressing cancers, including those that are unresponsive to MET pathway blockade. Mol Cancer Ther 2021; 20(10): 1966–1976
https://doi.org/10.1158/1535-7163.MCT-21-0009
|
142 |
AE Perez Bay, D Faulkner, JO DaSilva, TM Young, K Yang, JT Giurleo, D Ma, FJ Delfino, WC Olson, G Thurston, C Daly, J Andreev. A bispecific METxMET antibody-drug conjugate with cleavable linker is processed in recycling and late endosomes. Mol Cancer Ther 2023; 22(3): 357–370
https://doi.org/10.1158/1535-7163.MCT-22-0414
|
143 |
JY Li, SR Perry, V Muniz-Medina, X Wang, LK Wetzel, MC Rebelatto, MJ Hinrichs, BZ Bezabeh, RL Fleming, N Dimasi, H Feng, D Toader, AQ Yuan, L Xu, J Lin, C Gao, H Wu, R Dixit, JK Osbourn, SR Coats. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 2016; 29(1): 117–129
https://doi.org/10.1016/j.ccell.2015.12.008
|
144 |
K HamblettS BarnscherR DaviesP HammondA HernandezG WickmanV FungT Ding G GarnettA GaleyP ZwierzchowskiB ClavetteG Winters J RichG RowseJ BabcookD Hausman. Abstract P6–17–13: ZW49, a HER2 targeted biparatopic antibody drug conjugate for the treatment of HER2 expressing cancers. Cancer Res 2019; 79(4_Supplement): P6–17–13
|
145 |
MD Pegram, EP Hamilton, AR Tan, AM Storniolo, K Balic, AI Rosenbaum, M Liang, P He, S Marshall, A Scheuber, M Das, MR Patel. First-in-human, phase 1 dose-escalation study of biparatopic anti-HER2 antibody-drug conjugate MEDI4276 in patients with HER2-positive advanced breast or gastric cancer. Mol Cancer Ther 2021; 20(8): 1442–1453
https://doi.org/10.1158/1535-7163.MCT-20-0014
|
146 |
K Jhaveri, H Han, E Dotan, DY Oh, C Ferrario, A Tolcher, KW Lee, CY Liao, YK Kang, YH Kim, E Hamilton, A Spira, N Patel, C Karapetis, SY Rha, L Boyken, J Woolery, P Bedard. Preliminary results from a phase I study using the bispecific, human epidermal growth factor 2 (HER2)-targeting antibody-drug conjugate (ADC) zanidatamab zovodotin (ZW49) in solid cancers. Ann Oncol 2022; 33(7): S749–S750
https://doi.org/10.1016/j.annonc.2022.07.589
|
147 |
MJ Hinrichs, R Dixit. Antibody drug conjugates: nonclinical safety considerations. AAPS J 2015; 17(5): 1055–1064
https://doi.org/10.1208/s12248-015-9790-0
|
148 |
Y Gu, Z Wang, Y Wang. Bispecific antibody drug conjugates: Making 1+1 > 2. Acta Pharm Sin B. 2024; 14(5): 1965–1986
https://doi.org/10.1016/j.apsb.2024.01.009
|
149 |
P Wang, K Guo, J Peng, J Sun, T Xu. JSKN003, a novel biparatopic anti-HER2 antibody-drug conjugate, exhibits potent antitumor efficacy. Antib Ther 2023; 6: tbad014.009
https://doi.org/10.1093/abt/tbad014.009
|
150 |
A Kharbanda, H Rajabi, C Jin, J Tchaicha, E Kikuchi, KK Wong, D Kufe. Targeting the oncogenic MUC1-C protein inhibits mutant EGFR-mediated signaling and survival in non-small cell lung cancer cells. Clin Cancer Res 2014; 20(21): 5423–5434
https://doi.org/10.1158/1078-0432.CCR-13-3168
|
151 |
T Piyush, AR Chacko, P Sindrewicz, J Hilkens, JM Rhodes, LG Yu. Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells. Cell Death Differ 2017; 24(11): 1937–1947
https://doi.org/10.1038/cdd.2017.119
|
152 |
