Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (3) : 321-332    https://doi.org/10.1007/s11465-017-0434-1
RESEARCH ARTICLE
Power fluctuation and power loss of wind turbines due to wind shear and tower shadow
Binrong WEN1, Sha WEI1, Kexiang WEI2, Wenxian YANG3, Zhike PENG1(), Fulei CHU4
1. Institute of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200240, China
2. Hunan Province Cooperative Innovation Center for Wind Power Equipment and Energy Conversion, Xiangtan 411100, China
3. School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
4. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
 Download: PDF(465 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The magnitude and stability of power output are two key indices of wind turbines. This study investigates the effects of wind shear and tower shadow on power output in terms of power fluctuation and power loss to estimate the capacity and quality of the power generated by a wind turbine. First, wind speed models, particularly the wind shear model and the tower shadow model, are described in detail. The widely accepted tower shadow model is modified in view of the cone-shaped towers of modern large-scale wind turbines. Power fluctuation and power loss due to wind shear and tower shadow are analyzed by performing theoretical calculations and case analysis within the framework of a modified version of blade element momentum theory. Results indicate that power fluctuation is mainly caused by tower shadow, whereas power loss is primarily induced by wind shear. Under steady wind conditions, power loss can be divided into wind farm loss and rotor loss. Wind farm loss is constant at 3α(3α−1)R2/(8H2). By contrast, rotor loss is strongly influenced by the wind turbine control strategies and wind speed. That is, when the wind speed is measured in a region where a variable-speed controller works, the rotor loss stabilizes around zero, but when the wind speed is measured in a region where the blade pitch controller works, the rotor loss increases as the wind speed intensifies. The results of this study can serve as a reference for accurate power estimation and strategy development to mitigate the fluctuations in aerodynamic loads and power output due to wind shear and tower shadow.

Keywords wind turbine      wind shear      tower shadow      power fluctuation      power loss     
Corresponding Author(s): Zhike PENG   
Just Accepted Date: 07 April 2017   Online First Date: 04 May 2017    Issue Date: 04 August 2017
 Cite this article:   
Binrong WEN,Sha WEI,Kexiang WEI, et al. Power fluctuation and power loss of wind turbines due to wind shear and tower shadow[J]. Front. Mech. Eng., 2017, 12(3): 321-332.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0434-1
https://academic.hep.com.cn/fme/EN/Y2017/V12/I3/321
ParameterValue
Rating5 MW
Rotor orientation, configurationUpwind, 3 blades
Control strategyVariable speed, collective pitch
DrivetrainHigh speed, multiple-stage gearbox
Rotor diameter, hub diameter, hub height126 m, 3 m, 90 m
Cut-in, rated, cut-out wind speed3 m/s, 11.4 m/s, 25 m/s
Cut-in, rated rotor speed6.9 r/min, 12.1 r/min
Overhang, shaft tilt, precone5 m, 5°, 2.5°
Top, bottom tower radius1.935 m, 3.000 m
Tab.1  Gross properties of the NREL 5 MW reference wind turbine [21]
Fig.1  Control strategies of the NREL 5 MW reference wind turbine [21]
Fig.2  Blade geometry of the NREL 5 MW reference wind turbine [21]
Fig.3  Velocities and forces on the airfoil
Fig.4  Calculation flowchart for the induction factors
Fig.5  Schematic diagram of the wind turbine system
Fig.6  Wind shear coefficients at different azimuths (uniform: Uniform wind speed VH)
Fig.7  Variation in ts with the azimuth for different tower radii, d
Fig.8  Variation in ts with the azimuth for different r
Fig.9  Relationships between different steady wind speed models
Fig.10  Normalized power output of a single blade, VH = 9 m/s (WS: Wind shear; TS: Tower shadow)
Fig.11  Variation in P with the azimuth, VH = 9 m/s
Fig.12  Power output of the rotor versus VH
Fig.13  Variation in power loss with hub height wind speed (the horizontal solid line represents the constant wind farm loss)
Fig.14  Power coefficient (C) versus tip speed ratio (l) performance curve
