|
|
|
Autophagy in hepatic progenitor cells modulates exosomal miRNAs to inhibit liver fibrosis in schistosomiasis |
Yue Yuan1, Jiaxuan Li1, Xun Lu2,3, Min Chen1, Huifang Liang2,3, Xiao-ping Chen2,3, Xin Long2,3, Bixiang Zhang2,3, Song Gong4, Xiaowei Huang1, Jianping Zhao2,3( ), Qian Chen1( ) |
1. Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China 2. Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China 3. Hubei Key Laboratory of Hepato–Pancreato–Biliary Diseases, Wuhan 430030, China 4. Department of Trauma Surgery, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China |
|
|
|
|
Abstract Schistosoma infection is one of the major causes of liver fibrosis. Emerging roles of hepatic progenitor cells (HPCs) in the pathogenesis of liver fibrosis have been identified. Nevertheless, the precise mechanism underlying the role of HPCs in liver fibrosis in schistosomiasis remains unclear. This study examined how autophagy in HPCs affects schistosomiasis-induced liver fibrosis by modulating exosomal miRNAs. The activation of HPCs was verified by immunohistochemistry (IHC) and immunofluorescence (IF) staining in fibrotic liver from patients and mice with Schistosoma japonicum infection. By coculturing HPCs with hepatic stellate cells (HSCs) and assessing the autophagy level in HPCs by proteomic analysis and in vitro phenotypic assays, we found that impaired autophagy degradation in these activated HPCs was mediated by lysosomal dysfunction. Blocking autophagy by the autophagy inhibitor chloroquine (CQ) significantly diminished liver fibrosis and granuloma formation in S. japonicum-infected mice. HPC-secreted extracellular vehicles (EVs) were further isolated and studied by miRNA sequencing. miR-1306-3p, miR-493-3p, and miR-34a-5p were identified, and their distribution into EVs was inhibited due to impaired autophagy in HPCs, which contributed to suppressing HSC activation. In conclusion, we showed that the altered autophagy process upon HPC activation may prevent liver fibrosis by modulating exosomal miRNA release and inhibiting HSC activation in schistosomiasis. Targeting the autophagy degradation process may be a therapeutic strategy for liver fibrosis during Schistosoma infection.
|
| Keywords
schistosomiasis
hepatic progenitor cell
autophagy
extracellular vesicle
fibrosis
miRNA
|
|
Corresponding Author(s):
Jianping Zhao,Qian Chen
|
|
Just Accepted Date: 12 April 2024
Online First Date: 20 May 2024
Issue Date: 17 June 2024
|
|
| 1 |
DP McManus, DW Dunne, M Sacko, J Utzinger, BJ Vennervald, XN Zhou. Schistosomiasis. Nat Rev Dis Primers 2018; 4(1): 13
https://doi.org/10.1038/s41572-018-0013-8
|
| 2 |
C Kokaliaris, A Garba, M Matuska, RN Bronzan, DG Colley, AM Dorkenoo, UF Ekpo, FM Fleming, MD French, A Kabore, JB Mbonigaba, N Midzi, PNM Mwinzi, EK N’Goran, MR Polo, M Sacko, Tchuenté LA Tchuem, EM Tukahebwa, PA Uvon, G Yang, L Wiesner, Y Zhang, J Utzinger, P Vounatsou. Effect of preventive chemotherapy with praziquantel on schistosomiasis among school-aged children in sub-Saharan Africa: a spatiotemporal modelling study. Lancet Infect Dis 2022; 22(1): 136–149
https://doi.org/10.1016/S1473-3099(21)00090-6
|
| 3 |