JH Davis, C Aperlo, Y Li, E Kurosawa, Y Lan, KM Lo, JS Huston. SEEDbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng Des Sel 2010; 23(4): 195–202
https://doi.org/10.1093/protein/gzp094
|
153 |
Y Zhang, C Shang, A Wang, J Zhang, Y Liu, H Li, X Li, G An, L Hui, F An, Y Yang. Abstract 6325: A novel EGFR x MUC1 bispecific antibody-drug conjugate, BSA01, targets MUC1 transmembrane cleavage products and improves tumor selectivity. Cancer Res 2023; 83(7 Supplement): 6325
https://doi.org/10.1158/1538-7445.AM2023-6325
|
154 |
Q Dong, Y Du, H Li, C Liu, Y Wei, MK Chen, X Zhao, YY Chu, Y Qiu, L Qin, H Yamaguchi, MC Hung. EGFR and c-MET cooperate to enhance resistance to PARP inhibitors in hepatocellular carcinoma. Cancer Res 2019; 79(4): 819–829
https://doi.org/10.1158/0008-5472.CAN-18-1273
|
155 |
YL Wu, RA Soo, G Locatelli, U Stammberger, G Scagliotti, K Park. Does c-Met remain a rational target for therapy in patients with EGFR TKI-resistant non-small cell lung cancer. Cancer Treat Rev 2017; 61: 70–81
https://doi.org/10.1016/j.ctrv.2017.10.003
|
156 |
L Huang, L Fu. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B 2015; 5(5): 390–401
https://doi.org/10.1016/j.apsb.2015.07.001
|
157 |
SL Moores, ML Chiu, BS Bushey, K Chevalier, L Luistro, K Dorn, RJ Brezski, P Haytko, T Kelly, SJ Wu, PL Martin, J Neijssen, PW Parren, J Schuurman, RM Attar, S Laquerre, MV Lorenzi, GM Anderson. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res 2016; 76(13): 3942–3953
https://doi.org/10.1158/0008-5472.CAN-15-2833
|
158 |
DW Wu, TC Chen, HS Huang, H Lee. TC-N19, a novel dual inhibitor of EGFR and cMET, efficiently overcomes EGFR-TKI resistance in non-small-cell lung cancer cells. Cell Death Dis 2016; 7(6): e2290
https://doi.org/10.1038/cddis.2016.192
|
159 |
YL Wu, L Zhang, DW Kim, X Liu, DH Lee, JC Yang, MJ Ahn, JF Vansteenkiste, WC Su, E Felip, V Chia, S Glaser, P Pultar, S Zhao, B Peng, M Akimov, DSW Tan. Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer. J Clin Oncol 2018; 36(31): 3101–3109
https://doi.org/10.1200/JCO.2018.77.7326
|
160 |
M Scaranti, E Cojocaru, S Banerjee, U Banerji. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol 2020; 17(6): 349–359
https://doi.org/10.1038/s41571-020-0339-5
|
161 |
A Cheung, HJ Bax, DH Josephs, KM Ilieva, G Pellizzari, J Opzoomer, J Bloomfield, M Fittall, A Grigoriadis, M Figini, S Canevari, JF Spicer, AN Tutt, SN Karagiannis. Targeting folate receptor alpha for cancer treatment. Oncotarget 2016; 7(32): 52553–52574
https://doi.org/10.18632/oncotarget.9651
|
162 |
O Ab, KR Whiteman, LM Bartle, X Sun, R Singh, D Tavares, A LaBelle, G Payne, RJ Lutz, J Pinkas, VS Goldmacher, T Chittenden, JM Lambert. IMGN853, a folate receptor-α (FRα)-targeting antibody-drug conjugate, exhibits potent targeted antitumor activity against FRα-expressing tumors. Mol Cancer Ther 2015; 14(7): 1605–1613
https://doi.org/10.1158/1535-7163.MCT-14-1095
|
163 |
D Romero. Mirvetuximab soravtansine has activity in platinum-sensitive epithelial ovarian cancer. Nat Rev Clin Oncol 2024; 21(6): 402
https://doi.org/10.1038/s41571-024-00888-w
|
164 |
UA Matulonis, D Lorusso, A Oaknin, S Pignata, A Dean, H Denys, N Colombo, T Van Gorp, JA Konner, MR Marin, P Harter, CG Murphy, J Wang, E Noble, B Esteves, M Method, RL Coleman. Efficacy and safety of mirvetuximab soravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: results from the SORAYA study. J Clin Oncol 2023; 41(13): 2436–2445
https://doi.org/10.1200/JCO.22.01900
|
165 |
KN Moore, TV Gorp, J Wang, B Esteves, PA Zweidler-McKay. MIRASOL (GOG 3045/ENGOT OV-55): a randomized, open-label, phase III study of mirvetuximab soravtansine versus investigator’s choice of chemotherapy in advanced high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancers with high folate-alpha (FRα) expression. J Clin Oncol 2020; 38(15 suppl): TPS6103
https://doi.org/10.1200/JCO.2020.38.15_suppl.TPS6103
|
166 |
J Gong, X Hu, J Zhang, Y Du, R Huang, Y Teng, W Tan, L Shen. Phase Ia study of CBP-1008, a bi-specific ligand drug conjugate targeting FRα and TRPV6, in patients with advanced solid tumors. J Clin Oncol 2021; 39(15 suppl): 3077
https://doi.org/10.1200/JCO.2021.39.15_suppl.3077
|
167 |
B Esapa, J Jiang, A Cheung, A Chenoweth, DE Thurston, SN Karagiannis. Target antigen attributes and their contributions to clinically approved antibody-drug conjugates (ADCs) in haematopoietic and solid cancers. Cancers (Basel) 2023; 15(6): 1845
https://doi.org/10.3390/cancers15061845
|
168 |
N Joubert, A Beck, C Dumontet, C Denevault-Sabourin. Antibody-drug conjugates: the last decade. Pharmaceuticals (Basel) 2020; 13(9): 245
https://doi.org/10.3390/ph13090245
|
169 |
Y Sun, X Yu, X Wang, K Yuan, G Wang, L Hu, G Zhang, W Pei, L Wang, C Sun, P Yang. Bispecific antibodies in cancer therapy: target selection and regulatory requirements. Acta Pharm Sin B 2023; 13(9): 3583–3597
https://doi.org/10.1016/j.apsb.2023.05.023
|
170 |
T Jiang, T Shi, H Zhang, J Hu, Y Song, J Wei, S Ren, C Zhou. Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol 2019; 12(1): 93
https://doi.org/10.1186/s13045-019-0787-5
|
171 |
RG Gupta, F Li, J Roszik, G Lizée. Exploiting tumor neoantigens to target cancer evolution: current challenges and promising therapeutic approaches. Cancer Discov 2021; 11(5): 1024–1039
https://doi.org/10.1158/2159-8290.CD-20-1575
|
172 |
M Yarchoan, BA 3rd Johnson, ER Lutz, DA Laheru, EM Jaffee. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 2017; 17(4): 209–222
https://doi.org/10.1038/nrc.2016.154
|
173 |
Z Zhang, PJ Rohweder, C Ongpipattanakul, K Basu, MF Bohn, EJ Dugan, V Steri, B Hann, KM Shokat, CS Craik. A covalent inhibitor of K-Ras(G12C) induces MHC class I presentation of haptenated peptide neoepitopes targetable by immunotherapy. Cancer Cell 2022; 40(9): 1060–1069. e7
https://doi.org/10.1016/j.ccell.2022.07.005
|
174 |
DB Williams, A Vassilakos, WK Suh. Peptide presentation by MHC class I molecules. Trends Cell Biol 1996; 6(7): 267–273
https://doi.org/10.1016/0962-8924(96)10020-9
|
175 |
T Hattori, L Maso, KY Araki, A Koide, J Hayman, P Akkapeddi, I Bang, BG Neel, S Koide. Creating MHC-restricted neoantigens with covalent inhibitors that can be targeted by immune therapy. Cancer Discov 2023; 13(1): 132–145
https://doi.org/10.1158/2159-8290.CD-22-1074
|
176 |
J Douglass, EH Hsiue, BJ Mog, MS Hwang, SR DiNapoli, AH Pearlman, MS Miller, KM Wright, PA Azurmendi, Q Wang, S Paul, A Schaefer, AD Skora, MD Molin, MF Konig, Q Liu, E Watson, Y Li, MB Murphy, DM Pardoll, C Bettegowda, N Papadopoulos, SB Gabelli, KW Kinzler, B Vogelstein, S Zhou. Bispecific antibodies targeting mutant RAS neoantigens. Sci Immunol 2021; 6(57): eabd5515
https://doi.org/10.1126/sciimmunol.abd5515
|
177 |
EHC Hsiue, KM Wright, J Douglass, MS Hwang, BJ Mog, AH Pearlman, S Paul, SR DiNapoli, MF Konig, Q Wang, A Schaefer, MS Miller, AD Skora, PA Azurmendi, MB Murphy, Q Liu, E Watson, Y Li, DM Pardoll, C Bettegowda, N Papadopoulos, KW Kinzler, B Vogelstein, SB Gabelli, S Zhou. Targeting a neoantigen derived from a common TP53 mutation. Science 2021; 371(6533): eabc8697
https://doi.org/10.1126/science.abc8697
|
178 |
Y Shen, X Wei, S Jin, Y Wu, W Zhao, Y Xu, L Pan, Z Zhou, S Chen. TCR-mimic antibody-drug conjugates targeting intracellular tumor-specific mutant antigen KRAS G12V mutation. Asian J Pharm Sci 2020; 15(6): 777–785
https://doi.org/10.1016/j.ajps.2020.01.002
|
179 |
DJ Marshall, SS Harried, JL Murphy, CA Hall, MS Shekhani, C Pain, CA Lyons, A Chillemi, F Malavasi, HL Pearce, JS Thorson, JR Prudent. Extracellular antibody drug conjugates exploiting the proximity of two proteins. Mol Ther 2016; 24(10): 1760–1770
https://doi.org/10.1038/mt.2016.119
|
180 |
AG Polson, J Calemine-Fenaux, P Chan, W Chang, E Christensen, S Clark, FJ de Sauvage, D Eaton, K Elkins, JM Elliott, G Frantz, RN Fuji, A Gray, K Harden, GS Ingle, NM Kljavin, H Koeppen, C Nelson, S Prabhu, H Raab, S Ross, DS Slaga, JP Stephan, SJ Scales, SD Spencer, R Vandlen, B Wranik, SF Yu, B Zheng, A Ebens. Antibody-drug conjugates for the treatment of non-Hodgkin’s lymphoma: target and linker-drug selection. Cancer Res 2009; 69(6): 2358–2364
https://doi.org/10.1158/0008-5472.CAN-08-2250
|
181 |
SV Govindan, TM Cardillo, SJ Moon, HJ Hansen, DM Goldenberg. CEACAM5-targeted therapy of human colonic and pancreatic cancer xenografts with potent labetuzumab-SN-38 immunoconjugates. Clin Cancer Res 2009; 15(19): 6052–6061
https://doi.org/10.1158/1078-0432.CCR-09-0586
|
182 |
F Javaid, C Pilotti, C Camilli, D Kallenberg, C Bahou, J Blackburn, JR Baker, J Greenwood, SE Moss, V Chudasama. Leucine-rich alpha-2-glycoprotein 1 (LRG1) as a novel ADC target. RSC Chem Biol 2021; 2(4): 1206–1220
https://doi.org/10.1039/D1CB00104C
|
183 |
S Sau, A Petrovici, HO Alsaab, K Bhise, AK Iyer. PDL-1 antibody drug conjugate for selective chemo-guided immune modulation of cancer. Cancers (Basel) 2019; 11(2): 232
https://doi.org/10.3390/cancers11020232
|
184 |
F Giansanti, E Capone, S Ponziani, E Piccolo, R Gentile, A Lamolinara, A Di Campli, M Sallese, V Iacobelli, A Cimini, V De Laurenzi, R Lattanzio, M Piantelli, R Ippoliti, G Sala, S Iacobelli. Secreted Gal-3BP is a novel promising target for non-internalizing antibody-drug conjugates. J Control Release 2019; 294: 176–184
https://doi.org/10.1016/j.jconrel.2018.12.018
|
185 |
N Awasthi, AJ Mikels-Vigdal, E Stefanutti, MA Schwarz, S Monahan, V Smith, RE Schwarz. Therapeutic efficacy of anti-MMP9 antibody in combination with nab-paclitaxel-based chemotherapy in pre-clinical models of pancreatic cancer. J Cell Mol Med 2019; 23(6): 3878–3887
https://doi.org/10.1111/jcmm.14242
|
186 |
ML Yap, JD McFadyen, X Wang, M Ziegler, YC Chen, A Willcox, CJ Nowell, AM Scott, EK Sloan, PM Hogarth, GA Pietersz, K Peter. Activated platelets in the tumor microenvironment for targeting of antibody-drug conjugates to tumors and metastases. Theranostics 2019; 9(4): 1154–1169
https://doi.org/10.7150/thno.29146
|
187 |
GJ Bernardes, G Casi, S Trüssel, I Hartmann, K Schwager, J Scheuermann, D Neri. A traceless vascular-targeting antibody-drug conjugate for cancer therapy. Angew Chem Int Ed Engl 2012; 51(4): 941–944
https://doi.org/10.1002/anie.201106527
|
188 |
KR Polu, HB Lowman. Probody therapeutics for targeting antibodies to diseased tissue. Expert Opin Biol Ther 2014; 14(8): 1049–1053
https://doi.org/10.1517/14712598.2014.920814
|
189 |
LR Desnoyers, O Vasiljeva, JH Richardson, A Yang, EE Menendez, TW Liang, C Wong, PH Bessette, K Kamath, SJ Moore, JG Sagert, DR Hostetter, F Han, J Gee, J Flandez, K Markham, M Nguyen, M Krimm, KR Wong, S Liu, PS Daugherty, JW West, HB Lowman. Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transl Med 2013; 5(207): 207ra144
https://doi.org/10.1126/scitranslmed.3006682
|
190 |
KA Autio, V Boni, RW Humphrey, A Naing. Probody therapeutics: an emerging class of therapies designed to enhance on-target effects with reduced off-tumor toxicity for use in immuno-oncology. Clin Cancer Res 2020; 26(5): 984–989
https://doi.org/10.1158/1078-0432.CCR-19-1457
|
191 |
M Chomet, M Schreurs, M Nguyen, B Howng, R Villanueva, M Krimm, O Vasiljeva, GAMS van Dongen, DJ Vugts. The tumor targeting performance of anti-CD166 probody drug conjugate CX-2009 and its parental derivatives as monitored by 89Zr-immuno-PET in xenograft bearing mice. Theranostics 2020; 10(13): 5815–5828
https://doi.org/10.7150/thno.44334
|
192 |
S Singh, L Serwer, A DuPage, K Elkins, N Chauhan, M Ravn, F Buchanan, L Wang, M Krimm, K Wong, J Sagert, K Tipton, SJ Moore, Y Huang, A Jang, E Ureno, A Miller, S Patrick, S Duvur, S Liu, O Vasiljeva, Y Li, T Henriques, I Badagnani, S Jeffries, S Schleyer, R Leanna, C Krebber, S Viswanathan, L Desnoyers, J Terrett, M Belvin, S Morgan-Lappe, WM Kavanaugh, J Richardson. Nonclinical efficacy and safety of CX-2029, an anti-CD71 probody-drug conjugate. Mol Cancer Ther 2022; 21(8): 1326–1336
https://doi.org/10.1158/1535-7163.MCT-21-0193
|
193 |
M Johnson, A El-Khoueiry, N Hafez, N Lakhani, H Mamdani, J Rodon, RE Sanborn, J Garcia-Corbacho, V Boni, M Stroh, AL Hannah, S Wang, H Castro, A Spira. Phase I, first-in-human study of the probody therapeutic CX-2029 in adults with advanced solid tumor malignancies. Clin Cancer Res 2021; 27(16): 4521–4530
https://doi.org/10.1158/1078-0432.CCR-21-0194
|
194 |
Y Li, J Liu, W Chen, W Wang, F Yang, X Liu, Y Sheng, K Du, M He, X Lyu, H Li, L Zhao, Z Wei, F Wang, S Zheng, J Sui. A pH-dependent anti-CD47 antibody that selectively targets solid tumors and improves therapeutic efficacy and safety. J Hematol Oncol 2023; 16(1): 2
https://doi.org/10.1186/s13045-023-01399-4
|
195 |
M Kamata-Sakurai, Y Narita, Y Hori, T Nemoto, R Uchikawa, M Honda, N Hironiwa, K Taniguchi, M Shida-Kawazoe, S Metsugi, T Miyazaki, NA Wada, Y Ohte, S Shimizu, H Mikami, T Tachibana, N Ono, K Adachi, T Sakiyama, T Matsushita, S Kadono, SI Komatsu, A Sakamoto, S Horikawa, A Hirako, K Hamada, S Naoi, N Savory, Y Satoh, M Sato, Y Noguchi, J Shinozuka, H Kuroi, A Ito, T Wakabayashi, M Kamimura, F Isomura, Y Tomii, N Sawada, A Kato, O Ueda, Y Nakanishi, M Endo, KI Jishage, Y Kawabe, T Kitazawa, T Igawa. Antibody to CD137 activated by extracellular adenosine triphosphate is tumor selective and broadly effective in vivo without systemic immune activation. Cancer Discov 2021; 11(1): 158–175
https://doi.org/10.1158/2159-8290.CD-20-0328
|
196 |
T Sulea, N Rohani, J Baardsnes, CR Corbeil, C Deprez, Y Cepero-Donates, A Robert, JD Schrag, M Parat, M Duchesne, ML Jaramillo, EO Purisima, JC Zwaagstra. Structure-based engineering of pH-dependent antibody binding for selective targeting of solid-tumor microenvironment. MAbs 2020; 12(1): 1682866
https://doi.org/10.1080/19420862.2019.1682866
|
197 |
S Han, KS Lim, BJ Blackburn, J Yun, CW Putnam, DA Bull, YW Won. The potential of topoisomerase inhibitor-based antibody-drug conjugates. Pharmaceutics 2022; 14(8): 1707
https://doi.org/10.3390/pharmaceutics14081707
|
198 |
SO Doronina, TD Bovee, DW Meyer, JB Miyamoto, ME Anderson, CA Morris-Tilden, PD Senter. Novel peptide linkers for highly potent antibody-auristatin conjugate. Bioconjug Chem 2008; 19(10): 1960–1963
https://doi.org/10.1021/bc800289a
|
199 |
RP Lyon, TD Bovee, SO Doronina, PJ Burke, JH Hunter, HD Neff-LaFord, M Jonas, ME Anderson, JR Setter, PD Senter. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol 2015; 33(7): 733–735
https://doi.org/10.1038/nbt.3212
|
200 |
TN Iwata, C Ishii, S Ishida, Y Ogitani, T Wada, T Agatsuma. A HER2-targeting antibody-drug conjugate, trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol Cancer Ther 2018; 17(7): 1494–1503
https://doi.org/10.1158/1535-7163.MCT-17-0749
|
201 |
Y Ogitani, T Aida, K Hagihara, J Yamaguchi, C Ishii, N Harada, M Soma, H Okamoto, M Oitate, S Arakawa, T Hirai, R Atsumi, T Nakada, I Hayakawa, Y Abe, T Agatsuma. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res 2016; 22(20): 5097–5108
https://doi.org/10.1158/1078-0432.CCR-15-2822
|
202 |
Y Matsuda, BA Mendelsohn. An overview of process development for antibody-drug conjugates produced by chemical conjugation technology. Expert Opin Biol Ther 2021; 21(7): 963–975
https://doi.org/10.1080/14712598.2021.1846714
|
203 |
R Sheyi, BG de la Torre, F Albericio. Linkers: an assurance for controlled delivery of antibody-drug conjugate. Pharmaceutics 2022; 14(2): 396
https://doi.org/10.3390/pharmaceutics14020396
|
204 |
Y Xu, G Jiang, C Tran, X Li, TH Heibeck, MR Masikat, Q Cai, AR Steiner, AK Sato, TJ Hallam, G Yin. RP-HPLC DAR characterization of site-specific antibody drug conjugates produced in a cell-free expression system. Org Process Res Dev 2016; 20(6): 1034–1043
https://doi.org/10.1021/acs.oprd.6b00072
|
205 |
S Barnscher, J Babcook, J Rich, G Winters, G Garnett, A Hernandez, V Fung, K Yin, K Hamblett, R Davies. Abstract 61: Zymelink drug conjugate platform: redefining the therapeutic window for ADCs. Cancer Res 2017; 77(13 Supplement): 61
https://doi.org/10.1158/1538-7445.AM2017-61
|
206 |
Y Mazor, KF Sachsenmeier, C Yang, A Hansen, J Filderman, K Mulgrew, H Wu, WF Dall’Acqua. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci Rep 2017; 7(1): 40098
https://doi.org/10.1038/srep40098
|
207 |
C Sellmann, A Doerner, C Knuehl, N Rasche, V Sood, S Krah, L Rhiel, A Messemer, J Wesolowski, M Schuette, S Becker, L Toleikis, H Kolmar, B Hock. Balancing selectivity and efficacy of bispecific epidermal growth factor receptor (EGFR) × c-MET antibodies and antibody-drug conjugates. J Biol Chem 2016; 291(48): 25106–25119
https://doi.org/10.1074/jbc.M116.753491
|
208 |
J Andreev, N Thambi, AE Perez Bay, F Delfino, J Martin, MP Kelly, JR Kirshner, A Rafique, A Kunz, T Nittoli, D MacDonald, C Daly, W Olson, G Thurston. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther 2017; 16(4): 681–693
https://doi.org/10.1158/1535-7163.MCT-16-0658
|
209 |
S Hu, W Fu, W Xu, Y Yang, M Cruz, SD Berezov, D Jorissen, H Takeda, W Zhu. Four-in-one antibodies have superior cancer inhibitory activity against EGFR, HER2, HER3, and VEGF through disruption of HER/MET crosstalk. Cancer Res 2015; 75(1): 159–170
https://doi.org/10.1158/0008-5472.CAN-14-1670
|
210 |
I Nessler, E Khera, S Vance, A Kopp, Q Qiu, TA Keating, AO Abu-Yousif, T Sandal, J Legg, L Thompson, N Goodwin, GM Thurber. Increased tumor penetration of single-domain antibody-drug conjugates improves in vivo efficacy in prostate cancer models. Cancer Res 2020; 80(6): 1268–1278
https://doi.org/10.1158/0008-5472.CAN-19-2295
|
211 |
MP Deonarain, Q Xue. Tackling solid tumour therapy with small-format drug conjugates. Antib Ther 2020; 3(4): 237–245
https://doi.org/10.1093/abt/tbaa024
|
212 |
RV Kholodenko, DV Kalinovsky, II Doronin, ED Ponomarev, IV Kholodenko. Antibody fragments as potential biopharmaceuticals for cancer therapy: success and limitations. Curr Med Chem 2019; 26(3): 396–426
https://doi.org/10.2174/0929867324666170817152554
|
213 |
MP Deonarain, G Yahioglu, I Stamati, A Pomowski, J Clarke, BM Edwards, S Diez-Posada, AC Stewart. Small-format drug conjugates: a viable alternative to ADCs for solid tumours. Antibodies (Basel) 2018; 7(2): 16
https://doi.org/10.3390/antib7020016
|
214 |
Y Wu, Q Li, Y Kong, Z Wang, C Lei, J Li, L Ding, C Wang, Y Cheng, Y Wei, Y Song, Z Yang, C Tu, Y Ding, T Ying. A highly stable human single-domain antibody-drug conjugate exhibits superior penetration and treatment of solid tumors. Mol Ther 2022; 30(8): 2785–2799
https://doi.org/10.1016/j.ymthe.2022.04.013
|
215 |
H Huang, T Wu, H Shi, Y Wu, H Yang, K Zhong, Y Wang, Y Liu. Modular design of nanobody-drug conjugates for targeted-delivery of platinum anticancer drugs with an MRI contrast agent. Chem Commun (Camb) 2019; 55(35): 5175–5178
https://doi.org/10.1039/C9CC01391A
|
216 |
DA Vallera, H Chen, AR Sicheneder, A Panoskaltsis-Mortari, EP Taras. Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leuk Res 2009; 33(9): 1233–1242
https://doi.org/10.1016/j.leukres.2009.02.006
|
217 |
NN Waldron, SH Barsky, PR Dougherty, DA Vallera. A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma. Target Oncol 2014; 9(3): 239–249
https://doi.org/10.1007/s11523-013-0290-9
|
218 |
N Porębska, K Ciura, A Chorążewska, M Zakrzewska, J Otlewski, Ł Opaliński. Multivalent protein-drug conjugates—an emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67: 108213
https://doi.org/10.1016/j.biotechadv.2023.108213
|
219 |
L Zhou, F Yang, Z Bai, X Zhou, Z Zhang, Z Li, J Gong, J Yu, L Pan, C Cao, JJ Chou. Self-assembled L-DNA linkers for rapid construction of multi-specific antibody-drug conjugates library. Angew Chem Int Ed Engl 2023; 62(27): e202302805
https://doi.org/10.1002/anie.202302805
|
220 |
YE Kim, YN Kim, JA Kim, HM Kim, Y Jung. Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency. Nat Commun 2015; 6(1): 7134
https://doi.org/10.1038/ncomms8134
|
221 |
N Porębska, A Knapik, M Poźniak, MA Krzyścik, M Zakrzewska, J Otlewski, Ł Opaliński. Intrinsically fluorescent oligomeric cytotoxic conjugates toxic for FGFR1-overproducing cancers. Biomacromolecules 2021; 22(12): 5349–5362
https://doi.org/10.1021/acs.biomac.1c01280
|
222 |
CM Dundas, D Demonte, S Park. Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol 2013; 97(21): 9343–9353
https://doi.org/10.1007/s00253-013-5232-z
|
223 |
Q Le, V Nguyen, S Park. Recent advances in the engineering and application of streptavidin-like molecules. Appl Microbiol Biotechnol 2019; 103(18): 7355–7365
https://doi.org/10.1007/s00253-019-10036-5
|
224 |
E Tremante, L Sibilio, F Centola, N Knutti, G Holzapfel, I Manni, M Allegretti, P Lombardi, G Salvo, L Cecchetelli, K Friedrich, J Bertram, P Giacomini. TOOLBOX: Strep-Tagged nano-assemblies of antibody-drug-conjugates (ADC) for modular and conditional cancer drugging. Oncol Rep 2021; 45(5): 77
https://doi.org/10.3892/or.2021.8028
|
225 |
R Lázaro-Gorines, J Ruiz-de-la-Herrán, R Navarro, L Sanz, L Álvarez-Vallina, A Martínez-Del-Pozo, JG Gavilanes, J Lacadena. A novel carcinoembryonic antigen (CEA)-targeted trimeric immunotoxin shows significantly enhanced antitumor activity in human colorectal cancer xenografts. Sci Rep 2019; 9(1): 11680
https://doi.org/10.1038/s41598-019-48285-z
|
226 |
A Yamaguchi, Y Anami, SYY Ha, TJ Roeder, W Xiong, J Lee, NT Ueno, N Zhang, Z An, K Tsuchikama. Chemical generation of small molecule-based bispecific antibody-drug conjugates for broadening the target scope. Bioorg Med Chem 2021; 32: 116013
https://doi.org/10.1016/j.bmc.2021.116013
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|