αWind shear exponent
R, RhubRotor radius, hub radius
HHub height
T, QAxial (thrust), tangential force
CTThrust coefficient
rAir density
WRelative velocity between blade element and inflow
Vws, VtsVelocity in the wind shear and tower shadow model, respectively
Cl, CdLift coefficient, drag coefficient
jInflow angle
VHUniform wind speed
cChord
rRadial distance to the rotor axis
qBlade azimuth
BBlade number
a, bAxial induction factor, tangential induction factor
Ftip, FhubPrandtl tip factor, hub loss factor
sSolidity, s=Bc/2pr
P1Power output of a single blade
PPower output of the rotor
wRotational speed
V0Local velocity of free stream
gTwist angle
ws, tsWind shear and tower shadow coefficient
Vws,VtsSpatial average wind speed in wind shear and tower shadow model, respectively
dTower radius
dt, dbTower radius at the top and the bottom, respectively
xLateral distance from blade to tower midline; Overhang
hPower loss
PwWind farm power
CPower capture coefficient
lTip speed ratio, λ=ωR/VH
bBlade pitch angle
mm=r/R
  
1 Thiringer T. Power quality measurements performed on a low-voltage grid equipped with two wind turbines. IEEE Transactions on Energy Conversion, 1996, 11(3): 601–606
https://doi.org/10.1109/60.537031
2 Thiringer T, Dahlberg J A. Periodic pulsations from a three-bladed wind turbine. IEEE Transactions on Energy Conversion, 2001, 16(2): 128–133
https://doi.org/10.1109/60.921463
3 Sørensen P, Hansen A D, Rosas P A C. Wind models for simulation of power fluctuations from wind farms. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12–15): 1381–1402
https://doi.org/10.1016/S0167-6105(02)00260-X
4 Dolan D S L, Lehn P W. Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow. IEEE Transactions on Energy Conversion, 2006, 21(3): 717–724
https://doi.org/10.1109/TEC.2006.874211
5 Kong Y, Gu J, Wang J. Load analysis and power control of large wind turbine based on wind shear and tower shadow. Journal of Southeast University, 2010, 40(1): 228–233 (in Chinese)
6 Kong Y, Wang J, Gu J, et al.. Dynamics modeling of wind speed based on wind shear and tower shadow for wind turbine. Acta Energiae Solaris Sinica, 2011, 32(8): 1237–1244 (in Chinese)
7 Das S, Karnik N, Santoso S. Time-domain modeling of tower shadow and wind shear in wind turbines. ISRN Renewable Energy, 2011, 890582
https://doi.org/10.5402/2011/890582
8 Dai J, Hu Y, Liu D, et al.Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model. Renewable Energy, 2011, 36(3): 1095–1104
https://doi.org/10.1016/j.renene.2010.08.024
9 Han Z, Li Y, Ji J. Numerical study on 3D steady flow of a 1.3 MW wind turbine considering wind shear factor. Journal of Chinese Society of Power Engineering, 2011, 31(10): 779–783 (in Chinese)
10 Liu L, Shi K, Yang K, et al.. Effects of wind shear on the aerodynamic load of wind turbine. Journal of Engineering Thermophysics, 2010, 31(10): 1667–1670 (in Chinese)
11 Hughes F M, Anaya-Lara O, Ramtharan G, et al. Influence of tower shadow and wind turbulence on the performance of power system stabilizers for DFIG-based wind farms. IEEE Transactions on Energy Conversion, 2008, 23(2): 519–528
https://doi.org/10.1109/TEC.2008.918586
12 Zhang J, Guo L, Wu H, et al.The influence of wind shear on vibration of geometrically nonlinear wind turbine blade under fluid-structure interaction. Ocean Engineering, 2014, 84: 14–19
https://doi.org/10.1016/j.oceaneng.2014.03.017
13 Wang H, Zhang B, Qiu Q. Numerical study of the effects of wind shear coefficients on the flow characteristics of the near wake of a wind turbine blade. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2016, 230(1): 86–98
https://doi.org/10.1177/0957650915617855
14 Sezer-Uzol N, Uzol O. Effect of steady and transient wind shear on the wake structure and performance of a horizontal axis wind turbine rotor. Wind Energy (Chichester, England), 2013, 16(1): 1–17
https://doi.org/10.1002/we.514
15 Xing Z, Chen L, Li W, et al.Pitch control method study on reducing the effects of tower shadow and wind shear. Acta Energiae Solaris Sinica, 2013, 34(6): 916–923 (in Chinese)
16 Zhou B, Gong H, Zhen Z. The analysis of the pitch control of wind turbine by the influences of wind shear and tower shadow. Renewable Energy Resources, 2012, 30(1): 27–32 (in Chinese)