RA Wilson. Schistosomiasis then and now: what has changed in the last 100 years?. Parasitology 2020; 147(5): 507–515
https://doi.org/10.1017/S0031182020000049
|
| 4 |
TA Wynn, RW Thompson, AW Cheever, MM Mentink-Kane. Immunopathogenesis of schistosomiasis. Immunol Rev 2004; 201(1): 156–167
https://doi.org/10.1111/j.0105-2896.2004.00176.x
|
| 5 |
RE Wiegand, FM Fleming, Vlas SJ de, MR Odiere, S Kinung’hi, CH King, D Evans, MD French, SP Montgomery, A Straily, J Utzinger, P Vounatsou, WE Secor. Defining elimination as a public health problem for schistosomiasis control programmes: beyond prevalence of heavy-intensity infections. Lancet Glob Health 2022; 10(9): e1355–e1359
https://doi.org/10.1016/S2214-109X(22)00287-X
|
| 6 |
H Kong, J He, S Guo, Q Song, D Xiang, R Tao, H Yu, G Chen, Z Huang, Q Ning, J Huang. Endothelin receptors promote schistosomiasis-induced hepatic fibrosis via splenic B cells. PLoS Pathog 2020; 16(10): e1008947
https://doi.org/10.1371/journal.ppat.1008947
|
| 7 |
X Wang, A Lopategi, X Ge, Y Lu, N Kitamura, R Urtasun, TM Leung, MI Fiel, N Nieto. Osteopontin induces ductular reaction contributing to liver fibrosis. Gut 2014; 63(11): 1805–1818
https://doi.org/10.1136/gutjnl-2013-306373
|
| 8 |
M Ma, S Hua, X Min, L Wang, J Li, P Wu, H Liang, B Zhang, X Chen, S Xiang. p53 positively regulates the proliferation of hepatic progenitor cells promoted by laminin-521. Signal Transduct Target Ther 2022; 7(1): 290
https://doi.org/10.1038/s41392-022-01107-7
|
| 9 |
M Kitade, K Kaji, H Yoshiji. Relationship between hepatic progenitor cell-mediated liver regeneration and non-parenchymal cells. Hepatol Res 2016; 46(12): 1187–1193
https://doi.org/10.1111/hepr.12682
|
| 10 |
B Zhang, X Wu, J Li, A Ning, B Zhang, J Liu, L Song, C Yan, X Sun, K Zheng, Z Wu. Hepatic progenitor cells promote the repair of schistosomiasis liver injury by inhibiting IL-33 secretion in mice. Stem Cell Res Ther 2021; 12(1): 546
https://doi.org/10.1186/s13287-021-02589-y
|
| 11 |
Andaloussi S EL, I Mäger, XO Breakefield, MJ Wood. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013; 12(5): 347–357
https://doi.org/10.1038/nrd3978
|
| 12 |
R Kalluri, VS LeBleu. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977
https://doi.org/10.1126/science.aau6977
|
| 13 |
Y Yuan, J Zhao, M Chen, H Liang, X Long, B Zhang, X Chen, Q Chen. Understanding the pathophysiology of exosomes in schistosomiasis: a new direction for disease control and prevention. Front Immunol 2021; 12: 634138
https://doi.org/10.3389/fimmu.2021.634138
|
| 14 |
S Hyung, J Jeong, K Shin, JY Kim, JH Yim, CJ Yu, HS Jung, KG Hwang, D Choi, JW Hong. Exosomes derived from chemically induced human hepatic progenitors inhibit oxidative stress induced cell death. Biotechnol Bioeng 2020; 117(9): 2658–2667
https://doi.org/10.1002/bit.27447
|
| 15 |
F Royo, M Azkargorta, JL Lavin, M Clos-Garcia, AR Cortazar, M Gonzalez-Lopez, L Barcena, Portillo HA Del, M Yáñez-Mó, A Marcilla, FE Borras, H Peinado, I Guerrero, M Váles-Gómez, U Cereijo, T Sardon, AM Aransay, F Elortza, JM Falcon-Perez. Extracellular vesicles from liver progenitor cells downregulates fibroblast metabolic activity and increase the expression of immune-response related molecules. Front Cell Dev Biol 2021; 8: 613583
https://doi.org/10.3389/fcell.2020.613583
|
| 16 |
I Mederacke, DH Dapito, S Affò, H Uchinami, RF Schwabe. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat Protoc 2015; 10(2): 305–315
https://doi.org/10.1038/nprot.2015.017
|
| 17 |
T Hong, X Xiong, Y Chen, Q Wang, X Fu, Q Meng, Y Lu, X Li. Parathyroid hormone receptor-1 signaling aggravates hepatic fibrosis through upregulating cAMP response element-binding protein-like 2. Hepatology 2023; 78(6): 1763–1776
https://doi.org/10.1097/HEP.0000000000000333
|
| 18 |
Y Meng, Q Zhao, L An, S Jiao, R Li, Y Sang, J Liao, P Nie, F Wen, J Ju, Z Zhou, L Wei. A TNFR2-hnRNPK axis promotes primary liver cancer development via activation of YAP signaling in hepatic progenitor cells. Cancer Res 2021; 81(11): 3036–3050
https://doi.org/10.1158/0008-5472.CAN-20-3175
|
| 19 |
KS Dong, Y Chen, G Yang, ZB Liao, HW Zhang, HF Liang, XP Chen, HH Dong. TGF-β1 accelerates the hepatitis B virus X-induced malignant transformation of hepatic progenitor cells by upregulating miR-199a-3p. Oncogene 2020; 39(8): 1807–1820
https://doi.org/10.1038/s41388-019-1107-9
|
| 20 |
X Lu, Y Yuan, N Cai, D Rao, M Chen, X Chen, B Zhang, H Liang, L Zhang. TRIM55 promotes proliferation of hepatocellular carcinoma through stabilizing TRIP6 to activate Wnt/β-catenin signaling. J Hepatocell Carcinoma 2023; 10: 1281–1293
https://doi.org/10.2147/JHC.S418049
|
| 21 |
J Ma, T Chen, S Wu, C Yang, M Bai, K Shu, K Li, G Zhang, Z Jin, F He, H Hermjakob, Y Zhu. iProX: an integrated proteome resource. Nucleic Acids Res 2019; 47(D1): D1211–D1217
https://doi.org/10.1093/nar/gky869
|
| 22 |
T Chen, J Ma, Y Liu, Z Chen, N Xiao, Y Lu, Y Fu, C Yang, M Li, S Wu, X Wang, D Li, F He, H Hermjakob, Y Zhu. iProX in 2021: connecting proteomics data sharing with big data. Nucleic Acids Res 2022; 50(D1): D1522–D1527
https://doi.org/10.1093/nar/gkab1081
|
| 23 |
E Eitan, C Suire, S Zhang, MP Mattson. Impact of lysosome status on extracellular vesicle content and release. Ageing Res Rev 2016; 32: 65–74
https://doi.org/10.1016/j.arr.2016.05.001
|
| 24 |
M Kitada, D Koya. Autophagy in metabolic disease and ageing. Nat Rev Endocrinol 2021; 17(11): 647–661
https://doi.org/10.1038/s41574-021-00551-9
|
| 25 |
A Fleming, M Bourdenx, M Fujimaki, C Karabiyik, GJ Krause, A Lopez, A Martín-Segura, C Puri, A Scrivo, J Skidmore, SM Son, E Stamatakou, L Wrobel, Y Zhu, AM Cuervo, DC Rubinsztein. The different autophagy degradation pathways and neurodegeneration. Neuron 2022; 110(6): 935–966
https://doi.org/10.1016/j.neuron.2022.01.017
|
| 26 |
Y Chu, Y Kang, C Yan, C Yang, T Zhang, H Huo, Y Liu. LUBAC and OTULIN regulate autophagy initiation and maturation by mediating the linear ubiquitination and the stabilization of ATG13. Autophagy 2021; 17(7): 1684–1699
https://doi.org/10.1080/15548627.2020.1781393
|
| 27 |
M Allaire, PE Rautou, P Codogno, S Lotersztajn. Autophagy in liver diseases: time for translation?. Hepatol 2019; 70(5): 985–998
https://doi.org/10.1016/j.jhep.2019.01.026
|
| 28 |
H Chan, Q Li, X Wang, WY Liu, W Hu, J Zeng, C Xie, TNY Kwong, IHT Ho, X Liu, H Chen, J Yu, H Ko, RCY Chan, M Ip, T Gin, ASL Cheng, L Zhang, MTV Chan, SH Wong, WKK Wu. Vitamin D3 and carbamazepine protect against Clostridioides difficile infection in mice by restoring macrophage lysosome acidification. Autophagy 2022; 18(9): 2050–2067
https://doi.org/10.1080/15548627.2021.2016004
|
| 29 |
P Pellegrini, A Strambi, C Zipoli, M Hägg-Olofsson, M Buoncervello, S Linder, Milito A De. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy 2014; 10(4): 562–571
https://doi.org/10.4161/auto.27901
|
| 30 |
C Settembre, R De Cegli, G Mansueto, PK Saha, F Vetrini, O Visvikis, T Huynh, A Carissimo, D Palmer, TJ Klisch, AC Wollenberg, D Di Bernardo, L Chan, JE Irazoqui, A Ballabio. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol 2013; 15(6): 647–658
https://doi.org/10.1038/ncb2718
|
| 31 |
EM Mastoridou, AC Goussia, GK Glantzounis, P Kanavaros, AV Charchanti. Autophagy and exosomes: cross-regulated pathways playing major roles in hepatic stellate cells activation and liver fibrosis. Front Physiol 2022; 12: 801340
https://doi.org/10.3389/fphys.2021.801340
|
| 32 |
M Raudenska, J Balvan, M Masarik. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Mol Cancer 2021; 20(1): 140
https://doi.org/10.1186/s12943-021-01423-6
|
| 33 |
J Gao, B Wei, TM de Assuncao, Z Liu, X Hu, S Ibrahim, SA Cooper, S Cao, VH Shah, E Kostallari. Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol 2020; 73(5): 1144–1154
https://doi.org/10.1016/j.jhep.2020.04.044
|
| 34 |
FC Nowacki, MT Swain, OI Klychnikov, U Niazi, A Ivens, JF Quintana, PJ Hensbergen, CH Hokke, AH Buck, KF Hoffmann. Protein and small non-coding RNA-enriched extracellular vesicles are released by the pathogenic blood fluke Schistosoma mansoni. J Extracell Vesicles 2015; 4(1): 28665
https://doi.org/10.3402/jev.v4.28665
|
| 35 |
J Xu, KC Yang, NE Go, S Colborne, CJ Ho, E Hosseini-Beheshti, AH Lystad, A Simonsen, ET Guns, GB Morin, SM Gorski. Chloroquine treatment induces secretion of autophagy-related proteins and inclusion of Atg8-family proteins in distinct extracellular vesicle populations. Autophagy 2022; 18(11): 2547–2560
https://doi.org/10.1080/15548627.2022.2039535
|
| 36 |
JV Ferreira, A da Rosa Soares, P Pereira. LAMP2A mediates the loading of proteins into endosomes and selects exosomal cargo. Autophagy 2022; 18(9): 2263–2265
https://doi.org/10.1080/15548627.2022.2092315
|
| 37 |
AH Buck. Cells choose their words wisely. Cell 2022; 185(7): 1114–1116
https://doi.org/10.1016/j.cell.2022.03.010
|
| 38 |
C Théry, KW Witwer, E Aikawa, MJ Alcaraz, JD Anderson, R Andriantsitohaina, A Antoniou, T Arab, F Archer, GK Atkin-Smith, DC Ayre, JM Bach, D Bachurski, H Baharvand, L Balaj, S Baldacchino, Bauer NN, Baxter AA, Bebawy M, Beckham C, Bedina Zavec A, Benmoussa A, Berardi AC, Bergese P, Bielska E, Blenkiron C, Bobis-Wozowicz S, Boilard E, Boireau W, Bongiovanni A, Borràs FE, Bosch S, Boulanger CM, Breakefield X, Breglio AM, Brennan MA, Brigstock DR, Brisson A, Broekman ML, Bromberg JF, Bryl-Górecka P, Buch S, Buck AH, Burger D, Busatto S, Buschmann D, Bussolati B, Buzás EI, Byrd JB, Camussi G, Carter DR, Caruso S, Chamley LW, Chang YT, Chen C, Chen S, Cheng L, Chin AR, Clayton A, Clerici SP, Cocks A, Cocucci E, Coffey RJ, Cordeiro-da-Silva A, Couch Y, Coumans FA, Coyle B, Crescitelli R, Criado MF, D’Souza-Schorey C, Das S, Datta Chaudhuri A, de Candia P, De Santana EF, De Wever O, Del Portillo HA, Demaret T, Deville S, Devitt A, Dhondt B, Di Vizio D, Dieterich LC, Dolo V, Dominguez Rubio AP, Dominici M, Dourado MR, Driedonks TA, Duarte FV, Duncan HM, Eichenberger RM, Ekstrm K, El Andaloussi S, Elie-Caille C, Erdbrügger U, Falcón-Pérez JM, Fatima F, Fish JE, Flores-Bellver M, Frsnits A, Frelet-Barrand A, Fricke F, Fuhrmann G, Gabrielsson S, Gámez-Valero A, Gardiner C, Grtner K, Gaudin R, Gho YS, Giebel B, Gilbert C, Gimona M, Giusti I, Goberdhan DC, Grgens A, Gorski SM, Greening DW, Gross JC, Gualerzi A, Gupta GN, Gustafson D, Handberg A, Haraszti RA, Harrison P, Hegyesi H, Hendrix A, Hill AF, Hochberg FH, Hoffmann KF, Holder B, Holthofer H, Hosseinkhani B, Hu G, Huang Y, Huber V, Hunt S, Ibrahim AG, Ikezu T, Inal JM, Isin M, Ivanova A, Jackson HK, Jacobsen S, Jay SM, Jayachandran M, Jenster G, Jiang L, Johnson SM, Jones JC, Jong A, Jovanovic-Talisman T, Jung S, Kalluri R, Kano SI, Kaur S, Kawamura Y, Keller ET, Khamari D, Khomyakova E, Khvorova A, Kierulf P, Kim KP, Kislinger T, Klingeborn M, Klinke DJ 2nd, Kornek M, Kosanović MM, Kovács AF, Krmer-Albers EM, Krasemann S, Krause M, Kurochkin IV, Kusuma GD, Kuypers S, Laitinen S, Langevin SM, Languino LR, Lannigan J, Lsser C, Laurent LC, Lavieu G, Lázaro-Ibáez E, Le Lay S, Lee MS, Lee YXF, Lemos DS, Lenassi M, Leszczynska A, Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Linē A, Linnemannstns K, Llorente A, Lombard CA, Lorenowicz MJ, Lrincz AM, Ltvall J, Lovett J, Lowry MC, Loyer X, Lu Q, Lukomska B, Lunavat TR, Maas SL, Malhi H, Marcilla A, Mariani J, Mariscal J, Martens-Uzunova ES, Martin-Jaular L, Martinez MC, Martins VR, Mathieu M, Mathivanan S, Maugeri M, McGinnis LK, McVey MJ, Meckes DG Jr, Meehan KL, Mertens I, Minciacchi VR, Mller A, Mller Jrgensen M, Morales-Kastresana A, Morhayim J, Mullier F, Muraca M, Musante L, Mussack V, Muth DC, Myburgh KH, Najrana T, Nawaz M, Nazarenko I, Nejsum P, Neri C, Neri T, Nieuwland R, Nimrichter L, Nolan JP, Nolte-’t Hoen EN, Noren Hooten N, O’Driscoll L, O’Grady T, O’Loghlen A, Ochiya T, Olivier M, Ortiz A, Ortiz LA, Osteikoetxea X, stergaard O, Ostrowski M, Park J, Pegtel DM, Peinado H, Perut F, Pfaffl MW, Phinney DG, Pieters BC, Pink RC, Pisetsky DS, Pogge von Strandmann E, Polakovicova I, Poon IK, Powell BH, Prada I, Pulliam L, Quesenberry P, Radeghieri A, Raffai RL, Raimondo S, Rak J, Ramirez MI, Raposo G, Rayyan MS, Regev-Rudzki N, Ricklefs FL, Robbins PD, Roberts DD, Rodrigues SC, Rohde E, Rome S, Rouschop KM, Rughetti A, Russell AE, Saá P, Sahoo S, Salas-Huenuleo E, Sánchez C, Saugstad JA, Saul MJ, Schiffelers RM, Schneider R, Schyen TH, Scott A, Shahaj E, Sharma S, Shatnyeva O, Shekari F, Shelke GV, Shetty AK, Shiba K, Siljander PR, Silva AM, Skowronek A, Snyder OL 2nd, Soares RP, Sódar BW, Soekmadji C, Sotillo J, Stahl PD, Stoorvogel W, Stott SL, Strasser EF, Swift S, Tahara H, Tewari M, Timms K, Tiwari S, Tixeira R, Tkach M, Toh WS, Tomasini R, Torrecilhas AC, Tosar JP, Toxavidis V, Urbanelli L, Vader P, van Balkom BW, van der Grein SG, Van Deun J, van Herwijnen MJ, Van Keuren-Jensen K, van Niel G, van Royen ME, van Wijnen AJ, Vasconcelos MH, Vechetti IJ Jr, Veit TD, Vella LJ, Velot , Verweij FJ, Vestad B, Vias JL, Visnovitz T, Vukman KV, Wahlgren J, Watson DC, Wauben MH, Weaver A, Webber JP, Weber V, Wehman AM, Weiss DJ, Welsh JA, Wendt S, Wheelock AM, Wiener Z, Witte L, Wolfram J, Xagorari A, Xander P, Xu J, Yan X, Yáez-Mó M, Yin H, Yuana Y, Zappulli V, Zarubova J, Žėkas V, Zhang JY, Zhao Z, Zheng L, Zheutlin AR, Zickler AM, Zimmermann P, Zivkovic AM, Zocco D, Zuba-Surma EK. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7(1): 1535750
|
| 39 |
XM Liu, L Ma, R Schekman. Selective sorting of microRNAs into exosomes by phase-separated YBX1 condensates. eLife 2021; 10: e71982
https://doi.org/10.7554/eLife.71982
|
| 40 |
B Barman, BH Sung, E Krystofiak, J Ping, M Ramirez, B Millis, R Allen, N Prasad, S Chetyrkin, MW Calcutt, K Vickers, JG Patton, Q Liu, AM Weaver. VAP-A and its binding partner CERT drive biogenesis of RNA-containing extracellular vesicles at ER membrane contact sites. Dev Cell 2022; 57(8): 974–994.e8
https://doi.org/10.1016/j.devcel.2022.03.012
|
| 41 |
Z Xin, Z Ma, W Hu, S Jiang, Z Yang, T Li, F Chen, G Jia, Y Yang. FOXO1/3: potential suppressors of fibrosis. Ageing Res Rev 2018; 41: 42–52
https://doi.org/10.1016/j.arr.2017.11.002
|
| 42 |
M Tong, Q Zheng, M Liu, L Chen, YH Lin, SG Tang, YM Zhu. 5-methoxytryptophan alleviates liver fibrosis by modulating FOXO3a/miR-21/ATG5 signaling pathway mediated autophagy. Cell Cycle 2021; 20(7): 676–688
https://doi.org/10.1080/15384101.2021.1897241
|
| 43 |
Y Zhou, R Wu, FF Cai, WJ Zhou, YY Lu, H Zhang, QL Chen, SB Su. Xiaoyaosan decoction alleviated rat liver fibrosis via the TGFβ/Smad and Akt/FoxO3 signaling pathways based on network pharmacology analysis. J Ethnopharmacol 2021; 264: 113021
https://doi.org/10.1016/j.jep.2020.113021
|
| 44 |
V Deretic. Autophagy in inflammation, infection, and immunometabolism. Immunity 2021; 54(3): 437–453
https://doi.org/10.1016/j.immuni.2021.01.018
|
| 45 |
Y Filali-Mouncef, C Hunter, F Roccio, S Zagkou, N Dupont, C Primard, T Proikas-Cezanne, F Reggiori. The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy 2022; 18(1): 50–72
https://doi.org/10.1080/15548627.2021.1895658
|
| 46 |
J Zhu, W Zhang, L Zhang, L Xu, X Chen, S Zhou, Z Xu, M Xiao, H Bai, F Liu, C Su. IL-7 suppresses macrophage autophagy and promotes liver pathology in Schistosoma japonicum-infected mice. J Cell Mol Med 2018; 22(7): 3353–3363
https://doi.org/10.1111/jcmm.13610
|
| 47 |
Q Ren, Q Sun, J Fu. Dysfunction of autophagy in high-fat diet-induced nonalcoholic fatty liver disease. Autophagy 2024; 20(2): 221–241
https://doi.org/10.1080/15548627.2023.2254191
|
| 48 |
WX Ding, HM Ni, S Waguri, M Komatsu. Lack of hepatic autophagy promotes severity of liver injury but not steatosis. J Hepatol 2022; 77(5): 1458–1459
https://doi.org/10.1016/j.jhep.2022.05.015
|
| 49 |
V Hernández-Gea, Z Ghiassi-Nejad, R Rozenfeld, R Gordon, MI Fiel, Z Yue, MJ Czaja, SL Friedman. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 2012; 142(4): 938–946
https://doi.org/10.1053/j.gastro.2011.12.044
|
| 50 |
D Meng, Z Li, G Wang, L Ling, Y Wu, C Zhang. Carvedilol attenuates liver fibrosis by suppressing autophagy and promoting apoptosis in hepatic stellate cells. Biomed Pharmacother 2018; 108: 1617–1627
https://doi.org/10.1016/j.biopha.2018.10.005
|
| 51 |
X Luo, D Wang, X Zhu, G Wang, Y You, Z Ning, Y Li, S Jin, Y Huang, Y Hu, T Chen, Y Meng, X Li. Autophagic degradation of caveolin-1 promotes liver sinusoidal endothelial cells defenestration. Cell Death Dis 2018; 9(5): 576
https://doi.org/10.1038/s41419-018-0567-0
|
| 52 |
B Zhang, J Li, X Zong, J Wang, L Xin, H Song, W Zhang, S Koda, H Hua, B Zhang, Q Yu, KY Zheng, C Yan. FXR deficiency in hepatocytes disrupts the bile acid homeostasis and inhibits autophagy to promote liver injury in Schistosoma japonicum-infected mice. PLoS Negl Trop Dis 2022; 16(8): e0010651
https://doi.org/10.1371/journal.pntd.0010651
|
| 53 |
Y Bai, F Guan, F Zhu, C Jiang, X Xu, F Zheng, W Liu, J Lei. IL-33/ST2 axis deficiency exacerbates hepatic pathology by regulating Treg and Th17 cells in murine schistosomiasis japonica. J Inflamm Res 2021; 14: 5981–5998
https://doi.org/10.2147/JIR.S336404
|
| 54 |
IF Abou-El-Naga. Heat shock protein 70 (Hsp70) in Schistosoma mansoni and its role in decreased adult worm sensitivity to praziquantel. Parasitology 2020; 147(6): 634–642
https://doi.org/10.1017/S0031182020000347
|
| 55 |
MN Mughal, CG Grevelding, S Haeberlein. First insights into the autophagy machinery of adult Schistosoma mansoni. Int J Parasitol 2021; 51(7): 571–585
https://doi.org/10.1016/j.ijpara.2020.11.011
|
| 56 |
J Deng, Q Huang, Y Wang, P Shen, F Guan, J Li, H Huang, C Shi. Hypoxia-inducible factor-1alpha regulates autophagy to activate hepatic stellate cells. Biochem Biophys Res Commun 2014; 454(2): 328–334
https://doi.org/10.1016/j.bbrc.2014.10.076
|
| 57 |
HM Al-Tamari, S Dabral, A Schmall, P Sarvari, C Ruppert, J Paik, RA DePinho, F Grimminger, O Eickelberg, A Guenther, W Seeger, R Savai, SS Pullamsetti. FoxO3 an important player in fibrogenesis and therapeutic target for idiopathic pulmonary fibrosis. EMBO Mol Med 2018; 10(2): 276–293
https://doi.org/10.15252/emmm.201606261
|
| 58 |
X Chen, S Zhu, HD Li, JN Wang, LJ Sun, JJ Xu, YR Hui, XF Li, LY Li, YX Zhao, XG Suo, CH Xu, ML Ji, YY Sun, C Huang, XM Meng, L Zhang, XW Lv, DQ Ye, J Li. N6-methyladenosine-modified circIRF2, identified by YTHDF2, suppresses liver fibrosis via facilitating FOXO3 nuclear translocation. Int J Biol Macromol 2023; 248: 125811
https://doi.org/10.1016/j.ijbiomac.2023.125811
|
| 59 |
Y Duan, J Pan, J Chen, D Zhu, J Wang, X Sun, L Chen, L Wu. Soluble egg antigens of Schistosoma japonicum induce senescence of activated hepatic stellate cells by activation of the FoxO3a/SKP2/P27 pathway. PLoS Negl Trop Dis 2016; 10(12): e0005268
https://doi.org/10.1371/journal.pntd.0005268
|
| 60 |
D Zhu, C Yang, P Shen, L Chen, J Chen, X Sun, L Duan, L Zhang, J Zhu, Y Duan. rSjP40 suppresses hepatic stellate cell activation by promoting microRNA-155 expression and inhibiting STAT5 and FOXO3a expression. J Cell Mol Med 2018; 22(11): 5486–5493
https://doi.org/10.1111/jcmm.13819
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|