17 Bossanyi E A, Hassan G, Lane S. Individual blade pitch control for load reduction. Wind Energy (Chichester, England), 2003, 6(2): 119–128
https://doi.org/10.1002/we.76
18 Namik H, Stol K. Individual blade pitch control of floating offshore wind turbines. Wind Energy (Chichester, England), 2010, 13(1): 74–85
https://doi.org/10.1002/we.332
19 Namik H, Stol K. Individual blade pitch control of a floating offshore wind turbine on a tension leg platform. In: Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Olando, 2010
https://doi.org/10.2514/6.2010-999
20 Liao M, Xu K, Wu B, et al.. Effect of wind shear on wind turbine power. Journal of Shenyang University of Technology, 2008, 30(2): 163–167 (in Chinese)
21 Jonkman J B S, Musial W, Scott G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. NREL/TP-500-38060. 2009
22 Moriarty P J, Hansen A C. AeroDyn Theory Manual.Salt Lake City: National Renewable Energy Laboratory, 2005
23 Wu Y, Wang H. Preliminary analysis on effect of wind shear on output power for large diameter wind turbine. Energy Engineering, 2011, 6: 33–35 (in Chinese)
24 Jia Y. A wind turbine simulator for wind generation research. Acta Energiae Solaris Sinica, 2004, 25(6): 735–739 (in Chinese)
25 Li W, Xu D, Zhang W, et al.. Research on wind turbine emulation based on DC motor. IEEE Conference on Industrial Electronics and Applications, 2007, 5: 2589–2593
26 Jiang H. Power limit of horizontal axis wind turbine. Journal of Mechanical Engineering, 2011, 47(10): 113–118 (in Chinese) 
https://doi.org/10.3901/JME.2011.10.113
27 Burton T, Sharpe D, Jenkins N, et al.. Wind Energy Handbook. 2001.New York: John Wiley & Sons, 2014, 48–49
[1] Yi WANG, Yong XIE, Guanghua XU, Sicong ZHANG, Chenggang HOU. Tacholess order-tracking approach for wind turbine gearbox fault detection[J]. Front. Mech. Eng., 2017, 12(3): 427-439.
[2] Xiaoli XU, Xiuli LIU. Weak characteristic information extraction from early fault of wind turbine generator gearbox[J]. Front. Mech. Eng., 2017, 12(3): 357-366.
[3] Zhaohui DU, Xuefeng CHEN, Han ZHANG, Yanyang ZI, Ruqiang YAN. Multiple fault separation and detection by joint subspace learning for the health assessment of wind turbine gearboxes[J]. Front. Mech. Eng., 2017, 12(3): 333-347.
[4] Xueping PAN, Ping JU, Feng WU, Yuqing JIN. Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator[J]. Front. Mech. Eng., 2017, 12(3): 367-376.
[5] Maolin CAI, Yixuan WANG, Zongxia JIAO, Yan SHI. Review of fluid and control technology of hydraulic wind turbines[J]. Front. Mech. Eng., 2017, 12(3): 312-320.
[6] Hamed HABIBI, Hamed RAHIMI NOHOOJI, Ian HOWARD. Power maximization of variable-speed variable-pitch wind turbines using passive adaptive neural fault tolerant control[J]. Front. Mech. Eng., 2017, 12(3): 377-388.
[7] Shuaishuai WANG, Caichao ZHU, Chaosheng SONG, Huali HAN. Effects of elastic support on the dynamic behaviors of the wind turbine drive train[J]. Front. Mech. Eng., 2017, 12(3): 348-356.
[8] Shoudao HUANG, Xuan WU, Xiao LIU, Jian GAO, Yunze HE. Overview of condition monitoring and operation control of electric power conversion systems in direct-drive wind turbines under faults[J]. Front. Mech. Eng., 2017, 12(3): 281-302.
[9] Yun KONG, Tianyang WANG, Zheng LI, Fulei CHU. Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet energy spectrum[J]. Front. Mech. Eng., 2017, 12(3): 406-419.
[10] Lingli JIANG, Zhenyong DENG, Fengshou GU, Andrew D. BALL, Xuejun LI. Effect of friction coefficients on the dynamic response of gear systems[J]. Front. Mech. Eng., 2017, 12(3): 397-405.
[11] Pengxing YI,Peng HUANG,Tielin SHI. Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine[J]. Front. Mech. Eng., 2016, 11(4): 388-402.
[12] Sampath S. S.,Sawan SHETTY,Chithirai Pon Selvan M.. Estimation of power in low velocity vertical axis wind turbine[J]. Front. Mech. Eng., 2015, 10(2): 211-218.
[13] Pengxing YI,Lijian DONG,Tielin SHI. Multi-objective genetic algorithms based structural optimization and experimental investigation of the planet carrier in wind turbine gearbox[J]. Front. Mech. Eng., 2014, 9(4): 354-367.
[14] LIU Xiong, CHEN Yan, YE Zhiquan. Optimization model for rotor blades of horizontal axis wind turbines[J]. Front. Mech. Eng., 2007, 2(4): 483-488.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed